
Chapter 6

Learning the structure of

discrete-variable graphical models

with hidden variables

6.1 Introduction

One of the key problems in machine learning and statistics is how to learn the structure of graph-

ical models from data. This entails determining the dependency relations amongst the model

variables that are supported by the data. Models of differing complexities can be rated accord-

ing to their posterior probabilities, which by Bayes’ rule are related to the marginal likelihood

under each candidate model.

In the case of fully observed discrete-variable directed acyclic graphs with Dirichlet priors on

the parameters it is tractable to compute the marginal likelihood of a candidate structure and

therefore obtain its posterior probability (or a quantity proportional to this). Unfortunately,

in graphical models containing hidden variables the calculation of the marginal likelihood is

generally intractable for even moderately sized data sets, and its estimation presents a difficult

challenge for approximate methods such as asymptotic-data criteria and sampling techniques.

In this chapter we investigate a novel application of the VB framework to approximating the

marginal likelihood of discrete-variable directed acyclic graph (DAG) structures that contain

hidden variables. We call approximations to a model’s marginal likelihoodscores. We first

derive the VB score, which is simply the result of a VBEM algorithm applied to DAGs, and

then assess its performance on a model selection task: finding the particular structure (out of a

small class of structures) that gave rise to the observed data. We also derive and evaluate the

BIC and Cheeseman-Stutz (CS) scores and compare these to VB for this problem.
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We also compare the BIC, CS, and VB scoring techniques to annealed importance sampling

(AIS) estimates of the marginal likelihood. We consider AIS to be a “gold standard”, the best

method for obtaining reliable estimates of the marginal likelihoods of models explored in this

chapter (personal communication with C. Rasmussen, Z. Ghahramani, and R. Neal). We have

used AIS in this chapter to perform the first serious case study of the tightness of variational

bounds. An analysis of the limitations of AIS is also provided. The aim of the comparison is

to convince us of the reliability of VB as an estimate of the marginal likelihood in the general

incomplete-data setting, so that it can be used in larger problems, for example embedded in a

(greedy) structure search amongst a much larger class of models.

In section6.2we begin by examining the model selection question for discrete directed acyclic

graphs, and show how exact marginal likelihood calculation rapidly becomes computationally

intractable when the graph contains hidden variables. In section6.3 we briefly cover the EM

algorithm for ML and MAP parameter estimation in DAGs with hidden variables, and discuss

the BIC, Laplace and Cheeseman-Stutz asymptotic approximations. We then present the VBEM

algorithm for variational Bayesian lower bound optimisation, which in the case of discrete DAGs

is a straightforward generalisation of the MAP EM algorithm. In section6.3.5we describe in

detail an annealed importance sampling method for estimating marginal likelihoods of discrete

DAGs. In section6.4 we evaluate the performance of these different scoring methods on the

simple (yet non-trivial) model selection task of determining which of all possible structures

within a class generated a data set. Section6.5 discusses some related topics which expand

on the methods used in this chapter: first, we give an analysis of the limitations of the AIS

implementation and suggest possible extensions for it; second, we more thoroughly consider

the parameter-counting arguments used in the BIC and CS scoring methods, and reformulate

a more successful score. Finally we conclude in section6.6 and suggest directions for future

research.

6.2 Calculating marginal likelihoods of DAGs

Consider a data set of sizen, y = {y1, . . . ,yn}, modelled by the discrete directed acyclic

graph consisting of hidden and observed variablesz = {z1, . . . , zn} = {s1,y1, . . . , sn,yn}.
The variables in each platei = 1, . . . , n are indexed byj = 1, . . . , |zi|, of which somej ∈ H
are hidden andj ∈ V are observed variables, i.e.si = {zij}j∈H andyi = {zij}j∈V .

On a point of nomenclature, note thatzi = {si,yi} contains both hidden and observed variables,

and we interchange freely between these two forms where convenient. Moreover, the numbers

of hidden and observed variables,|si| and|yi|, are allowed to vary with the data point indexi.

An example of such a case could be a data set of sequences of varying length, to be modelled

by an HMM. Note also that the meaning of|·| varies depending on the type of its argument, for
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example:|z| is the number of data points,n; |si| is the number of hidden variables (for theith

data point);|sij | is the cardinality (number of settings) of thejth hidden variable (for theith

data point).

In a DAG the complete-data likelihood factorises into a product of local probabilities on each

variable

p(z |θ) =
n∏
i=1

|zi|∏
j=1

p(zij | zipa(j),θ) , (6.1)

wherepa(j) denotes the vector of indices of the parents of thejth variable. Each variable in

the model is multinomial, and the parameters of the model are different vectors of probabilities

on each variable for each configuration of its parents. For example, the parameter for a binary

variable which has two ternary parents is a32 × 2 matrix with each row summing to one.

Should there be a variablej without any parents (pa(j) = ∅), then the parameter associated with

variablej is simply a vector of its prior probabilities. If we useθjlk to denote the probability that

variablej takes on valuek when its parents are in configurationl, then the complete likelihood

can be written out as a product of terms of the form

p(zij | zipa(j),θ) =
|zipa(j)|∏
l=1

|zij |∏
k=1

θ
δ(zij ,k)δ(zipa(j),l)

jlk (6.2)

with
∑
k

θjlk = 1 ∀ {j, l} . (6.3)

Here we use
∣∣zipa(j)

∣∣ to denote the number of joint settings of the parents of variablej. That is to

say the probability is a product over both all the
∣∣zipa(j)

∣∣ possible settings of the parents and the

|zij | settings of the variable itself. Here we use Kronecker-δ notation which is 1 if its arguments

are identical and zero otherwise. The parameters of the model are given independent Dirichlet

priors, which are conjugate to the complete-data likelihood above (see equation (2.80), which

is Condition 1 for conjugate-exponential models). By independent we mean factorised over

variables and parent configurations; these choices then satisfy theglobalandlocal independence

assumptions ofHeckerman et al.(1995). For each parameterθjl = {θjl1, . . . , θjl|zij |}, the

Dirichlet prior is

p(θjl |λjl,m) =
Γ(λ0

jl)∏
k Γ(λjlk)

∏
k

θ
λjlk−1
jlk , (6.4)

whereλ are hyperparameters:

λjl = {λjl1, . . . , λjl|zij |} (6.5)

and

λjlk > 0 ∀ k , λ0
jl =

∑
k

λjlk . (6.6)
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This form of prior is assumed throughout the chapter. Since the focus of this chapter is not on

optimising these hyperparameters, we use the shorthandp(θ |m) to denote the prior from here

on. In the discrete-variable case we are considering, the complete-data marginal likelihood is

tractable to compute:

p(z |m) =
∫
dθ p(θ |m)p(z |θ) (6.7)

=
∫
dθ p(θ |m)

n∏
i=1

|zi|∏
j=1

p(zij | zipa(j),θ) (6.8)

=
|zi|∏
j=1

|zipa(j)|∏
l=1

Γ(λ0
jl)

Γ(λ0
jl +Njl)

|zij |∏
k=1

Γ(λjlk +Njlk)
Γ(λjlk)

(6.9)

whereNjlk is defined as the count in the data for the number of instances of variablej being in

configurationk with parental configurationl:

Njlk =
n∑
i=1

δ(zij , k)δ(zipa(j), l), and Njl =
|zij |∑
k=1

Njlk . (6.10)

The incomplete-data likelihood, however, is not as tractable. It results from summing over all

settings of the hidden variables and taking the product over i.i.d. presentations of the data:

p(y |θ) =
n∏
i=1

p(yi |θ) =
n∏
i=1

∑
{zij}j∈H

|zi|∏
j=1

p(zij | zipa(j),θ) . (6.11)

This quantity can be evaluated as the product ofn quantities, each of which is a summation

over all possible joint configurations of the hidden variables; in the worst case this computation

requiresO(n
∏
j∈H |zij |) operations (although this can usually be made more efficient with the

use of propagation algorithms that exploit the topology of the model). The incomplete-data

marginal likelihood forn cases follows from marginalising out the parameters of the model:

p(y |m) =
∫
dθ p(θ |m)

n∏
i=1

∑
{zij}j∈H

|zi|∏
j=1

p(zij | zipa(j),θ) . (6.12)

This expression is computationally intractable due to the expectation over the real-valued con-

ditional probabilitiesθ, which couples the hidden variables across i.i.d. data. In the worst case

it can be evaluated as the sum of
(∏

j∈H |zij |
)n

Dirichlet integrals. For example, a model with

just |si| = 2 hidden variables and100 data points requires the evaluation of2100 Dirichlet inte-

grals. This means that a linear increase in the amount of observed data results in an exponential

increase in the cost of inference.
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We focus on the task of learning the conditional independence structure of the model, that is,

which variables are parents of each variable. We compare structures based on their posterior

probabilities. In this chapter we assume that the prior,p(m), is uninformative, and so all our

information comes from the intractable marginal likelihood,p(y |m).

In the rest of this chapter we examine several methods to approximate this Bayesian integration

(6.12), in order to make learning and inference tractable. For the moment we assume that the

cardinalities of the variables, in particular the hidden variables, are fixed beforehand. The related

problem of determining the cardinality of the variables from data can be addressed in the same

framework, as we have already seen for HMMs in chapter3.

6.3 Estimating the marginal likelihood

In this section we look at some approximations to the marginal likelihood, which we refer to

henceforth asscores. We first review ML and MAP parameter learning and briefly present the

EM algorithm for a general discrete-variable directed graphical model with hidden variables.

From the result of the EM optimisation, we can construct various asymptotic approximations

to the marginal likelihood, deriving the BIC and Cheeseman-Stutz scores. We then apply the

variational Bayesian framework, which in the case of conjugate-exponential discrete directed

acyclic graphs produces a very simple VBEM algorithm, which is a direct extension of the EM

algorithm for MAP parameter learning. Finally, we derive anannealed importance sampling

method (AIS) for this class of graphical model, which is considered to be the current state-of-

the-art technique for estimating the marginal likelihood of these models using sampling — we

then compare the different scoring methods to it. We finish this section with a brief note on

some trivial and non-trivial upper bounds to the marginal likelihood.

6.3.1 ML and MAP parameter estimation

The EM algorithm for ML/MAP estimation can be derived using the lower bound interpretation

as was described in section2.2. We begin with the incomplete-data log likelihood, and lower

bound it by a functionalF(qs(s),θ) as follows

ln p(y |θ) = ln
n∏
i=1

∑
{zij}j∈H

|zi|∏
j=1

p(zij | zipa(j),θ) (6.13)

≥
n∑
i=1

∑
si

qsi(si) ln

∏|zi|
j=1 p(zij | zipa(j),θ)

qsi(si)
(6.14)

= F({qsi(si)}ni=1,θ) , (6.15)
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where we have introduced a distributionqsi(si) over the hidden variablessi for each data point

yi. We remind the reader that we have usedsi = {zij}j∈H in going from (6.13) to (6.14).

On taking derivatives ofF({qsi(si)}ni=1,θ) with respect toqsi(si), the optimal setting of the

variational posterior is given exactly by the posterior

qsi(si) = p(si |yi,θ) ∀ i . (6.16)

This is the E step of the EM algorithm; at this setting of the distributionqsi(si) it can be easily

shown that the bound (6.14) is tight (see section2.2.2).

The M step of the algorithm is derived by taking derivatives of the bound with respect to the

parametersθ. Eachθjl is constrained to sum to one, and so we enforce this with Lagrange

multiplierscjl,

∂

∂θjlk
F(qs(s),θ) =

n∑
i=1

∑
si

qsi(si)
∂

∂θjlk
ln p(zij |xipa(j),θj) + cjl (6.17)

=
n∑
i=1

∑
si

qsi(si)δ(zij , k)δ(zipa(j), l)
∂

∂θjlk
ln θjlk + cjl (6.18)

= 0 , (6.19)

which upon rearrangement gives

θjlk ∝
n∑
i=1

∑
si

qsi(si)δ(zij , k)δ(zipa(j), l) . (6.20)

Due to the normalisation constraint onθjl the M step can be written

M step (ML): θjlk =
Njlk∑|zij |

k′=1Njlk′

, (6.21)

where theNjlk are defined as

Njlk =
n∑
i=1

〈
δ(zij , k)δ(zipa(j), l)

〉
qsi (si)

(6.22)

where angled-brackets〈·〉qsi (si)
are used to denote expectation with respect to the hidden vari-

able posteriorqsi(si). TheNjlk are interpreted as the expected number of counts for observing

simultaneous settings of children and parent configurations over observed and hidden variables.

In the cases where bothj andpa(j) are observed variables,Njlk reduces to the simple empirical

count as in (6.10). Otherwise ifj or its parents are hidden then expectations need be taken over

the posteriorqsi(si) obtained in the E step.
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If we require the MAP EM algorithm, we instead lower boundln p(θ)p(y |θ). The E step

remains the same, but the M step uses augmented counts from the prior of the form in (6.4) to

give the following update:

M step (MAP): θjlk =
λjlk − 1 +Njlk∑|zij |

k′=1 λjlk′ − 1 +Njlk′

. (6.23)

Repeated applications of the E step (6.16) and the M step (6.21, 6.23) are guaranteed to in-

crease the log likelihood (with equation (6.21)) or the log posterior (with equation (6.23)) of the

parameters at every iteration, and converge to a local maximum.

As mentioned in section1.3.1, we note that MAP estimation is basis-dependent. For any par-

ticular θ∗, which has non-zero prior probability, it is possible to find a (one-to-one) reparam-

eterisationφ(θ) such that the MAP estimate forφ is atφ(θ∗). This is an obvious drawback

of MAP parameter estimation. Moreover, the use of (6.23) can produce erroneous results in

the case ofλjlk < 1, in the form of negative probabilities. Conventionally, researchers have

limited themselves to Dirichlet priors in which everyλjlk ≥ 1, although inMacKay(1998) it is

shown how a reparameterisation ofθ into the softmax basis results in MAP updates which do

not suffer from this problem (which look identical to (6.23), but without the−1 in numerator

and denominator).

6.3.2 BIC

The Bayesian Information Criterion approximation, described in section1.3.4, is the asymp-

totic limit to large data sets of the Laplace approximation. It is interesting because it does not

depend on the prior over parameters, and attractive because it does not involve the burdensome

computation of the Hessian of the log likelihood and its determinant. For the size of struc-

tures considered in this chapter, the Laplace approximation would be viable to compute, subject

perhaps to a transformation of parameters (see for exampleMacKay, 1995). However in larger

models the approximation may become unwieldy and further approximations would be required

(see section1.3.2).

For BIC, we require the number of free parameters in each structure. In the experiments in this

chapter we use a simple counting argument; in section6.5.2we discuss a more rigorous method

for estimating the dimensionality of the parameter space of a model. We apply the following

counting scheme. If a variablej has no parents in the DAG, then it contributes(|zij | − 1)
free parameters, corresponding to the degrees of freedom in its vector of prior probabilities

(constrained to lie on the simplex
∑

k pk = 1). Each variable that has parents contributes
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(|zij | − 1) parameters for each configuration of its parents. Thus in modelm the total number

of parametersd(m) is given by

d(m) =
|zi|∑
j=1

(|zij | − 1)
|zipa(j)|∏
l=1

∣∣zipa(j)l

∣∣ , (6.24)

where
∣∣zipa(j)l

∣∣ denotes the cardinality (number of settings) of thelth parent of thejth variable.

We have used the convention that the product over zero factors has a value of one to account for

the case in which thejth variable has no parents, i.e.:

|zipa(j)|∏
l=1

∣∣zipa(j)l

∣∣ = 1 , if
∣∣zipa(j)l

∣∣ = 0 . (6.25)

The BIC approximation needs to take into account aliasing in the parameter posterior (as de-

scribed in section1.3.3). In discrete-variable DAGs, parameter aliasing occurs from two sym-

metries: first, a priori identical hidden variables can be permuted; and second, the labellings of

the states of each hidden variable can be permuted. As an example, let us imagine the parents of

a single observed variable are 3 hidden variables having cardinalities(3, 3, 4). In this case the

number of aliases is 1728 (= 2! × 3! × 3! × 4!). If we assume that the aliases of the posterior

distribution are well separated then the score is given by

ln p(y |m)BIC = ln p(y | θ̂)− d(m)
2

lnn+ lnS (6.26)

whereS is the number of aliases, andθ̂ is the MAP estimate as described in the previous section.

This correction is accurate only if the modes of the posterior distribution are well separated,

which should be the case in the large data set size limit for which BIC is useful. However, since

BIC is correct only up to an indeterminant missing factor, we might think that this correction is

not necessary. In the experiments we examine the BIC score with and without this correction,

and also with and without the prior term included.

6.3.3 Cheeseman-Stutz

The Cheeseman-Stutz approximation uses the following identity for the incomplete-data marginal

likelihood:

p(y |m) = p(z |m)
p(y |m)
p(z |m)

= p(z |m)
∫
dθ p(θ |m)p(y |θ,m)∫
dθ p(θ′ |m)p(z |θ′,m)

(6.27)

which is true for any completionz = {ŝ,y} of the data. This form is useful because the

complete-data marginal likelihood,p(z |m), is tractable to compute for discrete DAGs with
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independent Dirichlet priors: it is just a product of Dirichlet integrals (see equation (6.9)). Using

the results of section1.3.2, in particular equation (1.45), we can apply Laplace approximations

to both the numerator and denominator of the above fraction to give

p(y |m) ≈ p(ŝ,y |m)
p(θ̂ |m)p(y | θ̂) |2πA|−1

p(θ̂
′ |m)p(ŝ,y | θ̂′) |2πA′|−1

. (6.28)

We assume thatp(y | θ̂) is computable exactly. If the errors in each of the Laplace approxi-

mations are similar, then they should roughly cancel each other out; this will be the case if the

shape of the posterior distributions aboutθ̂ andθ̂
′

are similar. We can ensure thatθ̂
′
= θ̂ by

completing the hidden data{si}ni=1 with their expectations under their posterior distributions

p(si |y, θ̂). That is to say the hidden states are completed as follows:

ŝijk = 〈δ(sij , k)〉qsi (si)
, (6.29)

which will generally result in non-integer countsNjlk on application of (6.22). Having com-

puted these counts and re-estimatedθ̂
′

using equation (6.23), we note that̂θ
′

= θ̂. The

Cheeseman-Stutz approximation then results from taking the BIC-type asymptotic limit of both

Laplace approximations in (6.28),

ln p(y |m)CS = ln p(ŝ,y |m) + ln p(θ̂ |m) + ln p(y | θ̂)− d

2
lnn

− ln p(θ̂
′ |m)− ln p(ŝ,y | θ̂) +

d′

2
lnn (6.30)

= ln p(ŝ,y |m) + ln p(y | θ̂)− ln p(ŝ,y | θ̂) , (6.31)

where the last line follows from the modes of the Gaussian approximations being at the same

point,θ̂
′
= θ̂, and also the assumption that the number of parameters in the models for complete

and incomplete data are the same, i.e.d = d′ (Cheeseman and Stutz, 1996, but also see section

6.5.2). Each term of (6.31) can be evaluated individually:

from (6.9) p(ŝ,y |m) =
|zi|∏
j=1

|zipa(j)|∏
l=1

Γ(λ0
jl)

Γ(λjl + N̂jl)

|zij |∏
k=1

Γ(λjlk + N̂jlk)
Γ(λjlk)

(6.32)

from (6.11) p(y | θ̂) =
n∏
i=1

∑
{zij}j∈H

|zi|∏
j=1

|zipa(j)|∏
l=1

|zij |∏
k=1

θ̂
δ(zij ,k)δ(zipa(j),l)

jlk (6.33)

from (6.1) p(ŝ,y | θ̂) =
|zi|∏
j=1

|zipa(j)|∏
l=1

|zij |∏
k=1

θ̂
N̂jlk

jlk (6.34)

where theN̂jlk are identical to theNjlk of equation (6.22) if the completion of the data witĥs is

done with the posterior found in the M step of the MAP EM algorithm used to findθ̂. Equation
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(6.33) is simply the output of the EM algorithm, equation (6.32) is a function of the counts

obtained in the EM algorithm, and equation (6.34) is a simple computation again.

As with BIC, the Cheeseman-Stutz score also needs to be corrected for aliases in the parameter

posterior, as described above, and is subject to the same caveat that these corrections are only

accurate if the aliases in the posterior are well-separated.

We note that CS is a lower bound on the marginal likelihood, as shown in section2.6.2of this

thesis. We will return to this point in the discussion of the experimental results.

6.3.4 The VB lower bound

The incomplete-data log marginal likelihood can be written as

ln p(y |m) = ln
∫
dθ p(θ |m)

n∏
i=1

∑
{zij}j∈H

|zi|∏
j=1

p(zij | zipa(j),θ) . (6.35)

We can form the lower bound in the usual fashion usingqθ(θ) and{qsi(si)}ni=1 to yield (see

section2.3.1):

ln p(y |m) ≥
∫
dθ qθ(θ) ln

p(θ |m)
qθ(θ)

+
n∑
i=1

∫
dθqθ(θ)

∑
si

qsi(si) ln
p(zi |θ,m)
qsi(si)

(6.36)

= Fm(qθ(θ), q(s)) . (6.37)

We now take functional derivatives to write down the variational Bayesian EM algorithm (theo-

rem2.1, page54). The VBM step is straightforward:

ln qθ(θ) = ln p(θ |m) +
n∑
i=1

∑
si

qsi(si) ln p(zi |θ,m) + c , (6.38)

with c a constant. Given that the prior over parameters factorises over variables as in (6.4), and

the complete-data likelihood factorises over the variables in a DAG as in (6.1), equation (6.38)

can be broken down into individual derivatives:

ln qθjl
(θjl) = ln p(θjl |λjl,m) +

n∑
i=1

∑
si

qsi(si) ln p(zij | zipa(j),θ,m) + cjl , (6.39)
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wherezij may be either a hidden or observed variable, and eachcjl is a Lagrange multiplier

from which a normalisation constant is obtained. Equation (6.39) has the form of the Dirichlet

distribution. We define the expected counts under the posterior hidden variable distribution

Njlk =
n∑
i=1

〈
δ(zij , k)δ(zipa(j), l)

〉
qsi (si)

. (6.40)

ThereforeNjlk is the expected total number of times thejth variable (hidden or observed) is

in statek when its parents (hidden or observed) are in statel, where the expectation is taken

with respect to the posterior distribution over the hidden variables for each datum. Then the

variational posterior for the parameters is given simply by (see theorem2.2)

qθjl
(θjl) = Dir (λjlk +Njlk : k = 1, . . . , |zij |) . (6.41)

For the VBE step, taking derivatives of (6.37) with respect to eachqsi(si) yields

ln qsi(si) =
∫
dθ qθ(θ) ln p(zi |θ,m) + c′i =

∫
dθ qθ(θ) ln p(si,yi |θ,m) + c′i , (6.42)

where eachc′i is a Lagrange multiplier for normalisation of the posterior. Since the complete-

data likelihoodp(zi |θ,m) is in the exponential family and we have placed conjugate Dirichlet

priors on the parameters, we can immediately utilise the results of corollary2.2(page74) which

gives simple forms for the VBE step:

qsi(si) ∝ qzi(zi) =
|zi|∏
j=1

p(zij | zipa(j), θ̃) . (6.43)

Thus the approximate posterior over the hidden variablessi resulting from a variational Bayesian

approximation is identical to that resulting from exact inference in a model with known point

parameters̃θ. Corollary2.2 also tells us that̃θ should be chosen to satisfyφ(θ̃) = φ. The

natural parameters for this model are the log probabilities{lnθjlk}, wherej specifies which

variable,l indexes the possible configurations of its parents, andk the possible settings of the

variable. Thus

ln θ̃jlk = φ(θ̃jlk) = φjlk =
∫
dθjl qθjl

(θjl) ln θjlk . (6.44)

Under a Dirichlet distribution, the expectations are given by differences of digamma functions

ln θ̃jlk = ψ(λjlk +Njlk)− ψ(
|zij |∑
k=1

λjlk +Njlk) ∀ {j, l, k} . (6.45)
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where theNjlk are defined in (6.40), and theψ(·) are digamma functions (see appendixC.1).

Since this expectation operation takes the geometric mean of the probabilities, the propagation

algorithm in the VBE step is now passed sub-normalised probabilities as parameters

|zij |∑
k=1

θ̃jlk ≤ 1 ∀ {j, l} . (6.46)

This use of sub-normalised probabilities also occurred in Chapter3, which is unsurprising given

that both models consist of local multinomial conditional probabilities. In that model, the in-

ference algorithm was the forward-backward algorithm (or its VB analogue), and was restricted

to the particular topology of a Hidden Markov Model. Our derivation uses belief propagation

(section1.1.2) for any singly-connected discrete DAG.

The expected natural parameters become normalised only if the distribution over parameters is

a delta function, in which case this reduces to the MAP inference scenario of section6.3.1. In

fact, if we look at the limit of the digamma function for large arguments (see appendixC.1), we

find

lim
x→∞

ψ(x) = lnx , (6.47)

and equation (6.45) becomes

lim
n→∞

ln θ̃jlk = ln(λjlk +Njlk)− ln(
|zij |∑
k=1

λjlk +Njlk) (6.48)

which has recovered the MAP estimator forθ (6.23), up to the−1 entries in numerator and

denominator which become vanishingly small for large data, and vanish completely if MAP is

performed in the softmax basis. Thus in the limit of large data VB recovers the MAP parameter

estimate.

To summarise, the VBEM implementation for discrete DAGs consists of iterating between the

VBE step (6.43) which infers distributions over the hidden variables given a distribution over

the parameters, and a VBM step (6.41) which finds a variational posterior distribution over

parameters based on the hidden variables’ sufficient statistics from the VBE step. Each step

monotonically increases a lower bound on the marginal likelihood of the data, and the algorithm

is guaranteed to converge to a local maximum of the lower bound.

The VBEM algorithm uses as a subroutine the algorithm used in the E step of the corresponding

EM algorithm for MAP estimation, and so the VBE step’s computational complexity is the same

— there is some overhead in calculating differences of digamma functions instead of ratios of

expected counts, but this is presumed to be minimal and fixed.

As with BIC and Cheeseman-Stutz, the lower bound does not take into account aliasing in the

parameter posterior, and needs to be corrected as described in section6.3.2.

217



VB Learning for DAG Structures 6.3. Estimating the marginal likelihood

6.3.5 Annealed Importance Sampling (AIS)

AIS (Neal, 2001) is a state-of-the-art technique for estimating marginal likelihoods, which

breaks a difficult integral into a series of easier ones. It combines techniques from importance

sampling, Markov chain Monte Carlo, and simulated annealing (Kirkpatrick et al., 1983). It

builds on work in the Physics community for estimating the free energy of systems at differ-

ent temperatures, for example: thermodynamic integration (Neal, 1993), tempered transitions

(Neal, 1996), and the similarly inspiredumbrella sampling(Torrie and Valleau, 1977). Most of

these, as well as other related methods, are reviewed inGelman and Meng(1998).

Obtaining samples from the posterior distribution over parameters, with a view to forming a

Monte Carlo estimate of the marginal likelihood of the model, is usually a very challenging

problem. This is because, even with small data sets and models with just a few parameters, the

distribution is likely to be very peaky and have its mass concentrated in tiny volumes of space.

This makes simple approaches such as sampling parameters directly from the prior or using

simple importance sampling infeasible. The basic idea behind annealed importance sampling

is to move in achain from an easy-to-sample-from distribution, via a series of intermediate

distributions, through to the complicated posterior distribution. By annealing the distributions in

this way the parameter samples should hopefully come from representative areas of probability

mass in the posterior. The key to the annealed importance sampling procedure is to make use

of the importance weights gathered at all the distributions up to and including the final posterior

distribution, in such a way that the final estimate of the marginal likelihood is unbiased. A brief

description of the AIS procedure follows:

We define a series of inverse-temperatures{τ(k)}Kk=0 satisfying

0 = τ(0) < τ(1) < · · · < τ(K − 1) < τ(K) = 1 . (6.49)

We refer to temperatures and inverse-temperatures interchangeably throughout this section. We

define the function:

fk(θ) ≡ p(θ |m)p(y |θ,m)τ(k) , k ∈ {0, . . . ,K} . (6.50)

Thus the set of functions{fk(θ)}Kk=0 form a series of unnormalised distributions whichinter-

polatebetween the prior and posterior, parameterised byτ . We also define the normalisation

constants

Zk ≡
∫
dθ fk(θ) =

∫
dθ p(θ |m)p(y |θ,m)τ(k) , k ∈ {0, . . . ,K} . (6.51)
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We note the following:

Z0 =
∫
dθ p(θ |m) = 1 (6.52)

from normalisation of the prior, and

ZK =
∫
dθ p(θ |m)p(y |θ,m) = p(y |m) , (6.53)

which is exactly the marginal likelihood that we wish to estimate. We can estimateZK , or

equivalentlyZK
Z0

, using the identity

p(y |m) =
ZK
Z0
≡ Z1

Z0

Z2

Z1
. . .

ZK
ZK−1

=
K∏
k=1

Rk , (6.54)

Each of theK ratios in this expression can be individually estimated using importance sampling

(see section1.3.6). Thekth ratio, denotedRk, can be estimated from a set of (not necessarily

independent) samples of parameters{θ(k,c)}c∈Ck
which are drawn from the higher temperature

τ(k − 1) distribution (the importance distribution), i.e. eachθ(k,c) ∼ fk−1(θ), and the impor-

tance weights are computed at the lower temperatureτ(k). These samples are used to construct

the Monte Carlo estimate forRk:

Rk ≡
Zk
Zk−1

=
∫
dθ

fk(θ)
fk−1(θ)

fk−1(θ)
Zk−1

(6.55)

≈ 1
Ck

∑
c∈Ck

fk(θ(k,c))
fk−1(θ(k,c))

, with θ(k,c) ∼ fk−1(θ) (6.56)

=
1
Ck

∑
c∈Ck

p(y |θ(k,c),m)τ(k)−τ(k−1) . (6.57)

Here, the importance weights are the summands in (6.56). The accuracy of eachRk depends

on the constituent distributions{fk(θ), fk−1(θ)} being sufficiently close so as to produce low-

variance weights. The estimate ofZK in (6.54) is unbiased if the samples used to compute each

ratioRk are drawn from the equilibrium distribution at each temperatureτ(k). In general we

expect it to be difficult to sample directly from the formsfk(θ) in (6.50), and so Metropolis-

Hastings (Metropolis et al., 1953; Hastings, 1970) steps are used at each temperature to generate

the set ofCk samples required for each importance calculation in (6.57).

Metropolis-Hastings for discrete-variable models

In the discrete-variable graphical models covered in this chapter, the parameters are multino-

mial probabilities, hence the support of the Metropolis proposal distributions is restricted to the
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simplex of probabilities summing to 1. At first thought one might suggest using a Gaussian

proposal distribution in the softmax basis of the current parametersθ:

θi ≡
ebi∑|θ|
j ebj

. (6.58)

Unfortunately an invariance exists: withβ a scalar, the transformationb′i ← bi+β ∀i leaves the

parameterθ unchanged. Therefore the determinant of the Jacobian of the transformation (6.58)

from the vectorb to the vectorθ is zero, and it is hard to construct a reversible Markov chain.

A different and intuitively appealing idea is to use a Dirichlet distribution as the proposal distri-

bution, with its mean positioned at the current parameter. The precision of the Dirichlet proposal

distribution at inverse-temperatureτ(k) is governed by itsstrength, α(k), which is a free vari-

able to be set as we wish, provided it is not in any way a function of the sampled parameters.

A Metropolis-Hastings acceptance function is required to maintain detailed balance: ifθ′ is the

sample under the proposal distribution centered around the current parameterθ(k,c), then the

acceptance function is:

a(θ′,θ(k,c)) = min

(
fk(θ′)

fk(θ(k,c))
Dir(θ(k,c) |θ′, α(k))
Dir(θ′ |θ(k,c), α(k))

, 1

)
, (6.59)

whereDir(θ |θ, α) is the probability density of a Dirichlet distribution with meanθ and strength

α, evaluated atθ. The next sample is instantiated as follows:

θ(k,c+1) =

θ′ if w < a(θ′,θ(k,c)) (accept)

θ(k,c) otherwise (reject),
(6.60)

wherew ∼ U(0, 1) is a random variable sampled from a uniform distribution on[0, 1]. By

repeating this procedure of accepting or rejectingC ′
k ≥ Ck times at the temperatureτ(k),

the MCMC sampler generates a set of (dependent) samples{θ(k,c)}C
′
k

c=1. A subset of these

{θ(k,c)}c∈Ck
, with |Ck| = Ck ≤ C ′

k, is then used as the importance samples in the computation

above (6.57). This subset will generally not include the first few samples, as these samples are

likely not yet samples from the equilibrium distribution at that temperature.

An algorithm to compute all ratios

The entire algorithm for computing allK marginal likelihood ratios is given in algorithm

6.1. It has several parameters, in particular: the number of annealing steps,K; their inverse-

temperatures (the annealing schedule),{τ(k)}Kk=1; the parameters of the MCMC importance

sampler at each temperature{C ′
k, Ck, α(k)}Kk=1, which are the number of proposed samples,
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Algorithm 6.1:AIS. To compute all ratios{Rk}Kk=1 for the marginal likelihood estimate.

1. Initialiseθini ∼ f0(θ) i.e. from the priorp(θ |m)

2. Fork = 1 toK annealing steps

(a) Run MCMC at temperatureτ(k − 1) as follows:

i. Initialiseθ(k,0) ← θini from previous temp.

ii. Generate the set{θ(k,c)}C
′
k

c=1 ∼ fk−1(θ) as follows:

A. For c = 1 toC ′
k

Proposeθ′ ∼ Dir(θ′ |θ(k,c−1), α(k))
Acceptθ(k,c) ← θ′ according to (6.59) and (6.60)

End For

B. Storeθini ← θ(k,C′k)

iii. Store a subset of these{θ(k,c)}c∈Ck
with |Ck| = Ck ≤ C ′

k

(b) CalculateRk ≡ Zk
Zk−1

u 1
Ck

∑Ck
c=1

fk(θ(k,c))

fk−1(θ(k,c))

End For

3. Output{lnRk}Kk=1 andln ẐK =
∑K

k=1 lnRk as the approximation tolnZK

the number used for the importance estimate, and the precision of the proposal distribution,

respectively.

Nota bene: In the presentation of AIS thus far, we have shown how to compute estimates of

Rk using a set,Ck, of importance samples (see equation (6.56)), chosen from the larger set,C′k,
drawn using a Metropolis-Hastings sampling scheme. In the original paper byNeal(2001), the

size of the setCk is exactly one, and it is only for this case that the validity of AIS as an unbiased

estimate has been proved. Because the experiments carried out in this chapter do in fact only

useCk = |Ck| = 1 (as described in section6.4.1), we stay in the realm of the proven result. It

is open research question to show that algorithm6.1 is unbiased forCk = |Ck| > 1 (personal

communication with R. Neal).

Algorithm 6.1produces only a single estimate of the marginal likelihood; the variance of this es-

timate can be obtained from the results of several annealed importance samplers run in parallel.

Indeed a particular attraction of AIS is that one can take averages of the marginal likelihood es-

timates from a set ofG annealed importance sampling runs to form a better (unbiased) estimate:

[
ZK
Z0

](G)

=
1
G

G∑
g=1

K(g)∏
k=1

R(g)
k . (6.61)
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However this computational resource might be better spent simulating a single chain with a

more finely-grained annealing schedule, since for eachk we require each pair of distributions

{fk(θ), fk−1(θ)} to be sufficiently close that the importance weights have low variance. Or

perhaps the computation is better invested by having a coarser annealing schedule and taking

more samples at each temperature to ensure the Metropolis-Hastings sampler has reached equi-

librium. In Neal (2001) an in-depth analysis is presented for these and other similar concerns

for estimating the marginal likelihoods in some very simple models, using functions of the vari-

ance of the importance weights (i.e. the summands in (6.56)) as guides to the reliability of the

estimates.

In section6.5.1we discuss the performance of AIS for estimating the marginal likelihood of

the graphical models used in this chapter, addressing the specific choices of proposal widths,

number of samples, and annealing schedules used in the experiments.

6.3.6 Upper bounds on the marginal likelihood

This section is included to justify comparing the marginal likelihood to scores such as MAP and

ML. The following estimates based on the ML parameters and the posterior distribution over

parameters represent strict bounds on the true marginal likelihood of a model,p(y),

p(y) =
∫
dθ p(θ)p(y |θ) . (6.62)

(where we have omitted the dependence onm for clarity).

We begin with the ML estimate:

p(y)ML =
∫
dθ δ(θ − θML )p(y |θ) (6.63)

which is the expectation of the data likelihood under a delta function about the ML parameter

setting. This is a strict upper bound only ifθML has found the global maximum of the likelihood.

This may not happen due to local maxima in the optimisation process, for example if the model

contains hidden variables and an EM-type optimisation is being employed.

The second estimate is that arising from the MAP estimate,

p(y)MAP =
∫
dθ δ(θ − θMAP)p(y |θ) (6.64)

which is the expectation of the data likelihood under a delta function about the MAP parameter

setting. However is not a strict upper or lower bound on the marginal likelihood, since this

depends on how the prior term acts to position the MAP estimate.
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The last estimate, based on the posterior distribution over parameters, is for academic interest

only, since we would expect its calculation to be intractable:

p(y)post. =
∫
dθ p(θ |y)p(y |θ) . (6.65)

This is the expected likelihood under the posterior distribution over parameters. To prove that

(6.65) is an upper bound on the marginal likelihood, we use a simple convexity bound as follows:

p(y)post. =
∫
dθ p(θ |y)p(y |θ) (6.66)

=
∫
dθ

p(θ)p(y |θ)
p(y)

p(y |θ) by Bayes’ rule (6.67)

=
1

p(y)

∫
dθ p(θ) [p(y |θ)]2 (6.68)

≥ 1
p(y)

[∫
dθ p(θ)p(y |θ)

]2

by convexity ofx2 (6.69)

=
1

p(y)
[p(y)]2 = p(y) . (6.70)

As we would expect the integral (6.65) to be intractable, we could instead estimate it by taking

samples from the posterior distribution over parameters and forming the Monte Carlo estimate:

p(y) ≤ p(y)post. =
∫
dθ p(θ |y)p(y |θ) (6.71)

≈ 1
C

C∑
c=1

p(y |θ(c)) (6.72)

whereθ(c) ∼ p(θ |y), the exact posterior. Had we taken samples from the priorp(θ), this

would have yielded the true marginal likelihood, so it makes sense that by concentrating samples

in areas which give rise to high likelihoods we are over-estimating the marginal likelihood;

for this reason we would only expect this upper bound to be close for small amounts of data.

An interesting direction of thought would be to investigate the mathematical implications of

drawing samples from an approximate posterior instead of the exact posterior, such as that

obtained in a variational optimisation, which itself is arrived at from a lower bound on the

marginal likelihood; this could well give an even higher upper bound since the approximate

variational posterior is likely to neglect regions of low posterior density.

6.4 Experiments

In this section we experimentally examine the performance of the variational Bayesian proce-

dure in approximating the marginal likelihood for all the models in a particular class. We first

describe the class defining our space of hypothesised structures, then chose a particular mem-
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ber of the class as the “true” structure, generate a set of parameters for that structure, and then

generate varying-sized data sets from that structure with those parameters. The task is then to

estimate the marginal likelihood of every data set under each member of the class, including

the true structure, using each of the scores described in the previous section. The hope is that

the VB lower bound will be able to find the true model, based on its scoring, as reliably as the

gold standard AIS does. We would ideally like the VB method to perform well even with little

available data.

Later experiments take the true structure and analyse the performance of the scoring methods

under many different settings of the parameters drawn from the parameter prior for the true

structure. Unfortunately this analysis does not include AIS, as sampling runs for each and every

combination of the structures, data sets, and parameter settings would take a prohibitively large

amount of compute time.

A specific class of graphical model. We look at the specific class of discrete directedbipartite

graphical models, i.e. those graphs in which only hidden variables can be parents of observed

variables, and the hidden variables themselves have no parents. We further restrict ourselves

to those graphs which have justk = |H| = 2 hidden variables, andp = |V| = 4 observed

variables; both hidden variables are binary i.e.|sij | = 2 for j ∈ H, and each observed variable

has cardinality|yij | = 5 for j ∈ V.

The number of distinct graphs. In the class of bipartite graphs described above, withk dis-

tinct hidden variables andp observed variables, there are2kp possible structures, corresponding

to the presence or absence of a directed link between each hidden and each conditionally inde-

pendent observed variable. If the hidden variables are unidentifiable, which is the case in our

example model where they have the same cardinality, then the number of possible graphs is

reduced. It is straightforward to show in this example that the number of graphs is reduced from

22×4 = 256 down to136.

The specific model and generating data. We chose the particular structure shown in figure

6.1, which we call the “true” structure. We chose this structure because it contains enough links

to induce non-trivial correlations amongst the observed variables, whilst the class as a whole

has few enough nodes to allow us to examine exhaustively every possible structure of the class.

There are only three other structures in the class which have more parameters than our chosen

structure; these are: two structures in which either the left- or right-most visible node has both

hidden variables as parents instead of just one, and one structure which is fully connected. As a

caveat, one should note that our chosen true structure is at the higher end of complexity in this

class, and so we might find that scoring methods that do not penalise complexity do seemingly

better than naively expected.
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yi1

si1 si2

yi2 yi3 yi4

i=1...n

Figure 6.1: The true structure that was used to generate all the data sets used in the experi-
ments. The hidden variables (top) are each binary, and the observed variables (bottom) are each
five-valued. This structure has 50 parameters, and is two links away from the fully-connected
structure. In total there are 136 possible distinct structures with two (identical) hidden variables
and four observed variables.

Evaluation of the marginal likelihood of all possible alternative structures in the class is done

for academic interest only; in practice one would embed different structure scoring methods in

a greedy model search outer loop (Friedman, 1998) to find probable structures. Here, we are not

so much concerned with structuresearchper se, since a prerequisite for a good structure search

algorithm is an efficient and accurate method for evaluating any particular structure. Our aim in

these experiments is to establish the reliability of the variational bound as a score, compared to

annealed importance sampling, and the currently employed asymptotic scores such as BIC and

Cheeseman-Stutz.

The parameters of the true model

Conjugate uniform symmetric Dirichlet priors were placed over all the parameters of the model,

that is to say in equation (6.4), λjlk = 1 ∀{jlk}. This particular prior was arbitrarily chosen for

the purposes of the experiments, and we do not expect it to influence our conclusions much. For

the network shown in figure6.1parameters were sampled from the prior, once and for all, to in-

stantiate a true underlying model, from which data was then generated. The sampled parameters

are shown below (their sizes are functions of each node’s and its parents’ cardinalities):

θ1 =
[
.12 .88

]
θ3 =

[
.03 .03. .64 .02 .27
.18 .15 .22 .19 .27

]
θ6 =

[
.10 .08 .43 .03 .36
.30 .14 .07 .04 .45

]

θ2 =
[
.08 .92

]
θ4 =


.10 .54 .07 .14 .15
.04 .15 .59 .05 .16
.20 .08 .36 .17 .18
.19 .45 .10 .09 .17

 θ5 =


.11 .47 .12 .30 .01
.27 .07 .16 .25 .25
.52 .14 .15 .02 .17
.04 .00 .37 .33 .25


where{θj}2j=1 are the parameters for the hidden variables, and{θj}6j=3 are the parameters

for the remaining four observed variables. Recall that each row of each matrix denotes the
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probability of each multinomial setting for a particular configuration of the parents. Each row

of each matrix sums to one (up to rounding error). Note that there are only two rows forθ3 and

θ6 as both these observed variables have just a single binary parent. For variables 4 and 5, the

four rows correspond to the parent configurations (in order):{[1 1], [1 2], [2 1], [2 2]}.

Also note that for this particular instantiation of the parameters, both the hidden variable priors

are close to deterministic, causing approximately 80% of the data to originate from the[2 2]
setting of the hidden variables. This means that we may need many data points before the

evidence for two hidden variables outweighs that for one.

Incrementally larger and larger data sets were generated with these parameter settings, with

n ∈ {10,20, 40, 80, 110, 160, 230, 320, 400, 430,

480, 560, 640, 800, 960, 1120, 1280, 2560, 5120, 10240} .

The items in then = 10 data set are a subset of then = 20 and subsequent data sets, etc.

The particular values ofn were chosen from an initially exponentially increasing data set size,

followed by inclusion of some intermediate data sizes to concentrate on interesting regions of

behaviour.

6.4.1 Comparison of scores to AIS

All 136 possible distinct structures were scored for each of the 20 data set sizes given above,

using MAP, BIC, CS, VB and AIS scores. Strictly speaking, MAP is not an approximation

to the marginal likelihood, but it is an upper bound (see section6.3.6) and so is nevertheless

interesting for comparison.

We ran EM on each structure to compute the MAP estimate of the parameters, and from it com-

puted the BIC score as described in section6.3.2. We also computed the BIC score including

the parameter prior, denoted BICp, which was obtained by including a termln p(θ̂ |m) in equa-

tion (6.26). From the same EM optimisation we computed the CS score according to section

6.3.3. We then ran the variational Bayesian EM algorithm with the same initial conditions to

give a lower bound on the marginal likelihood. For both these optimisations, random parameter

initialisations were used in an attempt to avoid local maxima — the highest score over three

random initialisations was taken for each algorithm; empirically this heuristic appeared to avoid

local maxima problems. The EM and VBEM algorithms were terminated after either 1000 it-

erations had been reached, or the change in log likelihood (or lower bound on the log marginal

likelihood, in the case of VBEM) became less than10−6 per datum.

For comparison, the AIS sampler was used to estimate the marginal likelihood (see section

6.3.5), annealing from the prior to the posterior inK = 16384 steps. A nonlinear anneal-
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ing schedule was employed, tuned to reduce the variance in the estimate, and the Metropolis

proposal width was tuned to give reasonable acceptance rates. We chose to have just a single

sampling step at each temperature (i.e.C ′
k = Ck = 1), for which AIS has been proven to give

unbiased estimates, and initialised the sampler at each temperature with the parameter sample

from the previous temperature. These particular choices are explained and discussed in detail in

section6.5.1. Initial marginal likelihood estimates from single runs of AIS were quite variable,

and for this reason several more batches of AIS runs were undertaken, each using a different

random initialisation (and random numbers thereafter); the total ofG batches of scores were

averaged according to the procedure given in section6.3.5, equation (6.61), to give the AIS(G)

score. In total,G = 5 batches of AIS runs were carried out.

Scoring all possible structures

Figure6.2shows the MAP, BIC, BICp, CS, VB and AIS(5) scores obtained for each of the 136

possible structures against the number of parameters in the structure. Score is measured on the

vertical axis, with each scoring method (columns) sharing the same vertical axis range for a

particular data set size (rows).

The horizontal axis of each plot corresponds to the number of parameters in the structure (as de-

scribed in section6.3.2). For example, at the extremes there is one structure with 66 parameters

which is the fully connected structure, and one structure with 18 parameters which is the fully

unconnected structure. The structure that generated the data has exactly 50 parameters. In each

plot we can see that several structures can occupy the same column, having the same number of

parameters. This means that, at least visually, it is not always possible to unambiguously assign

each point in the column to a particular structure.

The scores shown here are those corrected for aliases — the difference between the uncorrected

and corrected versions is only just perceptible as a slight downward movement of the low pa-

rameter structures (those with just one or zero hidden variables), as these have a smaller number

of aliasesS (see equation (6.26)).

In each plot, the true structure is highlighted by a ‘◦’ symbol, and the structure currently ranked

highest by that scoring method is marked with a ‘×’. We can see the general upward trend

for the MAP score which prefers more complicated structures, and the pronounced downward

trend for the BIC and BICp scores which (over-)penalise structure complexity. In addition one

can see that neither upward or downward trends are apparent for VB or AIS scores. Moreover,

the CS score does tend to show a downward trend similar to BIC and BICp, and while this

trend weakens with increasing data, it is still present atn = 10240 (bottom row). Although

not verifiable from these plots, we should note that for the vast majority of the scored structures
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MAP BIC BICp CS VB AIS(5)

10

160

640

1280

2560

5120

10240

Figure 6.2: Scores for all 136 of the structures in the model class, by each of six scoring methods.
Each plot has the score (approximation to the log marginal likelihood) on the vertical axis,
with tick marks every 40 nats, and the number of parameters on the horizontal axis (ranging
from 18 to 66). The middle four scores have been corrected for aliases (see section6.3.2).
Each row corresponds to a data set of a different size,n: from top to bottom we haven =
10, 160, 640, 1280, 2560, 5120, 10240. The true structure is denoted with a ‘◦’ symbol, and the
highest scoring structure in each plot marked by the ‘×’ symbol. Every plot in the same row
has the same scaling for the vertical score axis, set to encapsulate every structure for all scores.
For a description of how these scores were obtained see section6.4.1.

228



VB Learning for DAG Structures 6.4. Experiments

and data set sizes, the AIS(5) score is higher than the VB lower bound, as we would expect (see

section6.5.1for exceptions to this observation).

The horizontal bands observed in the plots is an interesting artifact of the particular model used

to generate the data. For example, we find on closer inspection some strictly followed trends:

all those model structures residing in the upper band have the first three observable variables

(j = 3, 4, 5) governed by at least one of the hidden variables; and all those structures in the

middle band have the third observable (j = 4) connected to at least one hidden variable.

In this particular example, AIS finds the correct structure atn = 960 data points, but unfor-

tunately does not retain this result reliably untiln = 2560. At n = 10240 data points, BICp,

CS, VB and AIS all report the true structure as being the one with the highest score amongst

the other contending structures. Interestingly, BIC still does not select the correct structure, and

MAP has given a structure with sub-maximal parameters the highest score. The latter observa-

tion may well be due to local maxima in the EM optimisation, since for previous slightly smaller

data sets MAP chooses the fully-connected structure as expected. Note that as we did not have

intermediate data sets it may well be that, for example, AIS reliably found the structure after

1281 data points, but we cannot know this without performing more experiments.

Ranking of the true structure

A somewhat more telling comparison of the scoring methods is given by how they rank the true

structure amongst the alternative structures. Thus a ranking of 1 means that the scoring method

has given the highest marginal likelihood to the true structure.

Note that a performance measure based on ranking makes several assumptions about our choice

of loss function. This performance measure disregards information in the posterior about the

structures with lower scores, reports only the number of structures that have higher scores, and

not the amount by which the true structure is beaten. Ideally, we would compare a quantity that

measured the divergence of all structures’ posterior probabilities from the true posterior.

Moreover, we should keep in mind that at least for small data set sizes, there is no reason to

assume that the actual posterior over structures has the true structure at its mode. Therefore it is

slightly misleading to ask for high rankings at small data set sizes.

Table6.1 shows the ranking of the true structure, as it sits amongst all the possible structures,

as measured by each of the scoring methods MAP, BIC, BICp, CS, VB and AIS(5); this is also

plotted in figure6.3where the MAP ranking is not included for clarity. Higher positions in the

plot correspond to better rankings.
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n MAP BIC* BICp* CS* VB* BIC BICp CS VB AIS(5)

10 21 127 55 129 122 127 50 129 115 59
20 12 118 64 111 124 118 64 111 124 135
40 28 127 124 107 113 127 124 107 113 15
80 8 114 99 78 116 114 99 78 116 44
110 8 109 103 98 114 109 103 98 113 2
160 13 119 111 114 83 119 111 114 81 6
230 8 105 93 88 54 105 93 88 54 54
320 8 111 101 90 44 111 101 90 33 78
400 6 101 72 77 15 101 72 77 15 8
430 7 104 78 68 15 104 78 68 14 18
480 7 102 92 80 55 102 92 80 44 2
560 9 108 98 96 34 108 98 96 31 11
640 7 104 97 105 19 104 97 105 17 7
800 9 107 102 108 35 107 102 108 26 23
960 13 112 107 76 16 112 107 76 13 1
1120 8 105 96 103 12 105 96 103 12 4
1280 7 90 59 8 3 90 59 6 3 5
2560 6 25 17 11 11 25 15 11 11 1
5120 5 6 5 1 1 6 5 1 1 1
10240 3 2 1 1 1 2 1 1 1 1

Table 6.1: Ranking of the true structure by each of the scoring methods, as the size of the data
set is increased. Asterisks (*) denote scores uncorrected for parameter aliasing in the posterior.
Strictly speaking, the MAP score is not an estimate of the marginal likelihood. Note that these
results are from data generated from only one instance of parameters under the true structure’s
prior over parameters.
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Figure 6.3: Ranking given to the true structure by each scoring method for varying data set sizes
(higher in plot is better), by BIC, BICp, CS, VB and AIS(5) methods.
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For smalln, the AIS score produces a better ranking for the true structure than any of the other

scoring methods, which suggests that the AIS sampler is managing to perform the Bayesian

parameter averaging process more accurately than other approximations. For almost alln, VB

outperforms BIC, BICp and CS, consistently giving a higher ranking to the true structure. Of

particular note is the stability of the VB score ranking with respect to increasing amounts of

data as compared to AIS (and to some extent CS).

Columns in table6.1 with asterisks (*) correspond to scores that are not corrected for aliases,

and are omitted from the figure. These corrections assume that the posterior aliases are well sep-

arated, and are valid only for large amounts of data and/or strongly-determined parameters. In

this experiment, structures with two hidden states acting as parents are given a greater correction

than those structures with only a single hidden variable, which in turn receive corrections greater

than the one structure having no hidden variables. Of interest is that the correction nowhere de-

grades the rankings of any score, and in fact improves them very slightly for CS, and especially

so for the VB score.

Score discrepancies between the true and top-ranked structures

Figure6.4plots the differences in score between the true structure and the score of the structure

ranked top by BIC, BICp, CS, VB and AIS methods. The convention used means that all the

differences are exactly zero or negative, measured from the score of the top-ranked structure

— if the true structure is ranked top then the difference is zero, otherwise the true structure’s

score must be less than the top-ranked one. The true structure has a score that is close to the

top-ranked structure in the AIS method; the VB method produces approximately similar-sized

differences, and these are much less on the average than the CS, BICp, and BIC scores. For a

better comparison of the non-sampling-based scores, see section6.4.2, and figure6.6.

Computation Time

Scoring all 136 structures at 480 data points on a 1GHz Pentium III processor took: 200 seconds

for the MAP EM algorithms required for BIC/BICp/CS, 575 seconds for the VBEM algorithm

required for VB, and 55000 seconds (15 hours) for a single run of the AIS algorithm (using

16384 samples as in the main experiments). All implementations were in MATLAB . Given the

massive computational burden of the sampling method (approx 75 hours), which still produces

fairly variable scores when averaging over five runs, it does seem as though CS and VB are

proving very useful indeed. Can we justify the mild overall computational increase for VB? This

increase results from both computing differences between digamma functions as opposed to

ratios, and also from an empirically-observed slower convergence rate of the VBEM algorithm

as compared to the EM algorithm.

231



VB Learning for DAG Structures 6.4. Experiments

10
1

10
2

10
3

10
4

−60

−50

−40

−30

−20

−10

0

n

sc
or

e 
di

ffe
re

nc
e

AIS
VB
CS
BICp
BIC

Figure 6.4: Differences in log marginal likelihood estimates (scores) between the top-ranked
structure and the true structure, as reported by BIC, BICp, CS, VB and AIS(5) methods. All
differences are exactly zero or negative: if the true structure is ranked top then the difference is
zero, otherwise the score of the true structure must be less than the top-ranked structure. Note
that these score differences are not per-datum scores, and therefore are not normalised for the
datan.

6.4.2 Performance averaged over the parameter prior

The experiments in the previous section used a single instance of sampled parameters for the

true structure, and generated data from this particular model. The reason for this was that, even

for a single experiment, computing an exhaustive set of AIS scores covering all data set sizes

and possible model structures takes in excess of 15 CPU days.

In this section we compare the performance of the scores over many different sampled param-

eters of the true structure (shown in figure6.1). 106 parameters were sampled from the prior

(as done once for the single model in the previous section), and incremental data sets generated

for each of these instances as the true model. MAP EM and VBEM algorithms were employed

to calculate the scores as described in section6.4.1. For each instance of the true model, calcu-

lating scores for all data set sizes used and all possible structures, using three random restarts,

for BIC/BICp/CS and VB took approximately2.4 and4.2 hours respectively on an Athlon 1800

Processor machine, which corresponds to about1.1 and1.9 seconds for each individual score.

The results are plotted in figure6.5, which shows the median ranking given to the true structure

by each scoring method, computed over 106 randomly sampled parameter settings. This plot

corresponds to a smoothed version of figure6.3, but unfortunately cannot contain AIS averages
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Figure 6.5: Median ranking of the true structure as reported by BIC, BICp, CS and VB methods,
against the size of the data setn, taken over 106 instances of the true structure.

% times that\ than BIC* BICp* CS* CS*† BIC BICp CS CS†
VB ranks worse 16.9 30.2 31.8 32.8 15.1 29.6 30.9 31.9

same 11.1 15.0 20.2 22.1 11.7 15.5 20.9 22.2
better 72.0 54.8 48.0 45.1 73.2 55.0 48.2 45.9

Table 6.2: Comparison of the VB score to its competitors, using the ranking of the true structure
as a measure of performance. The table gives the percentage fraction of times that the true
structure was ranked lower, the same, and higher by VB than by the other methods (rounded to
nearest .1%). The ranks were collected from all 106 generated parameters and all 20 data set
sizes. Note that VB outperforms all competing scores, whether we base our comparison on the
alias-corrected or uncorrected (*) versions of the scores. The CS score annotated with† is an
improvement on the original CS score, and is explained in section6.5.2.

for the computational reasons mentioned above. The results clearly show that for the most part

VB outperforms all other scores on this task by this measure although there is a region in which

VB seems to underperform CS, as measured by the median score.

Table 6.2 shows in more detail the performance of VB and its alias-uncorrected counterpart

VB* in terms of the number of times the score correctly selects the true model (i.e. ranks it

top). The data was collated from all 106 sampled true model structures, and all 20 data set sizes,

giving a total of 288320 structures that needed to be scored by each approximate method. We

see that VB outperforms the other scores convincingly, whether we compare the uncorrected

(left hand side of table) or corrected (right hand side) scores. The results are more persuasive

for the alias-corrected scores, suggesting that VB is benefitting more from this modification —

it is not obvious why this should be so.
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Figure 6.6: Median difference in score between the true and top-ranked structures, under BIC,
BICp, CS and VB scoring methods, against the size of the data setn, taken over 106 instances
of the true structure. Also plotted are the 40-60% intervals about the medians.

These percentages are likely to be an underestimate of the success of VB, since on close ex-

amination of the individual EM and VBEM optimisations, it was revealed that for several cases

the VBEM optimisation reached the maximum number of allowed iterations before it had con-

verged, whereas EM always converged. Generally speaking the VBEM algorithm was found to

require more iterations to reach convergence than EM, which would be considered a disadvan-

tage if it were not for the considerable performance improvement of VB over BIC, BICp and

CS.

We can also plot the smoothed version of figure6.4 over instances of parameters of the true

structure drawn from the prior; this is plotted in figure6.6, which shows the median difference

between the score of the true structure and the structure scoring highest under BIC, BICp, CS

and VB. Also plotted is the 40-60% interval around the median. Again, the AIS experiments

would have taken an unfeasibly large amount of computation time, and were not carried out.

We can see quite clearly here that the VB score of the true structure is generally much closer to

that of the top-ranked structure than is the case for any of the other scores. This observation in

itself is not particularly satisfying, since we are comparing scores to scores rather than scores to

exact marginal likelihoods; nevertheless it can at least be said that the dynamic range between

true and top-ranked structure scores by the VB method is much smaller than the range for the

other methods. This observation is also apparent (qualitatively) across structures in the various

plots in figure6.2. We should be wary about the conclusions drawn from this graph comparing

VB to the other methods: a completely ignorant algorithm which gives the same score to all
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Figure 6.7: The highest ranking given to the true structure under BIC, BICp, CS and VB meth-
ods, against the size of the data setn, taken over 106 instances of the true structure. These
two traces can be considered as the results of themin operation on the rankings of all the 106
instances for eachn in figure6.5.

possible structures would look impressive on this plot, giving a score difference of zero for all

data set sizes.

Figures6.7 and6.8 show the best performance of the BIC, BICp, CS and VB methods over

the 106 parameter instances, in terms of the rankings and score differences. These plots can be

considered as the extrema of the median ranking and median score difference plots, and reflect

the bias in the score.

Figure6.7shows the best ranking given to the true structure by all the scoring methods, and it is

clear that for small data set sizes the VB and CS scores can perform quite well indeed, whereas

the BIC scores do not manage a ranking even close to these. This result is echoed in figure6.8

for the score differences, although we should bear in mind the caveat mentioned above (that the

completely ignorant algorithm can do well by this measure).

We can analyse the expected performance of a naive algorithm which simply picks any structure

at random as the guess for the true structure: the best ranking given to the true model in a set

of 106 trials where a structure is chosen at random from the 136 structures is, on the average,

roughly 1.8. We can see in figure6.7 that CS and VB surpass this forn > 30 andn > 40 data

points respectively, but that BICp and BIC do so only after 300 and 400 data points. However

we should remember that, for small data set sizes, the true posterior over structures may well

not have the true model at its mode.
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Figure 6.8: The smallest difference in score between the true and top-ranked structures, under
BIC, BICp, CS and VB methods, against the size of the data setn, taken over 106 instances of
the true structure. These two traces can be considered as the results of themax operation on the
all the 106 differences for eachn in figure6.6.

Lastly, we can examine the success rate of each score at picking the correct structure. Figure6.9

shows the fraction of times that the true structure is ranked top by the different scoring methods.

This plot echoes those results in table6.2.

6.5 Open questions and directions

This section is split into two parts which discuss some related issues arising from the work in

this chapter. In section6.5.1we discuss some of the problems experienced when using the AIS

approach, and suggest possible ways to improve the methods used in our experiments. In section

6.5.2we more thoroughly revise the parameter-counting arguments used for the BIC and CS

scores, and provide a method for estimating the complete and incomplete-data dimensionalities

in arbitrary models, and as a result form a modified score CS†.

6.5.1 AIS analysis, limitations, and extensions

The technique of annealed importance sampling is currently regarded as a state-of-the-art method

for estimating the marginal likelihood in discrete-variable directed acyclic graphical models

(personal communication with R. Neal, Z. Ghahramani and C. Rasmussen). In this section the
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Figure 6.9: The success rate of the scoring methods BIC, BICp, CS and VB, as measured by the
fraction of 106 trials in which the true structure was given ranking 1 amongst the 136 candidate
structures, plotted as a function of the data set size. See also table6.2 which presents softer
performance rates (measured in terms of relative rankings) pooled from all the data set sizes and
106 parameter samples.

AIS method is critically examined as a reliable tool to judge the performance of the BIC, CS

and VB scores.

The implementation of AIS has considerable flexibility; for example the user is left to specify the

length, granularity and shape of the annealing schedules, the form of the Metropolis-Hastings

sampling procedure, the number of samples taken at each temperature, etc. These and other

parameters were described in section6.3.5; here we clarify our choices of settings and discuss

some further ways in which the sampler could be improved. Throughout this subsection we use

AIS to refer to the algorithm which provides a single estimate of the marginal likelihood, i.e.

AIS(1).

First off, how can we be sure that the AIS sampler is reporting the correct answer for the

marginal likelihood of each structure? To be sure of a correct answer one should use as long

and gradual an annealing schedule as possible, containing as many samples at each temperature

as is computationally viable (or compare to a very long simple importance sampler). In the AIS

experiments in this chapter we always opted for a single sample at each step of the annealing

schedule, initialising the parameter at the next temperature at the last accepted sample, and en-

sured that the schedule itself was as finely grained as we could afford. This reduces the variables

at our disposal to a single parameter, namely the total number of samples taken in each run of

AIS, which is then directly related to the schedule granularity. Without yet discussing the shape
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Figure 6.10: Logarithm of AIS estimates (vertical) of the marginal likelihood for different initial
conditions of the sampler (different traces) and different duration of annealing schedules (hori-
zontal), for the true structure withn = 480 data points. The top-most trace is that corresponding
to setting the initial parameters to the true values that generated the data. Shown are also the
BIC score (dashed) and the VB lower bound (solid).

of the annealing schedule, we can already examine the performance of the AIS sampler as a

function of the number of samples.

Figure 6.10 shows several AIS estimates of the marginal likelihood for the data set of size

n = 480 under the model having the true structure. Each trace is a result of initialising the AIS

sampler at a different position in parameter space sampled from the prior (6.4), except for the

top-most trace which is the result of initialising the AIS algorithm at the exact parameters that

were used to generate the data (which as the experimenter we have access to). It is important

to understand the abscissa of the plot: it is the number of samples in the AIS run and, given the

above comments, relates to the granularity of the schedule; thus the points on a particular trace

do not correspond to progress through the annealing schedule, but in fact constitute the results

of runs that are completely different other than in their common parameter initialisation.

Also plotted for reference are the VB and BIC estimates of the log marginal likelihood for this

data set under the true structure, which are not functions of the annealing duration. We know

that the VB score is a strict lower bound on the log marginal likelihood, and so those estimates

from AIS that consistently fall below this score must be indicative of an inadequate annealing

schedule shape or duration.
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For short annealing schedules, which are necessarily coarse to satisfy the boundary require-

ments onτ (see equation (6.49)), it is clear that the AIS sampling is badly under-estimating

the log marginal likelihood. This can be explained simply because the rapid annealing sched-

ule does not give the sampler time to locate and exploit regions of high posterior probability,

forcing it to neglect representative volumes of the posterior mass; this conclusion is further sub-

stantiated since the AIS run started from the true parameters (which if the data is representative

of the model should lie in a region of high posterior probability) over-estimates the marginal

likelihood, because it is prevented from exploring regions of low probability. Thus for coarse

schedules of less than aboutK = 1000 samples, the AIS estimate of the log marginal likeli-

hood seems biased and has very high variance. Note that the construction of the AIS algorithm

guarantees that the estimates of the marginal likelihood are unbiased, but not necessarily the log

marginal likelihood.

We see that all runs converge for sufficiently long annealing schedules, with AIS passing the

BIC score at about 1000 samples, and the VB lower bound at about 5000 samples. Thus,

loosely speaking, where the AIS and VB scores intersect we can consider their estimates to

be roughly equally reliable. We can then compare their computational burdens and make some

statement about the advantage of one over the other in terms of compute time. Atn = 480
the VB scoring method requires about1.5s to score the structure, whereas AIS atn = 480 and

K = 213 requires about100s; thus for this scenario VB is 70 times more efficient at scoring the

structures (at its own reliability).

In this chapter’s main experiments a value ofK = 214 = 16384 steps was used, and it is clear

from figure6.10that we can be fairly sure of the AIS method reporting a reasonably accurate

result at this value ofK, at least forn = 480. However, how would we expect these plots to

look for larger data sets in which the posterior over parameters is more peaky and potentially

more difficult to navigate during the annealing?

A good indicator of the mobility of the Metropolis-Hastings sampler is the acceptance rate of

proposed samples, from which the representative set of importance weights are computed (see

(6.60)). Figure6.11shows the fraction of accepted proposals during the annealing run, averaged

over AIS scoring of all 136 possible structures, plotted against the size of the data set,n; the

error bars are the standard errors of the mean acceptance rate across scoring all structures. We

can see that atn = 480 the acceptance rate is rarely below 60%, and so one would indeed expect

to see the sort of convergence shown in figure6.10. However for the larger data sets the accep-

tance rate drops to 20%, implying that the sampler is having considerable difficulty obtaining

representative samples from the posterior distributions in the annealing schedule. Fortunately

this drop is only linear in the logarithm of the data size. For the moment, we defer discussing

the temperature dependence of the acceptance rate, and first consider combining AIS sampling

runs to reduce the variance of the estimates.
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Figure 6.11: Acceptance rates of the Metropolis-Hastings proposals along the entire annealing
schedule, for one batch of AIS scoring of all structures, against the size of the data set,n. The
dotted lines are the sample standard deviations across all structures for eachn.

One way of reducing the variance in our estimate of the marginal likelihood is to pool the results

of several AIS samplers run in parallel according to the averaging in equation (6.61). Returning

to the specific experiments reported in section6.4, table6.3 shows the results of running five

AIS samplers in parallel with different random seeds on the entire class of structures and data

set sizes, and then using the resulting averaged AIS estimate, AIS(5), as a score for ranking the

structures. In the experiments it is the performance of these averaged scores that are compared

to the other scoring methods: BIC, CS and VB. To perform five runs took at least 40 CPU days

on an Athlon 1800 Processor machine.

By examining the reported AIS scores, both for single and pooled runs, over the 136 structures

and 20 data set sizes, and comparing them to the VB lower bound, we can see how often AIS

violates the lower bound. Table6.4shows the number of times the reported AIS score is below

the VB lower bound, along with the rejection rates of the Metropolis-Hastings sampler that was

used in the experiments (which are also plotted in figure6.11). From the table we see that

for small data sets the AIS method reports “valid” results and the Metropolis-Hastings sampler

is accepting a reasonable proportion of proposed parameter samples. However at and beyond

n = 560 the AIS sampler degrades to the point where it reports “invalid” results for more than

half the 136 structures it scores. However, since the AIS estimate is noisy and we know that

the tightness of the VB lower bound increases withn, this criticism could be considered too

harsh — indeed if the bound were tight, we would expect the AIS score to violate the bound

on roughly 50% of the runs anyway. The lower half of the table shows that, by combining AIS

estimates from separate runs, we obtain an estimate that violates the VB lower bound far less
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n
AIS(1)

#1
AIS(1)

#2
AIS(1)

#3
AIS(1)

#4
AIS(1)

#5
AIS(5)

10 27 38 26 89 129 59
20 100 113 88 79 123 135
40 45 88 77 5 11 15
80 10 47 110 41 95 44
110 1 50 8 2 62 2
160 33 2 119 31 94 6
230 103 25 23 119 32 54
320 22 65 51 44 42 78
400 89 21 1 67 10 8
430 29 94 21 97 9 18
480 2 42 14 126 18 2
560 47 41 7 59 7 11
640 12 10 23 2 23 7
800 7 3 126 101 22 23
960 1 4 1 128 8 1
1120 3 53 3 37 133 4
1280 76 2 50 7 12 5
2560 1 1 4 1 1 1
5120 12 1 24 2 16 1
10240 1 1 2 12 1 1

Table 6.3: Rankings resulting from averaging batches of AIS scores. Each one of the five
columns correspond to a different initialisation of the sampler, and gives the rankings resulting
from a single run of AIS for each of the 136 structures and 20 data set size combinations.
The last column is the ranking of the true structure based on the mean of the AIS marginal
likelihood estimates from all five runs of AIS of each structure and data set size (see section
6.3.5for averaging details).

n 10 . . . 560 640 800 960 1120 1280 2560 5120 10240
single

#AIS(1)<VB* ≤5.7 12.3 8.5 12.3 10.4 17.0 25.5 53.8 71.7
#AIS(1)<VB ≤7.5 15.1 9.4 14.2 12.3 20.8 31.1 59.4 74.5
% M-H rej. <40.3 41.5 43.7 45.9 47.7 49.6 59.2 69.7 79.2
averaged

#AIS(5)<VB* 0 0.0 0.0 0.0 0.0 0.7 3.7 13.2 50.0
#AIS(5)<VB ≤1.9 0.0 0.0 0.0 1.5 2.2 5.1 19.9 52.9

Table 6.4: AIS violations: for each size data set,n, we show the percentage of times, over the
136 structures, that a particularsingleAIS run reports marginal likelihoods below the VB lower
bound. These are given for the VB scores that are uncorrected (*) and corrected for aliases.
Also shown are the average percentage rejection rates of the Metropolis-Hastings sampler used
to gather samples for the AIS estimates. The bottom half of the table shows the similar violations
by the AIS score that are made from averaging the estimates of marginal likelihoods from five
separate runs of AIS (see section6.3.5). Note that the Metropolis-Hastings rejection rates are
still just as high for each of the individual runs (not given here).
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Figure 6.12: Acceptance rates of the Metropolis-Hastings proposals for each of four quarters of
the annealing schedule, for one batch of AIS scoring of all structures, against the size of the data
set,n. Standard errors of the means are omitted for clarity.

often, and as expected we see the 50% violation rate for large amounts of data. This is a very

useful result, and obviates to some extent the Metropolis-Hastings sampler’s deficiency in all

five runs.

However, considering for the moment a single AIS run, for large data set sizes the VB bound

is still violated an unacceptable number of times, suggesting that the Metropolis-Hastings pro-

posals are simply not adequate for these posterior landscapes. This suggests a modification to

the proposal mechanism, outlined below. Diagnostically speaking, this hopefully has served as

a good example of the use of readily-computable VB lower bounds for evaluating the reliability

of the AIS methodpost hoc.

Let us return to examining why the sampler is troubled for large data set sizes. Figure6.12

shows the fraction of accepted Metropolis-Hastings proposals during each of four quarters of

the annealing schedule used in the experiments. The rejection rate tends to increase moving from

the beginning of the schedule (the prior) to the end (the posterior), the degradation becoming

more pronounced for large data sets. This is most probably due to the proposal width remaining

unchanged throughout all the AIS implementations: ideally one would use a predetermined

sequence of proposal widths which would be a function of the amount of data,n, and the

position along the schedule. This would hopefully eliminate or at least alleviate the pronounced

decrease in acceptance rate across the four quarters, but would also cause each individual trace

to not drop so severely withn.
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We can use a heuristic argument to roughly predict the optimal proposal width to use for the AIS

method. From mathematical arguments outlined in sections1.3.2and1.3.4, the precision of the

posterior distribution over parameters is approximately proportional to the size of the data setn.

Furthermore, the distribution being sampled from at stepk of the AIS schedule is effectively that

resulting from a fractionτ(k) of the data. Therefore these two factors imply that the width of

the Metropolis-Hastings proposal distribution should be inversely proportional to
√
nτ(k). In

the case of multinomial variables, since the variance of a Dirichlet distribution is approximately

inversely proportional to the strength,α, (see appendixA), then the optimal strength of the

proposal distribution should beαopt ∝ nτ(k) if its precision is to match the posterior precision.

Note that we are at liberty to set these proposal precisions arbitrarily beforehand without causing

the sampler to become biased.

We have not yet discussed the shape of the annealing schedule: should the inverse-temperatures

{τ(k)}Kk=1 change linearly from 0 to 1, or follow some other function? The particular annealing

schedule in these experiments was chosen to be nonlinear, lingering at higher temperatures for

longer than at lower temperatures, following the relationship

τ(k) =
eτk/K

1− k/K + eτ
k ∈ {0, . . . ,K} , (6.73)

with eτ set to0.2 . For any setting ofeτ > 0, the series of temperatures is monotonic and the

initial and final temperatures satisfy (6.49):

τ(0) = 0 , and τ(K) = 1 . (6.74)

For largeeτ , the schedule becomes linear. This is plotted for different values ofeτ in figure

6.13. The particular value ofeτ was chosen to reduce the degree of hysteresis in the annealing

ratios, as discussed below.

Hysteresis in the annealing ratios

As presented in section6.3.5and algorithm6.1, the algorithm for computing each and every

marginal likelihood ratio in (6.54) did so in a forward manner, carrying over the parameter

settingθini from the calculation of the previous ratio to initialise the sampling procedure for

calculating the next ratio. However, whilst it makes sense to move from higher to lower tem-

peratures to avoid local maxima in the posterior in theory, the final estimate of the marginal

likelihood is unbiased regardless of the order in which the ratios are tackled. In particular, we

can run the AIS algorithm in thereversedirection, starting from the posterior and warming

the system to the prior, calculating each ratio exactly as before but using the last sample from

the lower temperature as an initialisation for the sampling at the next higher temperature in the

schedule (note that by doing this we arenot inverting the fractions appearing in equation (6.54)).
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Figure 6.13: Non-linear AIS annealing schedules, plotted for six different values ofeτ . In the
experiments performed in this chapter,eτ = 0.2.

What can this reverse procedure do for us? If we look at figure6.10again, we can see that for

any random parameter initialisation the reported marginal likelihood is much more often than

not an underestimate of the true value. This is because for coarse annealing schedules we are

unlikely to locate regions of high posterior probability by the time the system is quenched. If we

were then to run the AIS algorithm in a reverse direction, starting from where we had finished

the forward pass, we would expect on average to report a higher marginal likelihood than that

just reported by the forward pass, simply because the sampler has had longer to explore the high

probability regions.

A logical conclusion is that if the forward and reverse passes yield very different values for

the marginal likelihood, then we have most likely used too short an annealing schedule. And

furthermore, since the marginal likelihood estimates are constructed from the product of many

ratios of marginal likelihoods, we can use the discrepancies between the ratios calculated on the

forward and reverse passes to choose temperature regions where more sampling is required, and

dilate the annealing schedules in these regions accordingly. Of course we should remember that

these discrepancies are stochastic quantities, and so we should modify the schedule based on

averaged discrepancies over several runs.

This heuristic analysis was used when designing the shape and granularity of the annealing

schedule, and we found that more time was required at higher and intermediate temperatures

at the expense of lower temperatures. An area of future research is to formalise and more

fully investigate this and related arguments. For example, it would be useful to characterise the

dependence of the degree of hysteresis along the schedule for different settings ofeτ .
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6.5.2 Estimating dimensionalities of the incomplete and complete-data models

The BICp, BIC and CS approximations take the limit of the Laplace approximation as the

amount of data tends to infinity, and result in scores that depend on the dimensionalities of

the incomplete and complete models,d andd′ respectively. In the experiments in this chap-

ter, for BICd was calculated using a simple counting argument (see equation (6.24) in section

6.3.2), and for CSd andd′ were assumed to be equal, which is the assumption made in the

original implementation ofCheeseman and Stutz(1996).

In models that have no hidden variables, the value ofd required for the BIC approximation can

usually be arrived at by adding together the degrees of freedom in each parameter, taking care

to take into consideration any parameter degeneracies. However, in models that do have hidden

variables the number of free parameters in the incomplete model is much less than that in the

complete model. This is because the full effect of each hidden variable cannot always be fully

manifest in the functions produced on the observed variables. This situation can be seen in the

following discrete example: imagine the model consisting of a singlek-valued hidden variable

which is the (only) parent of ap-valued observed variable. The naive counting argument would

return the complete dimensionality asd′ = (k − 1) + (p − 1) × k. However, the incomplete

dimensionality can be no more thand = (p− 1), as a model with this many degrees of freedom

can exactly model any observed set of counts of the observed variable.

In a general setting, deducing the complete and incomplete model dimensionalities can be com-

plicated (see, for example,Settimi and Smith, 1998; Kočka and Zhang, 2002), since it involves

computing the rank of the Jacobian of the transformation for parameters from incomplete to

complete models.Geiger et al.(1996) describe a method by whichd can be computed in dis-

crete DAGs, by diagonalising the Jacobian symbolically; they also present a theorem that guar-

antees that a randomised version of the symbolic operation is viable as well. Unfortunately their

approach seems difficult to implement efficiently on an arbitrary topology discrete DAG, since

both symbolic and randomised versions require diagonalisation. Furthermore it is not clear how,

if at all, it can be transferred to DAGs containing continuous variables with arbitrary mappings

between the complete and incomplete data models.

For the purposes of this chapter, we have used a simple method to estimate the dimensional-

ities of each model in our class. It is based on analysing the effect of random perturbations

to the model’s parameters on the complete and incomplete-data likelihoods. The procedure is

presented in algorithm6.2, and estimates the number of effective dimensions,d andd′, by com-

puting the rank of a perturbation matrix. Since the rank operation attempts to find the number

of linearly independent rows of the matricesC andC ′, the randomε-perturbations must be

small enough such that the change in the log likelihoods are linear withε. Also, the number of

samplesn should be chosen to be at least as large as the total number of parameters possible in
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Algorithm 6.2: d(m), d′(m): To estimate incomplete and complete model parameter dimen-
sionalities.

1. For each structurem

(b) ObtainθMAP using the MAP EM algorithm (section6.3.1).

(a) Obtain a representative set of all possible observed data{yi}ni=1.

(d) Randomly (spherically)ε-perturbθ̂MAP R times, to form{θ̂1, . . . , θ̂R}.
(e) Compute the matrixC(n×R) : Cir = ln p(yi | θ̂r) for all (i, r).

Estimated(m) = rank(C)− 1.

(f) Compute the matrixC ′(n×R) : C ′
ir = ln p(si,yi | θ̂r) for all (i, r),

wheresi is a randomly instantiated hidden state.

Estimated′(m) = rank(C ′)− 1.

End For

the model (as the rank of a matrix can be no more than the smaller of the number of rows or

columns), and preferably several times this for reliable estimates.

This procedure was found to give reasonable results when carried out on all the model structures

used in this chapter, with a randomly generated data set of sizen = 1000 andR = 100. Without

listing all the results, it suffices to say that: for all structuresd ≤ d′ ≤ d+2, and for the majority

of structuresd′ = d+|H|— that is to say a further degree of freedom is provided for each binary

hidden variable (of which there are at most 2) on top of the incomplete dimensionality. There

are some structures for which the discrepancyd′−d is smaller than 2, which is not as we would

expect.

There may be several reasons for this discrepancy. First the random perturbations may not have

explored certain directions from the MAP estimate, and thus the algorithm could have reported

a lower dimensionality than true (unlikely). Second, the datay only represented a subset of all

possible configurations (almost certainly since there are54 possible realisations and 1000 data

points are generated randomly), and therefore the effective dimensionality drops.

These results support the use of a more accurate CS† score — see equation (6.30), which mod-

ifies the score by adding a term(d′ − d)/2 · lnn. The effect of this is to raise the scores for

models with 2 hidden variables bylnn, raise those with just 1 hidden variable by1/2 · lnn, and

leave unchanged the single model with no hidden states.

Table 6.5 shows the improvement (in terms of ranking) of the more accurate CS† over the

original CS approximation, bringing it closer to the performance of the VB score. The table

shows the number of times in the 106 samples (see experiments in section6.4 above) that the
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n BIC BICp CS CS† VB
10 0 0 0 0 0
20 0 0 0 0 0
40 0 0 0 0 0
80 0 0 0 1 1
110 0 0 0 0 1
160 0 0 1 2 3
230 0 1 3 5 6
320 0 2 8 10 12
400 1 5 8 9 11
430 1 6 10 10 11
480 3 7 12 12 15
560 3 8 14 16 18
640 5 11 14 17 23
800 7 15 22 23 29
960 9 18 28 33 36
1120 11 19 32 33 40
1280 15 24 38 41 48
2560 35 41 59 62 66
5120 56 63 76 76 80
10240 73 79 82 83 84

Table 6.5: Number of times (out of 106) that each score selects the true structure. Shown are
the performance of the original BIC, BICp, CS and VB scores, all corrected for aliasing, and
also shown is the CS† score, resulting from (further) correcting CS for the difference between
complete and incomplete data model dimensionalities.

score successfully selected the true model structure. Is it clear that CS† is an improvement

over CS, suggesting that the assumption made above is true. However, we should interpret this

experiment with some care, because our original choice of the true model having two hidden

variables may be masking a bias in the altered score; it would make sense to perform similar

experiments choosing a much simpler model to generate the data.

The improvement in performance of the CS† score, averaged over all data set sizes and all 106

generated parameter sets can be see in table6.2(page233), where it is compared alongside BIC,

CS and VB. It can be seen that VB still performs better. Further verification of this result will

be left to future work.

6.6 Summary

In this chapter we have presented various scoring methods for approximating the marginal likeli-

hood of discrete directed graphical models with hidden variables. We presented EM algorithms

for ML and MAP parameter estimation, showed how to calculate the asymptotic criteria of BIC

and Cheeseman-Stutz, derived the VBEM algorithm for approximate Bayesian learning which
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maintains distributions over the parameters of the model and has the same complexity as the EM

algorithm, and presented a (somewhat impoverished) AIS method designed for discrete-variable

DAGs.

We have shown that VB consistently outperforms BIC and CS, and that VB performs respec-

tively as well as and more reliably than AIS for intermediate and large sizes of data. The AIS

method has very many parameters to tune and requires extensive knowledge of the model do-

main to design efficient and reliable sampling schemes and annealing schedules. VB on the

other hand has not a single parameter to set or tune, and can be applied without any expert

knowledge, at least in the class of singly-connected discrete-variable DAGs with Dirichlet pri-

ors which we have considered in this chapter. Section6.5.1discussed several ways in which

the AIS method could be improved, for example by better matching the Metropolis-Hastings

proposal distributions to the annealed posterior; in fact a method based on slice sampling should

be able to adapt better to the annealing posterior with little or no expert knowledge of the shape

of the annealed posterior (Neal, 2003).

It may be that there exists a better AIS scheme than sampling in parameter space. To be more

specific, for any completion of the data the parameters of the model can be integrated out

tractably (at least for the class of models examined in this chapter); thus an AIS scheme which

anneals in the space of completions of the data may be more efficient than the current scheme

which anneals in the space of parameters (personal communication with R. Neal). However,

this latter scheme may only be efficient for models with little data compared to the number of

parameters, as the sampling space of all completions increases linearly with the amount of data.

This avenue of research is left to further work.

This chapter has presented a novel application of variational Bayesian methods to discrete

DAGs. In the literature there have been other attempts to solve this long-standing model se-

lection problem. For example thestructural EMalgorithm ofFriedman(1998) uses a structure

search algorithm which uses a scoring algorithm very similar to the VBEM algorithm presented

here, except that for tractability the distribution overθ is replaced by the MAP estimate,θMAP.

We have shown here how the VB framework enables us to use the entire distribution overθ for

inference of the hidden variables.

In chapter2 we proved that the Cheeseman-Stutz score is in fact a lower bound on the marginal

likelihood and, more importantly, we proved that there exists a construction which is guaranteed

to produce a variational Bayesian lower bound that isat least as tightas the Cheeseman-Stutz

score (corollary2.5 to theorem2.3, page79). This construction builds a variational Bayesian

approximation using the same MAP parameter estimate used to obtain the CS score. However,

we did not use this construction in our experiments, and ran both the MAP EM and VB opti-

misations independently of each other. As a result we cannot guarantee that the VB bound is

in all runs tighter than the CS bound, as the dynamics of the optimisations for MAP learning
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and VB learning may in general lead even identically initialised algorithms to different optima

in parameter space (or parameter distribution space). Nevertheless we have still seen improve-

ment in terms of ranking of the true structure by VB as compared to CS. A tighter bound on

the marginal likelihood does not necessarily directly imply that we should have better structure

determination, although it certainly suggests this and is supported by the experimental results.

Empirically, the reader may be interested to know that the VB lower bound was observed to be

lower than the CS score in only 173 of the 288320 total scores calculated (about 0.06%). If the

construction derived in corollary2.5 had been used then this number of times would of course

be exactly zero.
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