Chapter 6

Learning the structure of
discrete-variable graphical models
with hidden variables

6.1 Introduction

One of the key problems in machine learning and statistics is how to learn the structure of graph-
ical models from data. This entails determining the dependency relations amongst the model
variables that are supported by the data. Models of differing complexities can be rated accord-
ing to their posterior probabilities, which by Bayes’ rule are related to the marginal likelihood
under each candidate model.

In the case of fully observed discrete-variable directed acyclic graphs with Dirichlet priors on
the parameters it is tractable to compute the marginal likelihood of a candidate structure and
therefore obtain its posterior probability (or a quantity proportional to this). Unfortunately,

in graphical models containing hidden variables the calculation of the marginal likelihood is
generally intractable for even moderately sized data sets, and its estimation presents a difficult
challenge for approximate methods such as asymptotic-data criteria and sampling techniques.

In this chapter we investigate a novel application of the VB framework to approximating the
marginal likelihood of discrete-variable directed acyclic graph (DAG) structures that contain
hidden variables. We call approximations to a model’s marginal likelirsmmies We first

derive the VB score, which is simply the result of a VBEM algorithm applied to DAGs, and
then assess its performance on a model selection task: finding the particular structure (out of a
small class of structures) that gave rise to the observed data. We also derive and evaluate the
BIC and Cheeseman-Stutz (CS) scores and compare these to VB for this problem.
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VB Learning for DAG Structures 6.2. Calculating marginal likelihoods of DAGs

We also compare the BIC, CS, and VB scoring techniques to annealed importance sampling
(AIS) estimates of the marginal likelihood. We consider AlS to be a “gold standard”, the best
method for obtaining reliable estimates of the marginal likelihoods of models explored in this
chapter (personal communication with C. Rasmussen, Z. Ghahramani, and R. Neal). We have
used AIS in this chapter to perform the first serious case study of the tightness of variational
bounds. An analysis of the limitations of AIS is also provided. The aim of the comparison is
to convince us of the reliability of VB as an estimate of the marginal likelihood in the general
incomplete-data setting, so that it can be used in larger problems, for example embedded in a
(greedy) structure search amongst a much larger class of models.

In section6.2we begin by examining the model selection question for discrete directed acyclic
graphs, and show how exact marginal likelihood calculation rapidly becomes computationally
intractable when the graph contains hidden variables. In se6twe briefly cover the EM
algorithm for ML and MAP parameter estimation in DAGs with hidden variables, and discuss
the BIC, Laplace and Cheeseman-Stutz asymptotic approximations. We then present the VBEM
algorithm for variational Bayesian lower bound optimisation, which in the case of discrete DAGs
is a straightforward generalisation of the MAP EM algorithm. In secidh5we describe in

detail an annealed importance sampling method for estimating marginal likelihoods of discrete
DAGs. In section6.4 we evaluate the performance of these different scoring methods on the
simple (yet non-trivial) model selection task of determining which of all possible structures
within a class generated a data set. Sec@idndiscusses some related topics which expand

on the methods used in this chapter: first, we give an analysis of the limitations of the AIS
implementation and suggest possible extensions for it; second, we more thoroughly consider
the parameter-counting arguments used in the BIC and CS scoring methods, and reformulate
a more successful score. Finally we conclude in sediiéand suggest directions for future
research.

6.2 Calculating marginal likelihoods of DAGs

Consider a data set of size y = {y1,...,yn}, modelled by the discrete directed acyclic
graph consisting of hidden and observed variables {z,...,z,} = {s1,¥1,---,Sn, ¥n}
The variables in each plate= 1,...,n are indexed by = 1,...,|z;|, of which somej € H

are hidden ang € V are observed variables, i®.= {z;;} jex andy; = {z;;}cv.

On a point of nomenclature, note that= {s;, y;} contains both hidden and observed variables,
and we interchange freely between these two forms where convenient. Moreover, the numbers
of hidden and observed variablgs;| and|y;|, are allowed to vary with the data point indéx

An example of such a case could be a data set of sequences of varying length, to be modelled
by an HMM. Note also that the meaning |[gfvaries depending on the type of its argument, for
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example:|z| is the number of data points; |s;| is the number of hidden variables (for tita

data point).

In a DAG the complete-data likelihood factorises into a product of local probabilities on each
variable

n |z

HHp Zij | Zipa(j), 0) (6.1)

i=1j=1

wherepa(j) denotes the vector of indices of the parents of ithevariable. Each variable in

the model is multinomial, and the parameters of the model are different vectors of probabilities
on each variable for each configuration of its parents. For example, the parameter for a binary
variable which has two ternary parents i$%ax 2 matrix with each row summing to one.
Should there be a variabjewithout any parentsfa(j) = 0), then the parameter associated with
variablej is simply a vector of its prior probabilities. If we uég;, to denote the probability that
variable; takes on valué when its parents are in configuratirthen the complete likelihood

can be written out as a product of terms of the form

‘ 2pa(3)‘ |51

Zij 7 Z;pa(j 7l
p(zij | Zipas, ) =[] Hej #8004catr:1) (6.2)
=1 k=1
with > 0 =1 V{j,1}. (6.3)
k

Here we Us€z;,,(; | to denote the number of joint settings of the parents of variabiéat is to

say the probability is a product over both all dlzepa(j)\ possible settings of the parents and the

|z;;| settings of the variable itself. Here we use Kroneckaptation which is 1 if its arguments

are identical and zero otherwise. The parameters of the model are given independent Dirichlet
priors, which are conjugate to the complete-data likelihood above (see equaBhn (hich

is Condition 1 for conjugate-exponential models). By independent we mean factorised over
variables and parent configurations; these choices then satigflothed andlocal independence
assumptions oHeckerman et al(1995. For each parametét;; = {01, .. .,9ﬂ|zij|}, the
Dirichlet prior is

T'(\%) -
p(01| Aji,m) = T (” lk>Hej;,§’“ : (6.4)
9 k

where) are hyperparameters:

Ajt = {jits -+ s Mgz} (6.5)

and
>0 Yk, M= ZAM : (6.6)
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This form of prior is assumed throughout the chapter. Since the focus of this chapter is not on
optimising these hyperparameters, we use the shorth@hldn) to denote the prior from here

on. In the discrete-variable case we are considering, the complete-data marginal likelihood is
tractable to compute:

plz|m) = / 49 p(6 | m)p(z| 0) 6.7)

n |zz

— [ 0 906 1m) [T T[ o2 20 (6.8)

i=1j5=1

1_1 |2 zﬁﬂ’ T'(A%) 'ﬁ' T'(Ajik + Niix) (6.9)
i + N]l) k=1 F()\]lk)

whereN ;. is defined as the count in the data for the number of instances of vajiakleg in
configurationk with parental configuratioh

|5

]lk = 25 ZZ]7 Zzpa( i) l) and le = Zlek . (6.10)

The incomplete-data likelihood, however, is not as tractable. It results from summing over all
settings of the hidden variables and taking the product over i.i.d. presentations of the data:

||

p(y|0) = prz\(’ H > 1172 | Zipagi): 6) - (6.11)

1=1{z;;}jen J=1

This quantity can be evaluated as the product @fuantities, each of which is a summation
over all possible joint configurations of the hidden variables; in the worst case this computation
requiresO(n [ [ ;4 |z:;|) operations (although this can usually be made more efficient with the
use of propagation algorithms that exploit the topology of the model). The incomplete-data
marginal likelihood fom cases follows from marginalising out the parameters of the model:

|2 |

p<y|m>:/d0p0|mH S Tps 2ipai 0) - (6.12)

i=1{z;;}jen J=1

This expression is computationally intractable due to the expectation over the real-valued con-
ditional probabilitiesd, which couples the hidden variables across i.i.d. data. In the worst case

it can be evaluated as the sum<qT[jGH ]zijon Dirichlet integrals. For example, a model with
just|s;| = 2 hidden variables anth0 data points requires the evaluation28f® Dirichlet inte-

grals. This means that a linear increase in the amount of observed data results in an exponential
increase in the cost of inference.

209



VB Learning for DAG Structures 6.3. Estimating the marginal likelihood

We focus on the task of learning the conditional independence structure of the model, that is,
which variables are parents of each variable. We compare structures based on their posterior
probabilities. In this chapter we assume that the pp6m ), is uninformative, and so all our
information comes from the intractable marginal likelihopgly | m).

In the rest of this chapter we examine several methods to approximate this Bayesian integration
(6.12), in order to make learning and inference tractable. For the moment we assume that the
cardinalities of the variables, in particular the hidden variables, are fixed beforehand. The related
problem of determining the cardinality of the variables from data can be addressed in the same
framework, as we have already seen for HMMs in chapter

6.3 Estimating the marginal likelihood

In this section we look at some approximations to the marginal likelihood, which we refer to
henceforth ascores We first review ML and MAP parameter learning and briefly present the
EM algorithm for a general discrete-variable directed graphical model with hidden variables.
From the result of the EM optimisation, we can construct various asymptotic approximations
to the marginal likelihood, deriving the BIC and Cheeseman-Stutz scores. We then apply the
variational Bayesian framework, which in the case of conjugate-exponential discrete directed
acyclic graphs produces a very simple VBEM algorithm, which is a direct extension of the EM
algorithm for MAP parameter learning. Finally, we deriveaamealed importance sampling
method (AIS) for this class of graphical model, which is considered to be the current state-of-
the-art technique for estimating the marginal likelihood of these models using sampling — we
then compare the different scoring methods to it. We finish this section with a brief note on
some trivial and non-trivial upper bounds to the marginal likelihood.

6.3.1 ML and MAP parameter estimation

The EM algorithm for ML/MAP estimation can be derived using the lower bound interpretation
as was described in secti@®2. We begin with the incomplete-data log likelihood, and lower
bound it by a functionaFF (¢s(s), 0) as follows

|2 |

mp(y|0) =] DY [lr(zilzipag)0) (6.13)
i=1{z;;}jen J=1
> 33 g (s In L= 2 vy, 0 (6.14)
=1 s; qsi (SZ>
= F({gs,(si)}1=1.0) (6.15)
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where we have introduced a distributiq)(s;) over the hidden variables for each data point
yi- We remind the reader that we have used= {z;;};cx in going from .13 to (6.14).
On taking derivatives ofF ({gs, (s;)}1;, @) with respect toy, (s;), the optimal setting of the
variational posterior is given exactly by the posterior

gs; (si) = p(si|yi,0) Vi. (6.16)

This is the E step of the EM algorithm; at this setting of the distribugio(s;) it can be easily
shown that the bound(14) is tight (see sectiof.2.2.

The M step of the algorithm is derived by taking derivatives of the bound with respect to the
parameter®). Each@,; is constrained to sum to one, and so we enforce this with Lagrange
multipliersc;;,

0
Z Z gs, ( sZ hrlp(zZJ | Xipa(j)> 05) + ¢cji (6.17)
aeﬂk i=1 s;
0
= Z Z gs; (Si)é(zij, k)é(zipa(j), Z)W In Gjlk + Cjl (6.18)
=1 s; ke
=0, (6.19)

which upon rearrangement gives

Gﬂk XX Z Z gs; (si)é(zij, k>5(zipa(j)7 l) . (620)

=1 s;

Due to the normalisation constraint 6y the M step can be written

N
M step (ML): Ok = A LA (6.21)
|ZZ]| N
k'=1+Y5lK'
where theNj;;, are defined as
Jlk - Z <5 ZZJ? zpa 7)o l)>qs-(si) (6.22)

where angled-brackets) 4o, (s1) Q1€ used to denote expectation with respect to the hidden vari-
able posterions, (s;). The Ny, are interpreted as the expected number of counts for observing
simultaneous settings of children and parent configurations over observed and hidden variables.
In the cases where bojtandpa(j) are observed variabled);;;, reduces to the simple empirical
count as in.10. Otherwise ifj or its parents are hidden then expectations need be taken over
the posterioiys, (s;) obtained in the E step.
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If we require the MAP EM algorithm, we instead lower boulnd(0)p(y |8). The E step
remains the same, but the M step uses augmented counts from the prior of the fér# ia (
give the following update:

/\jlk -1+ lek

M step (MAP): O = o] . (6.23)
k’il )‘jlk’ -1+ lek’

Repeated applications of the E stépl and the M step§.21, 6.23 are guaranteed to in-
crease the log likelihood (with equatio®.21)) or the log posterior (with equatios 23) of the
parameters at every iteration, and converge to a local maximum.

As mentioned in sectiofh.3.1, we note that MAP estimation is basis-dependent. For any par-
ticular 8*, which has non-zero prior probability, it is possible to find a (one-to-one) reparam-
eterisationg(0) such that the MAP estimate fab is at ¢(0*). This is an obvious drawback

of MAP parameter estimation. Moreover, the use @28 can produce erroneous results in
the case of\;;;, < 1, in the form of negative probabilities. Conventionally, researchers have
limited themselves to Dirichlet priors in which eveky;;, > 1, although inMacKay (199§ it is
shown how a reparameterisationéinto the softmax basis results in MAP updates which do
not suffer from this problem (which look identical t6.23, but without the—1 in numerator

and denominator).

6.3.2 BIC

The Bayesian Information Criterion approximation, described in sedtidr is the asymp-

totic limit to large data sets of the Laplace approximation. It is interesting because it does not
depend on the prior over parameters, and attractive because it does not involve the burdensome
computation of the Hessian of the log likelihood and its determinant. For the size of struc-
tures considered in this chapter, the Laplace approximation would be viable to compute, subject
perhaps to a transformation of parameters (see for exakhgti&ay, 1995. However in larger

models the approximation may become unwieldy and further approximations would be required
(see sectioni.3.2.

For BIC, we require the number of free parameters in each structure. In the experiments in this
chapter we use a simple counting argument; in se@ibrPwe discuss a more rigorous method

for estimating the dimensionality of the parameter space of a model. We apply the following
counting scheme. If a variablg has no parents in the DAG, then it contribuigs;;| — 1)

free parameters, corresponding to the degrees of freedom in its vector of prior probabilities
(constrained to lie on the simplex;, p, = 1). Each variable that has parents contributes
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(|z;j] — 1) parameters for each configuration of its parents. Thus in madle total number
of parametergd(m) is given by

|z |Zipais) |
dm) =Y (lz5| = 1) [[ |2ipa - (6.24)
j=1 =1
where\zipa(j)l| denotes the cardinality (number of settings) offineparent of theith variable.

We have used the convention that the product over zero factors has a value of one to account for
the case in which thg¢th variable has no parents, i.e.:

|zipa(j) |

Il [zipagul =1, i |zipagy| =0. (6.25)
=1

The BIC approximation needs to take into account aliasing in the parameter posterior (as de-
scribed in sectior.3.3. In discrete-variable DAGs, parameter aliasing occurs from two sym-
metries: first, a priori identical hidden variables can be permuted; and second, the labellings of
the states of each hidden variable can be permuted. As an example, let us imagine the parents of
a single observed variable are 3 hidden variables having cardin&Btigs4). In this case the
number of aliases is 1728-(2! x 3! x 3! x 4!). If we assume that the aliases of the posterior
distribution are well separated then the score is given by

A d
Inp(y |m)sic = Inp(y|0) — (2m) Inn+InS (6.26)

wheresS is the number of aliases, afds the MAP estimate as described in the previous section.
This correction is accurate only if the modes of the posterior distribution are well separated,
which should be the case in the large data set size limit for which BIC is useful. However, since
BIC is correct only up to an indeterminant missing factor, we might think that this correction is
not necessary. In the experiments we examine the BIC score with and without this correction,
and also with and without the prior term included.

6.3.3 Cheeseman-Stutz

The Cheeseman-Stutz approximation uses the following identity for the incomplete-data marginal
likelihood:

Jd6 p(6|m)p(y|6,m)

p(y [m) ZP(ZIm)p(Z|m) ZP(ZIm)de D& [m)p(z | &.m) (6.27)

which is true for any completior = {s,y} of the data. This form is useful because the
complete-data marginal likelihoog(z | m), is tractable to compute for discrete DAGs with
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independent Dirichlet priors: it is just a product of Dirichlet integrals (see equaify).(Using
the results of sectiofh.3.2 in particular equationl(45, we can apply Laplace approximations
to both the numerator and denominator of the above fraction to give

p(0|m)p(y | 0) 2w Al
~7 R ~7 —
p(0 |m)p(3,y|0) |2r A/

p(y |m) = p(8,y|m) (6.28)

We assume thai(y | 9) is computable exactly. If the errors in each of the Laplace approxi-

mations are similar, then they should roughly cancel each other out; this will be the case if the

shape of the posterior distributions abeuandd’ are similar. We can ensure thit = § by

completlng the hidden datgs; }' ; with their expectations under their posterior distributions
p(si|y, ). Thatis to say the hidden states are completed as follows:

Sijk = (0(8ij, K)) g s1) > (6.29)

which will generally result in non-integer countg;;;, on application of §.22. Having com-
puted these counts and re-estimaéédjsing equation .23, we note that) = 0. The
Cheeseman-Stutz approximation then results from taking the BIC-type asymptotic limit of both
Laplace approximations ir6(28),

: ; . d
Inp(y [m)es = lnp(8,y [m) +p(d|m) +1lnp(y|6) — 5 nn
A R d/
~lnp(6'|m) ~lnp(5,y|8) + T lnn (6.30)

=Inp3,y|m)+Inp(y|0) —np(s,y|0), (6.31)

where the last line follows from the modes of the Gaussian approximations being at the same
point,él = 6, and also the assumption that the number of parameters in the models for complete
and incomplete data are the same,d.es d' (Cheeseman and Stutz996 but also see section
6.5.9. Each term of §.31) can be evaluated individually:

|| | Zipa(s)| )\0) |z ¢
F(/\ ik + N'lk)
from (6.9 p(8,y|m) = | | | | | | J J (6.32)
i=1 jl + Nl) F(Ajlk>

2] |Zipa(i)| |25

from (6.11) p(y |0) = H ST I Hej #i5:k)0(2ipag) 1 (6.33)
=1 k=1

i=1{z;;}jen j=1

from©)  peyI0)=]] ] I 6% (6.34)

where theNﬂk are identical to theV;;;, of equation 6.22) if the completion of the data witkis
done with the posterior found in the M step of the MAP EM algorithm used toéﬁrElquation
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(6.33 is simply the output of the EM algorithm, equatiod.32 is a function of the counts
obtained in the EM algorithm, and equatidh34) is a simple computation again.

As with BIC, the Cheeseman-Stutz score also needs to be corrected for aliases in the parameter
posterior, as described above, and is subject to the same caveat that these corrections are only
accurate if the aliases in the posterior are well-separated.

We note that CS is a lower bound on the marginal likelihood, as shown in s&@dof this
thesis. We will return to this point in the discussion of the experimental results.

6.3.4 The VB lower bound

The incomplete-data log marginal likelihood can be written as

||

Inp(y|m) = ln/dep 0|m) H Z Hp (2ij | Zipa(j), @) - (6.35)

i=1{z;;}jen J=1

We can form the lower bound in the usual fashion usjpt?) and{gs, (s;)};-, to yield (see
section2.3.1):

tnply ) > [ d6 4o(6)n ”;‘Z(;’;’
s Z / 000(0) S 505 Pl ) (6.36)
- fm(qg(0)7 Q(S)) . (637)

We now take functional derivatives to write down the variational Bayesian EM algorithm (theo-
rem2.1, page54). The VBM step is straightforward:

Inge(0) =Inp(0|m) +> > gs,(si) Inp(z:|0,m) +c, (6.38)
=1 s;

with ¢ a constant. Given that the prior over parameters factorises over variable$ad,iarfd
the complete-data likelihood factorises over the variables in a DAG & 1)) équation 6.39
can be broken down into individual derivatives:

In qgﬂ (Ojl) = lnp(Gﬂ ’ )\jla m) + Z Z qsi(si) lnp(zij ’ Zipa(j)a 9, m) + il (639)

=1 s;
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wherez;; may be either a hidden or observed variable, and eacis a Lagrange multiplier
from which a normalisation constant is obtained. Equat®B89 has the form of the Dirichlet
distribution. We define the expected counts under the posterior hidden variable distribution

Nji, = Z(a 2ij, k)0 (Zipa(j)» l)>qsl_(sl_) : (6.40)

ThereforeN;;;, is the expected total number of times tjta variable (hidden or observed) is

in statek when its parents (hidden or observed) are in statehere the expectation is taken
with respect to the posterior distribution over the hidden variables for each datum. Then the
variational posterior for the parameters is given simply by (see theBr&m

Qle(Ojl) = Dir ()\jlk + lek ck=1,..., ‘Zij‘) . (6.41)

For the VBE step, taking derivatives d.87) with respect to eacly, (s;) yields

Ings,(si) = /dé’ q0(0) Inp(z; | 0, m) + ¢; =/d9 q0(0) Inp(s;, yi |6, m) +¢;, (6.42)

where eachy} is a Lagrange multiplier for normalisation of the posterior. Since the complete-
data likelihoodp(z; | 8, m) is in the exponential family and we have placed conjugate Dirichlet
priors on the parameters, we can immediately utilise the results of corgliafgage74) which
gives simple forms for the VBE step:

|2 |

Gs, (si) o qz,(2i) HP (Zij | Zipa(j) ) (6.43)

Thus the approximate posterior over the hidden variahlessulting from a variational Bayesian
approximation is identical to that resulting from exact inference in a model with known point
parameter®). Corollary 2.2 also tells us thad should be chosen to satisty(#) = ¢. The
natural parameters for this model are the log probabilfies ;;; }, where; specifies which
variable,! indexes the possible configurations of its parents, fatite possible settings of the
variable. Thus

B = G(Byu) = By = / 4831 go,,(8;1) In B, (6.44)

Under a Dirichlet distribution, the expectations are given by differences of digamma functions

|5

6 = (i + N Z Ajik + Nji) V{5, 1, k} (6.45)

216



VB Learning for DAG Structures 6.3. Estimating the marginal likelihood

where theNj;, are defined in§.40, and they(-) are digamma functions (see appengix).
Since this expectation operation takes the geometric mean of the probabilities, the propagation
algorithm in the VBE step is now passed sub-normalised probabilities as parameters

|5

Zéjlk <1 v{il}. (6.46)
k=1

This use of sub-normalised probabilities also occurred in Ch&ptehich is unsurprising given

that both models consist of local multinomial conditional probabilities. In that model, the in-
ference algorithm was the forward-backward algorithm (or its VB analogue), and was restricted
to the particular topology of a Hidden Markov Model. Our derivation uses belief propagation
(sectionl.1.2 for any singly-connected discrete DAG.

The expected natural parameters become normalised only if the distribution over parameters is
a delta function, in which case this reduces to the MAP inference scenario of seé@&ianin

fact, if we look at the limit of the digamma function for large arguments (see appéntixwe

find

lim ¢(z)=Inz, (6.47)
and equationg.45 becomes
) |2i;]
nh—>nolo In Ojlk: = ln()\jlk + lek) - ln(z )\jlk + lek:) (6.48)
k=1

which has recovered the MAP estimator #1(6.23), up to the—1 entries in numerator and
denominator which become vanishingly small for large data, and vanish completely if MAP is
performed in the softmax basis. Thus in the limit of large data VB recovers the MAP parameter
estimate.

To summarise, the VBEM implementation for discrete DAGs consists of iterating between the
VBE step 6.43 which infers distributions over the hidden variables given a distribution over
the parameters, and a VBM stefp.41) which finds a variational posterior distribution over
parameters based on the hidden variables’ sufficient statistics from the VBE step. Each step
monotonically increases a lower bound on the marginal likelihood of the data, and the algorithm
is guaranteed to converge to a local maximum of the lower bound.

The VBEM algorithm uses as a subroutine the algorithm used in the E step of the corresponding
EM algorithm for MAP estimation, and so the VBE step’s computational complexity is the same
— there is some overhead in calculating differences of digamma functions instead of ratios of
expected counts, but this is presumed to be minimal and fixed.

As with BIC and Cheeseman-Stutz, the lower bound does not take into account aliasing in the
parameter posterior, and needs to be corrected as described in $e8tibn
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6.3.5 Annealed Importance Sampling (AIS)

AIS (Neal 200]) is a state-of-the-art technique for estimating marginal likelihoods, which
breaks a difficult integral into a series of easier ones. It combines techniques from importance
sampling, Markov chain Monte Carlo, and simulated annealikigkpatrick et al, 1983. It

builds on work in the Physics community for estimating the free energy of systems at differ-
ent temperatures, for example: thermodynamic integrafiteal 1993, tempered transitions
(Neal 1996, and the similarly inspiredmbrella samplingTorrie and Valleapy1977). Most of

these, as well as other related methods, are review&gliman and Men¢1998.

Obtaining samples from the posterior distribution over parameters, with a view to forming a
Monte Carlo estimate of the marginal likelihood of the model, is usually a very challenging
problem. This is because, even with small data sets and models with just a few parameters, the
distribution is likely to be very peaky and have its mass concentrated in tiny volumes of space.
This makes simple approaches such as sampling parameters directly from the prior or using
simple importance sampling infeasible. The basic idea behind annealed importance sampling
is to move in achain from an easy-to-sample-from distribution, via a series of intermediate
distributions, through to the complicated posterior distribution. By annealing the distributions in
this way the parameter samples should hopefully come from representative areas of probability
mass in the posterior. The key to the annealed importance sampling procedure is to make use
of the importance weights gathered at all the distributions up to and including the final posterior
distribution, in such a way that the final estimate of the marginal likelihood is unbiased. A brief
description of the AIS procedure follows:

We define a series of inverse-temperatyres:) } £, satisfying
0=70)<t7() < <7(K-1)<7(K)=1. (6.49)

We refer to temperatures and inverse-temperatures interchangeably throughout this section. We
define the function:

f1(8) = p(@ | m)p(y |6, m)™™ kelo,...,K}. (6.50)

Thus the set of functionéf;, ()}, form a series of unnormalised distributions whioter-
polate between the prior and posterior, parameterised byVe also define the normalisation
constants

Zkz/do 11(8) :/dé’ p(0|m)p(y|6,m)™™ ,  kefo,....K}.  (651)
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We note the following:
2y = /d0 p(@|m)=1 (6.52)
from normalisation of the prior, and

Zg = /d9 p(0|m)p(y |0, m) =p(y|m), (6.53)

which is exactly the marginal likelihood that we wish to estimate. We can esti@iateor
equivalently‘z,—fg, using the identity

K
Z Z Z zZ
p(y|m):—K5—l—2... K :HRk, (6.54)

Each of thek ratios in this expression can be individually estimated using importance sampling
(see sectiori.3.9. Thekth ratio, denotedz;, can be estimated from a set of (not necessarily
independent) samples of paramet@é’“)}ceck which are drawn from the higher temperature
7(k — 1) distribution (the importance distribution), i.e. ea@f*) ~ f,_,(8), and the impor-
tance weights are computed at the lower temperat(te These samples are used to construct
the Monte Carlo estimate fa?;,:

Zy fe(0) fr-1(0)
= = [ d@ 6.
R Zp1 / fi-1(0) 2k (6:59)
(kc

Z f’“ 9 . withe®°) ~ f._1(0) (6.56)

ceC
_ Z y | 0 kc T(k 7(k—1) ] (657)

CGCk

Here, the importance weights are the summand$.56§. The accuracy of eacR; depends

on the constituent distributiorsfx(0), fx—1(6)} being sufficiently close so as to produce low-
variance weights. The estimate 8§ in (6.54) is unbiased if the samples used to compute each
ratio Ry, are drawn from the equilibrium distribution at each temperattg. In general we
expect it to be difficult to sample directly from the fornfig(@) in (6.50, and so Metropolis-
Hastings Metropolis et al.1953 Hastings 1970 steps are used at each temperature to generate
the set ofC), samples required for each importance calculatior®iB?).

Metropolis-Hastings for discrete-variable models

In the discrete-variable graphical models covered in this chapter, the parameters are multino-
mial probabilities, hence the support of the Metropolis proposal distributions is restricted to the

219



VB Learning for DAG Structures 6.3. Estimating the marginal likelihood

simplex of probabilities summing to 1. At first thought one might suggest using a Gaussian
proposal distribution in the softmax basis of the current paraméters

ebi

0, = ——— . (6.58)
i ZL@\ b
Unfortunately an invariance exists: witha scalar, the transformatioh — b, + 5 Vi leaves the
parametef unchanged. Therefore the determinant of the Jacobian of the transforn@a&én (
from the vectomb to the vectol is zero, and it is hard to construct a reversible Markov chain.

A different and intuitively appealing idea is to use a Dirichlet distribution as the proposal distri-
bution, with its mean positioned at the current parameter. The precision of the Dirichlet proposal
distribution at inverse-temperaturé¢k) is governed by itstrength «(k), which is a free vari-

able to be set as we wish, provided it is not in any way a function of the sampled parameters.
A Metropolis-Hastings acceptance function is required to maintain detailed bala@¢és the
sample under the proposal distribution centered around the current par#tfeterthen the
acceptance function is:

/ : (k,e) | p!
a(g,ﬁ(k,@)_mm( f1(0') Dir(6 |e,a<k>>’1)7 (6.59)

fu(8%9) Dir(6' | 0% a(k))

whereDir (8 | 8, «) is the probability density of a Dirichlet distribution with me@mand strength
«, evaluated afl. The next sample is instantiated as follows:

o' if w< a(@,o%) accept
glhc+l) — ) w a( ) ( pt) (6.60)
0% otherwise  (reject)

wherew ~ U(0,1) is a random variable sampled from a uniform distribution[@si]. By
repeating this procedure of accepting or rejectiijg > C}, times at the temperature(k),
the MCMC sampler generates a set of (dependent) san{ﬁf&c) ccil A subset of these
{B(kvc)}ceck, with |C;| = Ci, < (Y, is then used as the importance samples in the computation
above 6.57). This subset will generally not include the first few samples, as these samples are

likely not yet samples from the equilibrium distribution at that temperature.

An algorithm to compute all ratios

The entire algorithm for computing alk’ marginal likelihood ratios is given in algorithm
6.1 It has several parameters, in particular: the number of annealing #tefibeir inverse-
temperatures (the annealing schedu{e)(,k)},le; the parameters of the MCMC importance
sampler at each temperatuf€,, C, a(k) }<_ |, which are the number of proposed samples,
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Algorithm 6.1: AIS. To compute all ratio$7€k}kl’(:1 for the marginal likelihood estimate.

1. Initialise Gin; ~ fo(0) i.e. from the priomp(6 | m)
2. Fork=1to K annealing steps

(a) Run MCMC at temperature(k — 1) as follows:
i. Initialise 8*%) — @;,; from previous temp.
ii. Generate the s§8®9}% ~ f,_,(8) as follows:
A. Forc=1toC},
Propos&’ ~ Dir(0'| 0%V a(k))
Acceptd*©) — @’ according to6.59 and 6.60)
End For
B. Storej, «— 0*Cx)
iii. Store a subset of theg@*:9)} ¢, with |Cy.| = C} < C4,

oz - C e(k,c)
(b) CalculateRy, = 7, & 4 10 FO0

End For

3. Output{ln R, }2  andln Zx = Y5, In R, as the approximation t Z

the number used for the importance estimate, and the precision of the proposal distribution,
respectively.

Nota bene In the presentation of AIS thus far, we have shown how to compute estimates of
R, using a set;,, of importance samples (see equati6érb@), chosen from the larger sef,,

drawn using a Metropolis-Hastings sampling scheme. In the original papée&if2007), the

size of the sef}, is exactly oneand it is only for this case that the validity of AIS as an unbiased
estimate has been proved. Because the experiments carried out in this chapter do in fact only
useCy = |Cx| = 1 (as described in sectidh4.1), we stay in the realm of the proven result. It

is open research question to show that algorithfnis unbiased foCy, = |Cx| > 1 (personal
communication with R. Neal).

Algorithm 6.1 produces only a single estimate of the marginal likelihood; the variance of this es-
timate can be obtained from the results of several annealed importance samplers run in parallel.
Indeed a particular attraction of AIS is that one can take averages of the marginal likelihood es-
timates from a set aff annealed importance sampling runs to form a better (unbiased) estimate:

Zp (@) 1 G K
[Z(J - STTIRY. (6.61)
g=1 k=1
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However this computational resource might be better spent simulating a single chain with a
more finely-grained annealing schedule, since for daale require each pair of distributions
{fx(0), fr—1(0)} to be sufficiently close that the importance weights have low variance. Or
perhaps the computation is better invested by having a coarser annealing schedule and taking
more samples at each temperature to ensure the Metropolis-Hastings sampler has reached equi-
librium. In Neal (200]) an in-depth analysis is presented for these and other similar concerns
for estimating the marginal likelihoods in some very simple models, using functions of the vari-
ance of the importance weights (i.e. the summand$.ig) as guides to the reliability of the
estimates.

In section6.5.1we discuss the performance of AlS for estimating the marginal likelihood of
the graphical models used in this chapter, addressing the specific choices of proposal widths,
number of samples, and annealing schedules used in the experiments.

6.3.6 Upper bounds on the marginal likelihood

This section is included to justify comparing the marginal likelihood to scores such as MAP and
ML. The following estimates based on the ML parameters and the posterior distribution over
parameters represent strict bounds on the true marginal likelihood of a moglgl,

p(y) = [ 46 p(O(y|6) (6.62)
(where we have omitted the dependencerofor clarity).

We begin with the ML estimate:

Py = / 46 5(0 — Oy )p(y | 0) (6.63)

which is the expectation of the data likelihood under a delta function about the ML parameter
setting. This is a strict upper bound onlify. has found the global maximum of the likelihood.
This may not happen due to local maxima in the optimisation process, for example if the model
contains hidden variables and an EM-type optimisation is being employed.

The second estimate is that arising from the MAP estimate,

(¥ )ap = / 46 5(6 — Ouap)p(y | 0) (6.64)

which is the expectation of the data likelihood under a delta function about the MAP parameter
setting. However is not a strict upper or lower bound on the marginal likelihood, since this
depends on how the prior term acts to position the MAP estimate.
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The last estimate, based on the posterior distribution over parameters, is for academic interest
only, since we would expect its calculation to be intractable:

p(Y)post. = /d9 p(0 | Y)p(y ’ 0) . (665)

This is the expected likelihood under the posterior distribution over parameters. To prove that
(6.65 is an upper bound on the marginal likelihood, we use a simple convexity bound as follows:

p(5)ot. = [ 8 5(6])p(y|6) (6.66)
= /dé) Mp(y |9) by Bayes’ rule (6.67)
p(y)
- p(ly) [ 8 v(6) vty o) (6.68)
1 2
> ) [ / do p(0)p(y| 9)] by convexity ofz? (6.69)
- p(;) ) = ply) (6.70)

As we would expect the integrab €5 to be intractable, we could instead estimate it by taking
samples from the posterior distribution over parameters and forming the Monte Carlo estimate:

¥) < (¥ )post. = / 00 p(8 | y)p(y | 0) (6.71)

C
1
~ 52 py[69) (6.72)
c=1

whered© ~ p(6|y), the exact posterior. Had we taken samples from the pii@¥, this

would have yielded the true marginal likelihood, so it makes sense that by concentrating samples
in areas which give rise to high likelihoods we are over-estimating the marginal likelihood;
for this reason we would only expect this upper bound to be close for small amounts of data.
An interesting direction of thought would be to investigate the mathematical implications of
drawing samples from an approximate posterior instead of the exact posterior, such as that
obtained in a variational optimisation, which itself is arrived at from a lower bound on the
marginal likelihood; this could well give an even higher upper bound since the approximate
variational posterior is likely to neglect regions of low posterior density.

6.4 Experiments

In this section we experimentally examine the performance of the variational Bayesian proce-
dure in approximating the marginal likelihood for all the models in a particular class. We first
describe the class defining our space of hypothesised structures, then chose a particular mem-
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ber of the class as the “true” structure, generate a set of parameters for that structure, and then
generate varying-sized data sets from that structure with those parameters. The task is then to
estimate the marginal likelihood of every data set under each member of the class, including
the true structure, using each of the scores described in the previous section. The hope is that
the VB lower bound will be able to find the true model, based on its scoring, as reliably as the
gold standard AIS does. We would ideally like the VB method to perform well even with little
available data.

Later experiments take the true structure and analyse the performance of the scoring methods
under many different settings of the parameters drawn from the parameter prior for the true
structure. Unfortunately this analysis does not include AIS, as sampling runs for each and every
combination of the structures, data sets, and parameter settings would take a prohibitively large
amount of compute time.

A specific class of graphical model. We look at the specific class of discrete diredtguhrtite
graphical models, i.e. those graphs in which only hidden variables can be parents of observed
variables, and the hidden variables themselves have no parents. We further restrict ourselves
to those graphs which have just= |H| = 2 hidden variables, ang = |V| = 4 observed
variables; both hidden variables are binary fisg;| = 2 for j € H, and each observed variable

has cardinalityy;;| = 5 for j € V.

The number of distinct graphs. In the class of bipartite graphs described above, Wittis-

tinct hidden variables angdobserved variables, there &® possible structures, corresponding

to the presence or absence of a directed link between each hidden and each conditionally inde-
pendent observed variable. If the hidden variables are unidentifiable, which is the case in our
example model where they have the same cardinality, then the number of possible graphs is
reduced. It is straightforward to show in this example that the number of graphs is reduced from
22x4 = 256 down t0136.

The specific model and generating data. We chose the particular structure shown in figure

6.1, which we call the “true” structure. We chose this structure because it contains enough links
to induce non-trivial correlations amongst the observed variables, whilst the class as a whole
has few enough nodes to allow us to examine exhaustively every possible structure of the class.
There are only three other structures in the class which have more parameters than our chosen
structure; these are: two structures in which either the left- or right-most visible node has both
hidden variables as parents instead of just one, and one structure which is fully connected. As a
caveat, one should note that our chosen true structure is at the higher end of complexity in this
class, and so we might find that scoring methods that do not penalise complexity do seemingly
better than naively expected.
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i=1...n

Figure 6.1: The true structure that was used to generate all the data sets used in the experi-
ments. The hidden variables (top) are each binary, and the observed variables (bottom) are each
five-valued. This structure has 50 parameters, and is two links away from the fully-connected
structure. In total there are 136 possible distinct structures with two (identical) hidden variables
and four observed variables.

Evaluation of the marginal likelihood of all possible alternative structures in the class is done
for academic interest only; in practice one would embed different structure scoring methods in
a greedy model search outer lodfriedman 1998 to find probable structures. Here, we are not

so much concerned with structusearchper se, since a prerequisite for a good structure search
algorithm is an efficient and accurate method for evaluating any particular structure. Our aim in
these experiments is to establish the reliability of the variational bound as a score, compared to
annealed importance sampling, and the currently employed asymptotic scores such as BIC and
Cheeseman-Stutz.

The parameters of the true model

Conjugate uniform symmetric Dirichlet priors were placed over all the parameters of the model,
that is to say in equatior6(4), \;;; = 1 V{jlk}. This particular prior was arbitrarily chosen for

the purposes of the experiments, and we do not expect it to influence our conclusions much. For
the network shown in figuré.1 parameters were sampled from the prior, once and for all, to in-
stantiate a true underlying model, from which data was then generated. The sampled parameters
are shown below (their sizes are functions of each node’s and its parents’ cardinalities):

(03 .03. .64 .02 .27 (10 .08 43 .03 .36
01:[.12 .88} 0 — 0 =

18 15 22 19 27 30 .14 07 .04 .45

(10 54 .07 .14 .15 (11 .47 12 30 .01

04 15 59 .05 .16 27 07 16 25 .25
02:[.08 .92} 6, — 65 =

20 .08 .36 .17 .18 52 14 15 .02 .17

19 45 .10 .09 .17 .04 .00 .37 .33 .25

where{ej}§:1 are the parameters for the hidden variables, m?zg are the parameters
for the remaining four observed variables. Recall that each row of each matrix denotes the
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probability of each multinomial setting for a particular configuration of the parents. Each row
of each matrix sums to one (up to rounding error). Note that there are only two rofs émd

0¢ as both these observed variables have just a single binary parent. For variables 4 and 5, the
four rows correspond to the parent configurations (in ordgt)1], [1 2], [2 1], [2 2]}.

Also note that for this particular instantiation of the parameters, both the hidden variable priors
are close to deterministic, causing approximately 80% of the data to originate frofh 2he
setting of the hidden variables. This means that we may need many data points before the
evidence for two hidden variables outweighs that for one.

Incrementally larger and larger data sets were generated with these parameter settings, with

n € {10,20, 40,80, 110, 160, 230, 320, 400, 430,
480, 560, 640, 800, 960, 1120, 1280, 2560, 5120, 10240} .

The items in then = 10 data set are a subset of the= 20 and subsequent data sets, etc.
The particular values af were chosen from an initially exponentially increasing data set size,
followed by inclusion of some intermediate data sizes to concentrate on interesting regions of
behaviour.

6.4.1 Comparison of scores to AIS

All 136 possible distinct structures were scored for each of the 20 data set sizes given above,
using MAP, BIC, CS, VB and AIS scores. Strictly speaking, MAP is not an approximation
to the marginal likelihood, but it is an upper bound (see sedi@© and so is nevertheless
interesting for comparison.

We ran EM on each structure to compute the MAP estimate of the parameters, and from it com-
puted the BIC score as described in secoB.2 We also computed the BIC score including

the parameter prior, denoted BICp, which was obtained by including altqm(@ | m) in equa-

tion (6.26. From the same EM optimisation we computed the CS score according to section
6.3.3 We then ran the variational Bayesian EM algorithm with the same initial conditions to
give a lower bound on the marginal likelihood. For both these optimisations, random parameter
initialisations were used in an attempt to avoid local maxima — the highest score over three
random initialisations was taken for each algorithm; empirically this heuristic appeared to avoid
local maxima problems. The EM and VBEM algorithms were terminated after either 1000 it-
erations had been reached, or the change in log likelihood (or lower bound on the log marginal
likelihood, in the case of VBEM) became less tHarm® per datum.

For comparison, the AIS sampler was used to estimate the marginal likelihood (see section
6.3.9, annealing from the prior to the posterior ki = 16384 steps. A nonlinear anneal-
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ing schedule was employed, tuned to reduce the variance in the estimate, and the Metropolis
proposal width was tuned to give reasonable acceptance rates. We chose to have just a single
sampling step at each temperature ({¢.= Cj = 1), for which AIS has been proven to give
unbiased estimates, and initialised the sampler at each temperature with the parameter sample
from the previous temperature. These particular choices are explained and discussed in detail in
section6.5.1 Initial marginal likelihood estimates from single runs of AIS were quite variable,

and for this reason several more batches of AlS runs were undertaken, each using a different
random initialisation (and random numbers thereafter); the total batches of scores were
averaged according to the procedure given in sedi8r§ equation 6.61), to give the AIS®)

score. In total(7 = 5 batches of AIS runs were carried out.

Scoring all possible structures

Figure6.2 shows the MAP, BIC, BICp, CS, VB and A3 scores obtained for each of the 136
possible structures against the number of parameters in the structure. Score is measured on the
vertical axis, with each scoring method (columns) sharing the same vertical axis range for a
particular data set size (rows).

The horizontal axis of each plot corresponds to the number of parameters in the structure (as de-
scribed in sectio®.3.2. For example, at the extremes there is one structure with 66 parameters
which is the fully connected structure, and one structure with 18 parameters which is the fully
unconnected structure. The structure that generated the data has exactly 50 parameters. In each
plot we can see that several structures can occupy the same column, having the same number of
parameters. This means that, at least visually, it is not always possible to unambiguously assign
each point in the column to a particular structure.

The scores shown here are those corrected for aliases — the difference between the uncorrected
and corrected versions is only just perceptible as a slight downward movement of the low pa-
rameter structures (those with just one or zero hidden variables), as these have a smaller number
of aliasesS (see equationg(26)).

In each plot, the true structure is highlighted by asymbol, and the structure currently ranked
highest by that scoring method is marked with>d.* We can see the general upward trend

for the MAP score which prefers more complicated structures, and the pronounced downward
trend for the BIC and BICp scores which (over-)penalise structure complexity. In addition one
can see that neither upward or downward trends are apparent for VB or AlS scores. Moreover,
the CS score does tend to show a downward trend similar to BIC and BICp, and while this
trend weakens with increasing data, it is still present at 10240 (bottom row). Although

not verifiable from these plots, we should note that for the vast majority of the scored structures
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Figure 6.2: Scores for all 136 of the structures in the model class, by each of six scoring methods.
Each plot has the score (approximation to the log marginal likelihood) on the vertical axis,
with tick marks every 40 nats, and the number of parameters on the horizontal axis (ranging
from 18 to 66). The middle four scores have been corrected for aliases (see $e8tn

Each row corresponds to a data set of a different sizefrom top to bottom we have =

10, 160, 640, 1280, 2560, 5120, 10240. The true structure is denoted with& Symbol, and the
highest scoring structure in each plot marked by thesymbol. Every plot in the same row

has the same scaling for the vertical score axis, set to encapsulate every structure for all scores.
For a description of how these scores were obtained see sécfidn
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and data set sizes, the APSscore is higher than the VB lower bound, as we would expect (see
section6.5.1for exceptions to this observation).

The horizontal bands observed in the plots is an interesting artifact of the particular model used
to generate the data. For example, we find on closer inspection some strictly followed trends:
all those model structures residing in the upper band have the first three observable variables
(j = 3,4,5) governed by at least one of the hidden variables; and all those structures in the
middle band have the third observabje<£ 4) connected to at least one hidden variable.

In this particular example, AIS finds the correct structures at 960 data points, but unfor-
tunately does not retain this result reliably unti= 2560. At n = 10240 data points, BICp,

CS, VB and AIS all report the true structure as being the one with the highest score amongst
the other contending structures. Interestingly, BIC still does not select the correct structure, and
MAP has given a structure with sub-maximal parameters the highest score. The latter observa-
tion may well be due to local maxima in the EM optimisation, since for previous slightly smaller
data sets MAP chooses the fully-connected structure as expected. Note that as we did not have
intermediate data sets it may well be that, for example, AIS reliably found the structure after
1281 data points, but we cannot know this without performing more experiments.

Ranking of the true structure

A somewhat more telling comparison of the scoring methods is given by how they rank the true
structure amongst the alternative structures. Thus a ranking of 1 means that the scoring method
has given the highest marginal likelihood to the true structure.

Note that a performance measure based on ranking makes several assumptions about our choice
of loss function. This performance measure disregards information in the posterior about the
structures with lower scores, reports only the number of structures that have higher scores, and
not the amount by which the true structure is beaten. Ideally, we would compare a quantity that
measured the divergence of all structures’ posterior probabilities from the true posterior.

Moreover, we should keep in mind that at least for small data set sizes, there is no reason to
assume that the actual posterior over structures has the true structure at its mode. Therefore it is
slightly misleading to ask for high rankings at small data set sizes.

Table 6.1 shows the ranking of the true structure, as it sits amongst all the possible structures,
as measured by each of the scoring methods MAP, BIC, BICp, CS, VB arldAll§is is also
plotted in figure6.3where the MAP ranking is not included for clarity. Higher positions in the
plot correspond to better rankings.
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n MAP | BIC* BICp* CS* VB* |BIC BICp CS VB]|AIS®
10 21 127 55 129 122|127 50 129 115 59
20 12 118 64 111 124 118 64 111 124 135
40 28 127 124 107 113} 127 124 107 113 15
80 8 114 99 78 116| 114 99 78 116 44
110 8 109 103 98 114/ 109 103 98 113 2
160 13 119 111 114 83| 119 111 114 81 6
230 8 105 93 88 541 105 93 88 54| 54
320 8 111 101 90 44| 111 101 90 33| 78
400 6 101 72 77 15| 101 72 77 15 8
430 7 104 78 68 15| 104 78 68 14| 18
480 7 102 92 80 55| 102 92 80 44 2
560 9 108 98 96 34| 108 98 9% 31| 11
640 7 104 97 105 19104 97 105 17 7
800 9 107 102 108 35| 107 102 108 26| 23
960 13 112 107 76 16| 112 107 76 13 1

1120 8 105 96 103 12105 96 103 12 4
1280 7 90 59 8 3 | 90 59 6 3 5
2560 6 25 17 11 11| 25 15 11 11 1
5120 5 6 5 1 1 6 5 1 1 1
10240 3 2 1 1 1 2 1 1 1 1

Table 6.1: Ranking of the true structure by each of the scoring methods, as the size of the data
set is increased. Asterisks (*) denote scores uncorrected for parameter aliasing in the posterior.
Strictly speaking, the MAP score is not an estimate of the marginal likelihood. Note that these
results are from data generated from only one instance of parameters under the true structure’s
prior over parameters.

10°;

AIS
—o— VB
—-4— CS
—— BICp
—=— BIC

10 -

rank of true structure

Figure 6.3: Ranking given to the true structure by each scoring method for varying data set sizes
(higher in plot is better), by BIC, BICp, CS, VB and A methods.

230



VB Learning for DAG Structures 6.4. Experiments

For smalln, the AIS score produces a better ranking for the true structure than any of the other
scoring methods, which suggests that the AIS sampler is managing to perform the Bayesian
parameter averaging process more accurately than other approximations. For almoggall
outperforms BIC, BICp and CS, consistently giving a higher ranking to the true structure. Of
particular note is the stability of the VB score ranking with respect to increasing amounts of
data as compared to AIS (and to some extent CS).

Columns in tables.1 with asterisks (*) correspond to scores that are not corrected for aliases,
and are omitted from the figure. These corrections assume that the posterior aliases are well sep-
arated, and are valid only for large amounts of data and/or strongly-determined parameters. In
this experiment, structures with two hidden states acting as parents are given a greater correction
than those structures with only a single hidden variable, which in turn receive corrections greater
than the one structure having no hidden variables. Of interest is that the correction nowhere de-
grades the rankings of any score, and in fact improves them very slightly for CS, and especially
so for the VB score.

Score discrepancies between the true and top-ranked structures

Figure6.4plots the differences in score between the true structure and the score of the structure
ranked top by BIC, BICp, CS, VB and AIS methods. The convention used means that all the
differences are exactly zero or negative, measured from the score of the top-ranked structure
— if the true structure is ranked top then the difference is zero, otherwise the true structure’s
score must be less than the top-ranked one. The true structure has a score that is close to the
top-ranked structure in the AIS method; the VB method produces approximately similar-sized
differences, and these are much less on the average than the CS, BICp, and BIC scores. For a
better comparison of the non-sampling-based scores, see s@eigrand figures.6.

Computation Time

Scoring all 136 structures at 480 data points on a 1GHz Pentium Il processor took: 200 seconds
for the MAP EM algorithms required for BIC/BICp/CS, 575 seconds for the VBEM algorithm
required for VB, and 55000 seconds (15 hours) for a single run of the AIS algorithm (using
16384 samples as in the main experiments). All implementations were\in A . Given the
massive computational burden of the sampling method (approx 75 hours), which still produces
fairly variable scores when averaging over five runs, it does seem as though CS and VB are
proving very useful indeed. Can we justify the mild overall computational increase for VB? This
increase results from both computing differences between digamma functions as opposed to
ratios, and also from an empirically-observed slower convergence rate of the VBEM algorithm
as compared to the EM algorithm.

231



VB Learning for DAG Structures 6.4. Experiments

score difference

Figure 6.4: Differences in log marginal likelihood estimates (scores) between the top-ranked
structure and the true structure, as reported by BIC, BICp, CS, VB anthAdgthods. All
differences are exactly zero or negative: if the true structure is ranked top then the difference is
zero, otherwise the score of the true structure must be less than the top-ranked structure. Note
that these score differences are not per-datum scores, and therefore are not normalised for the
datan.

6.4.2 Performance averaged over the parameter prior

The experiments in the previous section used a single instance of sampled parameters for the
true structure, and generated data from this particular model. The reason for this was that, even
for a single experiment, computing an exhaustive set of AlS scores covering all data set sizes
and possible model structures takes in excess of 15 CPU days.

In this section we compare the performance of the scores over many different sampled param-
eters of the true structure (shown in figugd). 106 parameters were sampled from the prior

(as done once for the single model in the previous section), and incremental data sets generated
for each of these instances as the true model. MAP EM and VBEM algorithms were employed
to calculate the scores as described in sedidril For each instance of the true model, calcu-
lating scores for all data set sizes used and all possible structures, using three random restarts,
for BIC/BICp/CS and VB took approximateB:4 and4.2 hours respectively on an Athlon 1800
Processor machine, which corresponds to abduand1.9 seconds for each individual score.

The results are plotted in figufeb, which shows the median ranking given to the true structure
by each scoring method, computed over 106 randomly sampled parameter settings. This plot
corresponds to a smoothed version of fighir@ but unfortunately cannot contain AlS averages
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Figure 6.5: Median ranking of the true structure as reported by BIC, BICp, CS and VB methods,
against the size of the data sgettaken over 106 instances of the true structure.

% times that than| BiC* BICp* CS* CS*{ | BIC BICp CS CS
VB ranks worse| 16.9 30.2 318 328 151 296 309 319
same| 11.1 150 20.2 221117 155 209 222

better| 72.0 54.8 48.0 45.1 73.2 55.0 48.2 459

Table 6.2: Comparison of the VB score to its competitors, using the ranking of the true structure
as a measure of performance. The table gives the percentage fraction of times that the true
structure was ranked lower, the same, and higher by VB than by the other methods (rounded to
nearest .1%). The ranks were collected from all 106 generated parameters and all 20 data set
sizes. Note that VB outperforms all competing scores, whether we base our comparison on the
alias-corrected or uncorrected (*) versions of the scores. The CS score annotatg¢dsvath
improvement on the original CS score, and is explained in se6tl2

for the computational reasons mentioned above. The results clearly show that for the most part
VB outperforms all other scores on this task by this measure although there is a region in which
VB seems to underperform CS, as measured by the median score.

Table 6.2 shows in more detail the performance of VB and its alias-uncorrected counterpart
VB* in terms of the number of times the score correctly selects the true model (i.e. ranks it
top). The data was collated from all 106 sampled true model structures, and all 20 data set sizes,
giving a total of 288320 structures that needed to be scored by each approximate method. We
see that VB outperforms the other scores convincingly, whether we compare the uncorrected
(left hand side of table) or corrected (right hand side) scores. The results are more persuasive
for the alias-corrected scores, suggesting that VB is benefitting more from this modification —
it is not obvious why this should be so.
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Figure 6.6: Median difference in score between the true and top-ranked structures, under BIC,
BICp, CS and VB scoring methods, against the size of the data $aken over 106 instances
of the true structure. Also plotted are the 40-60% intervals about the medians.

These percentages are likely to be an underestimate of the success of VB, since on close ex-
amination of the individual EM and VBEM optimisations, it was revealed that for several cases
the VBEM optimisation reached the maximum number of allowed iterations before it had con-
verged, whereas EM always converged. Generally speaking the VBEM algorithm was found to
require more iterations to reach convergence than EM, which would be considered a disadvan-
tage if it were not for the considerable performance improvement of VB over BIC, BICp and
CS.

We can also plot the smoothed version of figéré over instances of parameters of the true
structure drawn from the prior; this is plotted in figug&, which shows the median difference
between the score of the true structure and the structure scoring highest under BIC, BICp, CS
and VB. Also plotted is the 40-60% interval around the median. Again, the AIS experiments
would have taken an unfeasibly large amount of computation time, and were not carried out.

We can see quite clearly here that the VB score of the true structure is generally much closer to
that of the top-ranked structure than is the case for any of the other scores. This observation in
itself is not particularly satisfying, since we are comparing scores to scores rather than scores to
exact marginal likelihoods; nevertheless it can at least be said that the dynamic range between
true and top-ranked structure scores by the VB method is much smaller than the range for the
other methods. This observation is also apparent (qualitatively) across structures in the various
plots in figure6.2. We should be wary about the conclusions drawn from this graph comparing

VB to the other methods: a completely ignorant algorithm which gives the same score to all
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Figure 6.7: The highest ranking given to the true structure under BIC, BICp, CS and VB meth-
ods, against the size of the data settaken over 106 instances of the true structure. These
two traces can be considered as the results ofitheoperation on the rankings of all the 106
instances for each in figure6.5.

possible structures would look impressive on this plot, giving a score difference of zero for all
data set sizes.

Figures6.7 and 6.8 show the best performance of the BIC, BICp, CS and VB methods over
the 106 parameter instances, in terms of the rankings and score differences. These plots can be
considered as the extrema of the median ranking and median score difference plots, and reflect
the bias in the score.

Figure6.7 shows the best ranking given to the true structure by all the scoring methods, and itis
clear that for small data set sizes the VB and CS scores can perform quite well indeed, whereas
the BIC scores do not manage a ranking even close to these. This result is echoed B.8gure

for the score differences, although we should bear in mind the caveat mentioned above (that the
completely ignorant algorithm can do well by this measure).

We can analyse the expected performance of a naive algorithm which simply picks any structure
at random as the guess for the true structure: the best ranking given to the true model in a set
of 106 trials where a structure is chosen at random from the 136 structures is, on the average,
roughly 1.8. We can see in figue7 that CS and VB surpass this far> 30 andn > 40 data

points respectively, but that BICp and BIC do so only after 300 and 400 data points. However
we should remember that, for small data set sizes, the true posterior over structures may well
not have the true model at its mode.
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Figure 6.8: The smallest difference in score between the true and top-ranked structures, under
BIC, BICp, CS and VB methods, against the size of the data setken over 106 instances of

the true structure. These two traces can be considered as the resultmaktbperation on the

all the 106 differences for eaehin figure 6.6.

Lastly, we can examine the success rate of each score at picking the correct structures.Bigure
shows the fraction of times that the true structure is ranked top by the different scoring methods.
This plot echoes those results in tablé.

6.5 Open questions and directions

This section is split into two parts which discuss some related issues arising from the work in
this chapter. In sectiof.5.1we discuss some of the problems experienced when using the AIS
approach, and suggest possible ways to improve the methods used in our experiments. In section
6.5.2we more thoroughly revise the parameter-counting arguments used for the BIC and CS
scores, and provide a method for estimating the complete and incomplete-data dimensionalities
in arbitrary models, and as a result form a modified scorg CS

6.5.1 AIS analysis, limitations, and extensions

The technique of annealed importance sampling is currently regarded as a state-of-the-art method
for estimating the marginal likelihood in discrete-variable directed acyclic graphical models
(personal communication with R. Neal, Z. Ghahramani and C. Rasmussen). In this section the
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Figure 6.9: The success rate of the scoring methods BIC, BICp, CS and VB, as measured by the
fraction of 106 trials in which the true structure was given ranking 1 amongst the 136 candidate
structures, plotted as a function of the data set size. See alsott@bhdich presents softer
performance rates (measured in terms of relative rankings) pooled from all the data set sizes and
106 parameter samples.

AIS method is critically examined as a reliable tool to judge the performance of the BIC, CS
and VB scores.

The implementation of AIS has considerable flexibility; for example the user is left to specify the
length, granularity and shape of the annealing schedules, the form of the Metropolis-Hastings
sampling procedure, the number of samples taken at each temperature, etc. These and other
parameters were described in sectiB.5 here we clarify our choices of settings and discuss
some further ways in which the sampler could be improved. Throughout this subsection we use
AIS to refer to the algorithm which provides a single estimate of the marginal likelihood, i.e.
AIS™),

First off, how can we be sure that the AIS sampler is reporting the correct answer for the
marginal likelihood of each structure? To be sure of a correct answer one should use as long
and gradual an annealing schedule as possible, containing as many samples at each temperature
as is computationally viable (or compare to a very long simple importance sampler). In the AIS
experiments in this chapter we always opted for a single sample at each step of the annealing
schedule, initialising the parameter at the next temperature at the last accepted sample, and en-
sured that the schedule itself was as finely grained as we could afford. This reduces the variables
at our disposal to a single parameter, namely the total number of samples taken in each run of
AIS, which is then directly related to the schedule granularity. Without yet discussing the shape
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Figure 6.10: Logarithm of AIS estimates (vertical) of the marginal likelihood for different initial
conditions of the sampler (different traces) and different duration of annealing schedules (hori-
zontal), for the true structure with = 480 data points. The top-most trace is that corresponding

to setting the initial parameters to the true values that generated the data. Shown are also the
BIC score (lashe)land the VB lower boundslid).

of the annealing schedule, we can already examine the performance of the AIS sampler as a
function of the number of samples.

Figure 6.10 shows several AlS estimates of the marginal likelihood for the data set of size

n = 480 under the model having the true structure. Each trace is a result of initialising the AIS
sampler at a different position in parameter space sampled from the @rpréxcept for the
top-most trace which is the result of initialising the AIS algorithm at the exact parameters that
were used to generate the data (which as the experimenter we have access to). It is important
to understand the abscissa of the plot: it is the number of samples in the AIS run and, given the
above comments, relates to the granularity of the schedule; thus the points on a particular trace
do not correspond to progress through the annealing schedule, but in fact constitute the results
of runs that are completely different other than in their common parameter initialisation.

Also plotted for reference are the VB and BIC estimates of the log marginal likelihood for this
data set under the true structure, which are not functions of the annealing duration. We know
that the VB score is a strict lower bound on the log marginal likelihood, and so those estimates
from AIS that consistently fall below this score must be indicative of an inadequate annealing
schedule shape or duration.
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For short annealing schedules, which are necessarily coarse to satisfy the boundary require-
ments onr (see equationg(49), it is clear that the AIS sampling is badly under-estimating

the log marginal likelihood. This can be explained simply because the rapid annealing sched-
ule does not give the sampler time to locate and exploit regions of high posterior probability,
forcing it to neglect representative volumes of the posterior mass; this conclusion is further sub-
stantiated since the AIS run started from the true parameters (which if the data is representative
of the model should lie in a region of high posterior probability) over-estimates the marginal
likelihood, because it is prevented from exploring regions of low probability. Thus for coarse
schedules of less than abaldt = 1000 samples, the AIS estimate of the log marginal likeli-
hood seems biased and has very high variance. Note that the construction of the AIS algorithm
guarantees that the estimates of the marginal likelihood are unbiased, but not necessarily the log
marginal likelihood.

We see that all runs converge for sufficiently long annealing schedules, with AIS passing the
BIC score at about 1000 samples, and the VB lower bound at about 5000 samples. Thus,
loosely speaking, where the AIS and VB scores intersect we can consider their estimates to
be roughly equally reliable. We can then compare their computational burdens and make some
statement about the advantage of one over the other in terms of compute tinne =A180

the VB scoring method requires abdu¥s to score the structure, whereas AlSwat 480 and

K = 213 requires about00s; thus for this scenario VB is 70 times more efficient at scoring the
structures (at its own reliability).

In this chapter's main experiments a valuefof= 2'4 = 16384 steps was used, and it is clear
from figure6.10that we can be fairly sure of the AIS method reporting a reasonably accurate
result at this value of{, at least forn = 480. However, how would we expect these plots to
look for larger data sets in which the posterior over parameters is more peaky and potentially
more difficult to navigate during the annealing?

A good indicator of the mobility of the Metropolis-Hastings sampler is the acceptance rate of
proposed samples, from which the representative set of importance weights are computed (see
(6.60). Figure6.11shows the fraction of accepted proposals during the annealing run, averaged
over AIS scoring of all 136 possible structures, plotted against the size of the data Het,

error bars are the standard errors of the mean acceptance rate across scoring all structures. We
can see that at = 480 the acceptance rate is rarely below 60%, and so one would indeed expect
to see the sort of convergence shown in figwe) However for the larger data sets the accep-
tance rate drops to 20%, implying that the sampler is having considerable difficulty obtaining
representative samples from the posterior distributions in the annealing schedule. Fortunately
this drop is only linear in the logarithm of the data size. For the moment, we defer discussing
the temperature dependence of the acceptance rate, and first consider combining AIS sampling
runs to reduce the variance of the estimates.
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Figure 6.11: Acceptance rates of the Metropolis-Hastings proposals along the entire annealing
schedule, for one batch of AIS scoring of all structures, against the size of the dataFlég
dotted lines are the sample standard deviations across all structures fer. each

One way of reducing the variance in our estimate of the marginal likelihood is to pool the results

of several AIS samplers run in parallel according to the averaging in equétil).(Returning

to the specific experiments reported in secttofy table6.3 shows the results of running five

AIS samplers in parallel with different random seeds on the entire class of structures and data
set sizes, and then using the resulting averaged AlS estimat€) AdS a score for ranking the
structures. In the experiments it is the performance of these averaged scores that are compared
to the other scoring methods: BIC, CS and VB. To perform five runs took at least 40 CPU days
on an Athlon 1800 Processor machine.

By examining the reported AIS scores, both for single and pooled runs, over the 136 structures
and 20 data set sizes, and comparing them to the VB lower bound, we can see how often AIS
violates the lower bound. Tab&4 shows the number of times the reported AIS score is below
the VB lower bound, along with the rejection rates of the Metropolis-Hastings sampler that was
used in the experiments (which are also plotted in fighifel). From the table we see that

for small data sets the AIS method reports “valid” results and the Metropolis-Hastings sampler
is accepting a reasonable proportion of proposed parameter samples. However at and beyond
n = 560 the AIS sampler degrades to the point where it reports “invalid” results for more than
half the 136 structures it scores. However, since the AIS estimate is noisy and we know that
the tightness of the VB lower bound increases withthis criticism could be considered too
harsh — indeed if the bound were tight, we would expect the AIS score to violate the bound
on roughly 50% of the runs anyway. The lower half of the table shows that, by combining AIS
estimates from separate runs, we obtain an estimate that violates the VB lower bound far less
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AIS™ AIS™ AISM AIS™ AIS™
n AIS®)
#1 #2 #3 #4 #5
10 27 38 26 89 129 59
20 100 113 88 79 123 135
40 45 88 77 5 11 15
80 10 47 110 41 95 44
110 1 50 8 2 62 2
160 33 2 119 31 94 6
230 103 25 23 119 32 54
320 22 65 51 44 42 78
400 89 21 1 67 10 8
430 29 94 21 97 9 18
480 2 42 14 126 18 2
560 47 41 7 59 7 11
640 12 10 23 2 23 7
800 7 3 126 101 22 23
960 1 4 1 128 8 1
1120 3 53 3 37 133 4
1280 76 2 50 7 12 5
2560 1 1 4 1 1 1
5120 12 1 24 2 16 1
10240 1 1 2 12 1 1

Table 6.3: Rankings resulting from averaging batches of AIS scores. Each one of the five
columns correspond to a different initialisation of the sampler, and gives the rankings resulting
from a single run of AIS for each of the 136 structures and 20 data set size combinations.
The last column is the ranking of the true structure based on the mean of the AIS marginal
likelihood estimates from all five runs of AIS of each structure and data set size (see section
6.3.5for averaging details).

n 10...560 640 800 960 1120 1280 2560 5120 10240
single

# <VB* <5.7 123 85 123 104 170 255 538 717
# <VB <75 151 94 142 123 208 311 594 745

% M-H rej. <40.3 415 437 459 477 496 59.2 69.7 792
averaged
# <VB* 0 00 00 00 00 0.7 3.7 132 50.0

# <VB <19 00 00 00 15 2.2 51 199 529

Table 6.4: AIS violations: for each size data setwe show the percentage of times, over the

136 structures, that a particulsingleAlS run reports marginal likelihoods below the VB lower
bound. These are given for the VB scores that are uncorrected (*) and corrected for aliases.
Also shown are the average percentage rejection rates of the Metropolis-Hastings sampler used
to gather samples for the AIS estimates. The bottom half of the table shows the similar violations
by the AIS score that are made from averaging the estimates of marginal likelihoods from five
separate runs of AIS (see sectifr3.5. Note that the Metropolis-Hastings rejection rates are

still just as high for each of the individual runs (not given here).
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Figure 6.12: Acceptance rates of the Metropolis-Hastings proposals for each of four quarters of
the annealing schedule, for one batch of AIS scoring of all structures, against the size of the data
set,n. Standard errors of the means are omitted for clarity.

often, and as expected we see the 50% violation rate for large amounts of data. This is a very
useful result, and obviates to some extent the Metropolis-Hastings sampler’s deficiency in all
five runs.

However, considering for the moment a single AIS run, for large data set sizes the VB bound
is still violated an unacceptable number of times, suggesting that the Metropolis-Hastings pro-
posals are simply not adequate for these posterior landscapes. This suggests a modification to
the proposal mechanism, outlined below. Diagnostically speaking, this hopefully has served as
a good example of the use of readily-computable VB lower bounds for evaluating the reliability

of the AIS methodost hoc

Let us return to examining why the sampler is troubled for large data set sizes. biddre

shows the fraction of accepted Metropolis-Hastings proposals during each of four quarters of
the annealing schedule used in the experiments. The rejection rate tends to increase moving from
the beginning of the schedule (the prior) to the end (the posterior), the degradation becoming
more pronounced for large data sets. This is most probably due to the proposal width remaining
unchanged throughout all the AIS implementations: ideally one would use a predetermined
sequence of proposal widths which would be a function of the amount of datand the

position along the schedule. This would hopefully eliminate or at least alleviate the pronounced
decrease in acceptance rate across the four quarters, but would also cause each individual trace
to not drop so severely with.
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We can use a heuristic argument to roughly predict the optimal proposal width to use for the AIS
method. From mathematical arguments outlined in sectich®and1.3.4 the precision of the
posterior distribution over parameters is approximately proportional to the size of the data set
Furthermore, the distribution being sampled from at étepthe AlS schedule is effectively that
resulting from a fractiorr (k) of the data. Therefore these two factors imply that the width of
the Metropolis-Hastings proposal distribution should be inversely proportiorxgﬂF(k). In

the case of multinomial variables, since the variance of a Dirichlet distribution is approximately
inversely proportional to the strength, (see appendi®d), then the optimal strength of the
proposal distribution should be,,; o n7(k) if its precision is to match the posterior precision.
Note that we are at liberty to set these proposal precisions arbitrarily beforehand without causing
the sampler to become biased.

We have not yet discussed the shape of the annealing schedule: should the inverse-temperatures
{T(k:)}f:1 change linearly from 0 to 1, or follow some other function? The particular annealing
schedule in these experiments was chosen to be nonlinear, lingering at higher temperatures for
longer than at lower temperatures, following the relationship

ek/K

m(k) = 1—k/K +e;

ke{0,...,K}, (6.73)
with e, set t00.2 . For any setting oé, > 0, the series of temperatures is monotonic and the
initial and final temperatures satisf§.49:

7(0) =0, and 7(K)=1. (6.74)

For largee,, the schedule becomes linear. This is plotted for different values of figure
6.13 The particular value of, was chosen to reduce the degree of hysteresis in the annealing
ratios, as discussed below.

Hysteresis in the annealing ratios

As presented in sectiof.3.5and algorithm6.1, the algorithm for computing each and every
marginal likelihood ratio in §.54) did so in a forward manner, carrying over the parameter
setting @i, from the calculation of the previous ratio to initialise the sampling procedure for
calculating the next ratio. However, whilst it makes sense to move from higher to lower tem-
peratures to avoid local maxima in the posterior in theory, the final estimate of the marginal
likelihood is unbiased regardless of the order in which the ratios are tackled. In particular, we
can run the AIS algorithm in theeversedirection, starting from the posterior and warming

the system to the prior, calculating each ratio exactly as before but using the last sample from
the lower temperature as an initialisation for the sampling at the next higher temperature in the
schedule (note that by doing this we aiinverting the fractions appearing in equati@ng4)).
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Figure 6.13: Non-linear AIS annealing schedules, plotted for six different values o the
experiments performed in this chapter,= 0.2.

What can this reverse procedure do for us? If we look at figut®again, we can see that for

any random parameter initialisation the reported marginal likelihood is much more often than
not an underestimate of the true value. This is because for coarse annealing schedules we are
unlikely to locate regions of high posterior probability by the time the system is quenched. If we
were then to run the AIS algorithm in a reverse direction, starting from where we had finished
the forward pass, we would expect on average to report a higher marginal likelihood than that
just reported by the forward pass, simply because the sampler has had longer to explore the high
probability regions.

A logical conclusion is that if the forward and reverse passes yield very different values for
the marginal likelihood, then we have most likely used too short an annealing schedule. And
furthermore, since the marginal likelihood estimates are constructed from the product of many
ratios of marginal likelihoods, we can use the discrepancies between the ratios calculated on the
forward and reverse passes to choose temperature regions where more sampling is required, and
dilate the annealing schedules in these regions accordingly. Of course we should remember that
these discrepancies are stochastic quantities, and so we should modify the schedule based on
averaged discrepancies over several runs.

This heuristic analysis was used when designing the shape and granularity of the annealing
schedule, and we found that more time was required at higher and intermediate temperatures
at the expense of lower temperatures. An area of future research is to formalise and more
fully investigate this and related arguments. For example, it would be useful to characterise the

dependence of the degree of hysteresis along the schedule for different settings of
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6.5.2 Estimating dimensionalities of the incomplete and complete-data models

The BICp, BIC and CS approximations take the limit of the Laplace approximation as the
amount of data tends to infinity, and result in scores that depend on the dimensionalities of
the incomplete and complete modelsandd’ respectively. In the experiments in this chap-

ter, for BIC d was calculated using a simple counting argument (see equétidf (n section

6.3.9, and for CSd andd’ were assumed to be equal, which is the assumption made in the
original implementation o€heeseman and Stu{996.

In models that have no hidden variables, the value i&quired for the BIC approximation can
usually be arrived at by adding together the degrees of freedom in each parameter, taking care
to take into consideration any parameter degeneracies. However, in models that do have hidden
variables the number of free parameters in the incomplete model is much less than that in the
complete model. This is because the full effect of each hidden variable cannot always be fully
manifest in the functions produced on the observed variables. This situation can be seen in the
following discrete example: imagine the model consisting of a sihglalued hidden variable

which is the (only) parent of a-valued observed variable. The naive counting argument would
return the complete dimensionality ds= (k — 1) + (p — 1) x k. However, the incomplete
dimensionality can be no more thdn= (p — 1), as a model with this many degrees of freedom

can exactly model any observed set of counts of the observed variable.

In a general setting, deducing the complete and incomplete model dimensionalities can be com-
plicated (see, for exampl8ettimi and Smith1998 Kocka and Zhang20032), since it involves
computing the rank of the Jacobian of the transformation for parameters from incomplete to
complete modelsGeiger et al(1996 describe a method by whichcan be computed in dis-

crete DAGSs, by diagonalising the Jacobian symbolically; they also present a theorem that guar-
antees that a randomised version of the symbolic operation is viable as well. Unfortunately their
approach seems difficult to implement efficiently on an arbitrary topology discrete DAG, since
both symbolic and randomised versions require diagonalisation. Furthermore it is not clear how,
if at all, it can be transferred to DAGs containing continuous variables with arbitrary mappings
between the complete and incomplete data models.

For the purposes of this chapter, we have used a simple method to estimate the dimensional-
ities of each model in our class. It is based on analysing the effect of random perturbations
to the model’'s parameters on the complete and incomplete-data likelihoods. The procedure is
presented in algorithré.2, and estimates the number of effective dimensidramdd’, by com-

puting the rank of a perturbation matrix. Since the rank operation attempts to find the number
of linearly independent rows of the matricEsand C’, the randome-perturbations must be

small enough such that the change in the log likelihoods are linearewaltso, the number of
samples: should be chosen to be at least as large as the total number of parameters possible in
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Algorithm 6.2: d(m),d'(m): To estimate incomplete and complete model parameter dimen-
sionalities.

1. For each structure:

(b) ObtainOyuap using the MAP EM algorithm (sectiof.3.1).

(a) Obtain a representative set of all possible observed{datd. ;.

(d) Randomly (sphericallyy-perturb@yap R times, to form{f,...,0z}.

(e) Compute the matri’(n x R) : Ci, = Inp(y; | 6,) for all (i, 7).
Estimated(m) = rank(C') — 1.

(f) Compute the matrix’(n x R) : C!,. = Inp(s;,y;|8,) for all (4, r),
wheres; is a randomly instantiated hidden state.

Estimated'(m) = rank(C’) — 1.

End For

the model (as the rank of a matrix can be no more than the smaller of the number of rows or
columns), and preferably several times this for reliable estimates.

This procedure was found to give reasonable results when carried out on all the model structures
used in this chapter, with a randomly generated data set ofisiz&000 andR = 100. Without

listing all the results, it suffices to say that: for all structufes d’ < d+2, and for the majority

of structuresl’ = d+|H| — that is to say a further degree of freedom is provided for each binary
hidden variable (of which there are at most 2) on top of the incomplete dimensionality. There
are some structures for which the discrepadicy d is smaller than 2, which is not as we would
expect.

There may be several reasons for this discrepancy. First the random perturbations may not have
explored certain directions from the MAP estimate, and thus the algorithm could have reported
a lower dimensionality than true (unlikely). Second, the datmly represented a subset of all
possible configurations (almost certainly since theresangossible realisations and 1000 data
points are generated randomly), and therefore the effective dimensionality drops.

These results support the use of a more accurates€&e — see equatiol.30, which mod-
ifies the score by adding a ter@’ — d)/2 - Inn. The effect of this is to raise the scores for
models with 2 hidden variables by n, raise those with just 1 hidden variable b2 - In n, and
leave unchanged the single model with no hidden states.

Table 6.5 shows the improvement (in terms of ranking) of the more accurate dv€r the
original CS approximation, bringing it closer to the performance of the VB score. The table
shows the number of times in the 106 samples (see experiments in sgetimimove) that the
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n BIC BICp CS CS§ VB
10 0 0 0 0 0
20 0 0 0 0 0
40 0 0 0 0 0
80 0 0 0 1 1
110 0 0 0 0 1
160 0 0 1 2 3
230 0 1 3 5 6
320 0 2 8§ 10 12
400 1 5 8 9 11
430 1 6 10 10 11
480 3 7 12 12 15
560 3 8 14 16 18
640 5 11 14 17 23
800 7 15 22 23 29
960 9 18 28 33 36
1120 | 11 19 32 33 40
1280 | 15 24 38 41 48
2560 | 35 41 59 62 66
5120 | 56 63 76 76 80
10240 73 79 82 83 84

Table 6.5: Number of times (out of 106) that each score selects the true structure. Shown are
the performance of the original BIC, BICp, CS and VB scores, all corrected for aliasing, and
also shown is the CiSscore, resulting from (further) correcting CS for the difference between
complete and incomplete data model dimensionalities.

score successfully selected the true model structure. Is it clear thaisG# improvement

over CS, suggesting that the assumption made above is true. However, we should interpret this
experiment with some care, because our original choice of the true model having two hidden

variables may be masking a bias in the altered score; it would make sense to perform similar
experiments choosing a much simpler model to generate the data.

The improvement in performance of the {C&ore, averaged over all data set sizes and all 106
generated parameter sets can be see in @b(page233), where it is compared alongside BIC,
CS and VB. It can be seen that VB still performs better. Further verification of this result will
be left to future work.

6.6 Summary

In this chapter we have presented various scoring methods for approximating the marginal likeli-
hood of discrete directed graphical models with hidden variables. We presented EM algorithms
for ML and MAP parameter estimation, showed how to calculate the asymptotic criteria of BIC

and Cheeseman-Stutz, derived the VBEM algorithm for approximate Bayesian learning which
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maintains distributions over the parameters of the model and has the same complexity as the EM
algorithm, and presented a (somewhat impoverished) AlIS method designed for discrete-variable
DAGS.

We have shown that VB consistently outperforms BIC and CS, and that VB performs respec-
tively as well as and more reliably than AIS for intermediate and large sizes of data. The AIS
method has very many parameters to tune and requires extensive knowledge of the model do-
main to design efficient and reliable sampling schemes and annealing schedules. VB on the
other hand has not a single parameter to set or tune, and can be applied without any expert
knowledge, at least in the class of singly-connected discrete-variable DAGs with Dirichlet pri-
ors which we have considered in this chapter. Seddidnldiscussed several ways in which

the AIS method could be improved, for example by better matching the Metropolis-Hastings
proposal distributions to the annealed posterior; in fact a method based on slice sampling should
be able to adapt better to the annealing posterior with little or no expert knowledge of the shape
of the annealed posterioNéal 2003.

It may be that there exists a better AIS scheme than sampling in parameter space. To be more
specific, for any completion of the data the parameters of the model can be integrated out
tractably (at least for the class of models examined in this chapter); thus an AIS scheme which
anneals in the space of completions of the data may be more efficient than the current scheme
which anneals in the space of parameters (personal communication with R. Neal). However,
this latter scheme may only be efficient for models with little data compared to the number of
parameters, as the sampling space of all completions increases linearly with the amount of data.
This avenue of research is left to further work.

This chapter has presented a novel application of variational Bayesian methods to discrete
DAGs. In the literature there have been other attempts to solve this long-standing model se-
lection problem. For example tlsructural EMalgorithm ofFriedman(1998 uses a structure
search algorithm which uses a scoring algorithm very similar to the VBEM algorithm presented
here, except that for tractability the distribution o¥kis replaced by the MAP estimat@yap.

We have shown here how the VB framework enables us to use the entire distributiaghfover
inference of the hidden variables.

In chapter2 we proved that the Cheeseman-Stutz score is in fact a lower bound on the marginal
likelihood and, more importantly, we proved that there exists a construction which is guaranteed
to produce a variational Bayesian lower bound thattikast as tightis the Cheeseman-Stutz
score (corollary2.5to theorem2.3, page79). This construction builds a variational Bayesian
approximation using the same MAP parameter estimate used to obtain the CS score. However,
we did not use this construction in our experiments, and ran both the MAP EM and VB opti-
misations independently of each other. As a result we cannot guarantee that the VB bound is
in all runs tighter than the CS bound, as the dynamics of the optimisations for MAP learning
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and VB learning may in general lead even identically initialised algorithms to different optima

in parameter space (or parameter distribution space). Nevertheless we have still seen improve-
ment in terms of ranking of the true structure by VB as compared to CS. A tighter bound on
the marginal likelihood does not necessarily directly imply that we should have better structure
determination, although it certainly suggests this and is supported by the experimental results.
Empirically, the reader may be interested to know that the VB lower bound was observed to be
lowerthan the CS score in only 173 of the 288320 total scores calculated (about 0.06%). If the

construction derived in corollarg.5 had been used then this number of times would of course
be exactly zero.
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