
Chapter 7

Conclusion

7.1 Discussion

In this thesis we have shown how intractable Bayesian learning, inference, and model selection

problems can be tackled using variational approximations. We have described a general frame-

work for variational Bayesian learning and shown how it can be applied to several models of

interest. We have demonstrated that it is an efficient and trustworthy approximation as compared

to other more traditional approaches. Before summarising the contributions of this thesis, we

spend the next few paragraphs discussing some of the evolving directions for model selection

and variational Bayes, including the use of infinite models, inferring causal relationships using

the marginal likelihood, other candidates for approximating the marginal likelihood, and lastly

automated algorithm derivation procedures. These areas are expected to be active and fruitful

future research directions. We conclude in section7.2with a summary of the main contributions

of the thesis.

Infinite models

In this thesis we have focused on Bayesian learning in models that can be specified using a

finite number of parameters. However, there are powerful arguments for entertaining models

with infinitely many parameters, or at least as complex models as can be handled computation-

ally. The process of Bayesian inference yields a unique answer. That is to say, given our prior

beliefs, on observing some data all inference is automatic and there is one and only one answer

to any prediction of the model. The problems of under- or overfitting by using too simple or

too complex a model are simply not a concern if we integrate over all uncertain variables in

the model, since applying Bayes’ rule correctly at every step is guaranteed to result in coherent

and optimal inferences given the prior beliefs. In this way the problem of model selection is
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no longer an issue, because the infinite model can entertain a continuum of models and average

with respect to all of these simultaneously. This approach to modelling is discussed inNeal

(1996) where, for example, neural networks with an infinite number of hidden units are shown

(theoretically and empirically) to produce sensible predictions, and on some data sets state-of-

the-art performance. In general it is difficult and sometimes impossible to entertain the limit of

an infinite model, except where the mathematics lends itself to analytically tractable solutions

— this is often the case for mixture models. Examples of Bayesian learning with infinite mod-

els include: the neural networks mentioned above, infinite mixtures of Gaussians (Rasmussen,

2000), infinite hidden Markov models (Beal et al., 2002), and infinite mixtures of Gaussian pro-

cess experts (Rasmussen and Ghahramani, 2002). The basic idea of examining the infinite limit

of finite models can be applied to a host of other as yet unexplored models and applications.

Unfortunately, a major drawback for these infinite models is that inference is generally in-

tractable, and one has to resort to Monte Carlo sampling methods which can be computationally

costly. Also, representing an infinite number of components in a mixture model, for example,

can quickly become cumbersome; even elaborate Markov chain Monte Carlo approaches be-

come very inefficient in models with many parameters. One further disadvantage of employing

infinite models is that it is often difficult to find ways of encapsulating prior expert knowledge

into the model. Methods such as examining the properties of data drawn from specific prior

settings are illuminating but not always entirely satisfactory for designing the prior to articulate

one’s beliefs.

An alternative to grappling with the conceptual and implementational problems of infinite mod-

els is then to restrict ourselves to performing model inference, or selection amongst a finite set

of finite-size models. Each individual model is then manageable and often simpler to inter-

pret in terms of its structure. On the basis of the marginal likelihood we can obtain posterior

distributions over the different candidate models. The problems discussed in this thesis have

emphasised these model selection and structure learning tasks, as well as attempting to obtain

full posterior distributions over model structures. We have examined a selection of statistical

models, all of which contained hidden variables which cause the marginal likelihood computa-

tion to be intractable, and tackled this intractability using variational methods.

Bethe, Kikuchi, and cluster-variation methods

Variational Bayes, as described in this thesis, is just one type of variational approach that could

be used to approximate Bayesian inference. It assumes simple forms for the posterior distribu-

tions over hidden variables and parameters, and then uses these forms to construct lower bounds

on the marginal likelihood that are tractable. Algorithms for inference and learning are then de-

rived as a result of optimising this lower bound by iteratively updating the parameters of these

simplified distributions. Most of this thesis has concentrated on the ease with which the model
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parameters can be included in the set of uncertain variables to infer and integrate over, at least

for the sub-class of conjugate-exponential models.

A promising alternative direction is to explore the Bethe and Kikuchi family of variational meth-

ods (Yedidia et al., 2001), sometimes called cluster-variational methods, which may be more

accurate but do not provide the assurance of being bounds. These re-express the negative log

marginal likelihood as a “free energy” from statistical physics, and then approximate the (in-

tractable) entropy of the posterior distribution over latent variables by neglecting high order

terms. In the Bethe approximation, the entropy is approximated with an expression which de-

pends only on functions of single variables and pairs of variables. There are several procedures

for minimising the Bethe free energy as a functional of the approximate posterior distributions

to obtain estimates of the marginal likelihood. It turns out that for singly-connected graphs the

fixed point equations that result from iterative minimisation of this free energy with respect to

the single and pairwise functions correspond exactly to the messages that are passed in the junc-

tion tree and sum-product algorithms. Thus the Bethe free energy is exact for singly-connected

graphs (trees). Interestingly, it has recently been shown that the belief propagation algorithm,

even when run on multiply-connected graphs (i.e. ‘loopy’ graphs), has stable fixed points at the

minima of the Bethe free energy (Heskes, 2003). While belief propagation on loopy graphs is

not guaranteed to converge, it often works well in practice, and has become the standard ap-

proach to decoding state-of-the-art error-correcting codes. Furthermore, convergent algorithms

for minimising the Bethe free energy have recently been derived (Yuille, 2001; Welling and Teh,

2001). There are other related methods, such as expectation propagation (EP,Minka, 2001a),

approximations which observe higher order correlations in the variables (Leisink and Kappen,

2001), and other more elaborate variational schemes for upper bounds on partition functions

(Wainwright et al., 2002).

The question remains open as to whether these methods can be readily applied to Bayesian

learning problems. One can view Bayesian learning as simply treating the parameters as hidden

variables, and so every method that has been shown to be successful for inference over hidden

variables should also do well for integrating over parameters. However, there have been few

satisfactory examples of Bayesian learning using any of the other methods described above, and

this is an important direction for future research.

Inferring causal relationships

Most research in statistics has focused on inferring probabilistic dependencies between model

variables, but more recently people have begun to investigate the more challenging and contro-

versial problem of inferringcausality. Causality can be understood statistically as a relationship

s → t which is stable regardless of whethers was set through intervention / experimental ma-

nipulation or it occurred randomly. An example of this is smoking (s) causing yellowing of
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the teeth (t). Painting the teeth yellow does not change the probability of smoking, but forc-

ing someone to smoke does change the probability of the teeth becoming yellow. Note that

both the modelss → t ands ← t have the same conditional independence structure, yet they

have very different causal interpretations. Unfortunately this has lead many researchers to be-

lieve that such causal relationships cannot be inferred from observational data alone, since these

models arelikelihood equivalent(Heckerman et al., 1995). Likelihood equivalent models are

those for which an arc reversal can be accompanied by a change in parameters to yield the same

likelihood. As a result these researchers then propose that causation can only be obtained by as-

sessing the impact of active manipulation of one variable on another. However, this neglects the

fact that theprior over parameters may cause the marginal likelihoods to be different even for

likelihood equivalent models (D. MacKay, personal communication). In this context, it would

be very interesting to explore the reliability with which variational Bayesian methods can be

used to infer such causal relationships in general graphical models. In chapter6 we showed

that variational Bayes could determine the presence or absence of arcs from hidden variables to

observed variables in a simple graphical model class. Envisaged then is a similar investigation

for examining the directionality of arcs in a perhaps more expressive structure class.

Automated algorithm derivation

One of the problems with the variational Bayesian framework is that, despite the relative sim-

plicity of the theory, the effort required to derive the update rules for the VBE and VBM steps is

usually considerable and a hindrance to any implementation. Both the derivation and implemen-

tation have to be repeated for each new model, and both steps are prone to error. The variational

linear dynamical system discussed in chapter5 is a good example of a simple model for which

the implementation is nevertheless cumbersome.

Our contribution of generalising the procedure for conjugate-exponential (CE) family models

(section2.4) is a step in the right direction for automated algorithm derivation. For CE models,

we now know that the complexity of inference for variational Bayesian inference is the same as

for point-parameter inference, and that for simple models such as HMMs existing propagation

algorithms can be used unaltered withvariational Bayes pointparameters (see theorem2.2).

There are a number of software implementations available or in development for inference and

general automated algorithm derivation. The BUGS software package (Thomas et al., 1992)

for automated Bayesian inference using Gibbs sampling is the most widely used at present; the

graphical model and functional forms of the conditional probabilities involving both discrete and

continuous variables can be specified by hand and then the sampling is left to obtain posterior

distributions and marginal probabilities. For more generic algorithm derivation, theAutoBayes

project (Gray et al., 2003) uses symbolic techniques to automatically derive the equations re-
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quired for learning and inference in the model and explicitly produces the software to perform

the task.

A similar piece of software is being developed in theVIBESproject (Bishop et al., 2003). This

package explicitly uses precisely the CE variational Bayesian results presented in chapter2 of

this thesis to automate the variational inference and learning processes, for (almost) arbitrary

models expressed in graphical form. To be fully useful, this package should be able to cope

with user-specified further approximation to the posterior, on top of just the parameter / hidden

variable factorisation. Furthermore it should be relatively straightforward to allow the user to

specify models which have non-CE components, such as logistic sigmoid functions. This would

allow for discrete children of continuous parents, and could be made possible by including

quadratic lower bounds on the sigmoid function (due toJaakkola, 1997) to ensure that there is

still a valid overall lower bound on the marginal likelihood. Looking further in to the future,

these software applications may even be able to suggest ‘good’ factorisations, or work with a

variety of these approximations together or even hierarchically. Also an alternative for coping

with non-CE components of the model might be to employ sampling-based inferences in small

regions of the graph that are affected.

Combining the variational Bayesian theory with a user-friendly interface in the form of VIBES

or similar software could lead to the mass use of variational Bayesian methods in a wide variety

of application fields. This would allow the ready comparison of a host of different models, and

greatly improve the efficiency of current research on variational Bayes. However there is the

caveat, which perhaps has not been emphasised enough in this thesis, that blind applications

of variational Bayes may lead to the wrong conclusions, and that any inferences should be

considered in the context of the approximations that have been made. This reasoning may not

come easily to an automated piece of software, and the only sure answer to the query of whether

the variational lower bound is reliable is to compare it to the exact marginal likelihood. It should

not be difficult to overlay onto VIBES or similar software a set of sampling components to do

exactly this task of estimating the marginal likelihood very accurately for diagnostic purposes;

one such candidate for this task could be annealed importance sampling.

7.2 Summary of contributions

The aim of this thesis has been to investigate the variational Bayesian method for approximating

Bayesian inference and learning in a variety of statistical models used in machine learning ap-

plications. Chapter1 reviewed some of the basics of probabilistic inference in graphical models,

such as the junction tree and belief propagation algorithms for exact inference in both undirected

and directed graphs. These algorithms are used for inferring the distribution over hidden vari-

ables given observed data, for aparticular settingof the model parameters. We showed that in
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situations where the parameters of the model are unknown the correct Bayesian procedure is to

integrate over this uncertainty to form the marginal likelihood of the model. We explained how

the marginal likelihood is the key quantity for choosing between models in a model selection

task, but also explained that it is intractable to compute for almost all interesting models.

We reviewed a number of current methods for approximating the marginal likelihood, such as

Laplace’s method, the Bayesian information criterion (BIC), and the Cheeseman-Stutz crite-

rion (CS). We discussed how each of these have significant drawbacks in their approximations.

Perhaps the most salient deficiency is that they are based on maximum a posteriori parameter

(MAP) estimates of the model parameters, which are arrived at by maximising the posterior

density of the parameters, and so the MAP estimate may not be representative of the posterior

mass at all. In addition we noted that the MAP optimisation is basis dependent, which means

that two different experimenters with the same model and priors, but with different parameter-

isations, do not produce the same predictions using their MAP estimates. We also discussed a

variety of sampling methods, and noted that these are guaranteed to give an exact answer for the

marginal likelihood only in the limit of an infinite number of samples, and one often requires

infeasibly long sampling runs to obtain accurate and reliable estimates.

In chapter2we presented the variational Bayesian method for approximating the marginal likeli-

hood. We first showed how the standard expectation-maximisation (EM) algorithm for learning

ML and MAP parameters can be interpreted as a variational optimisation of a lower bound on

the likelihood of the data. In this optimisation, the E step can either be exact, in which case

the lower bound is tight after each E step, or it can be restricted to a particular family of distri-

butions in which case the bound is loose. The amount by which the bound is loose is exactly

the Kullback-Leibler divergence between the variational hidden variable posterior and the ex-

act posterior. We then generalised this methodology to the variational Bayesian EM algorithm

which integrates over the parameters. The algorithm alternates between a VBE step which ob-

tains a variational posterior distribution over the hidden variables given a distribution over the

parameters, and a VBM step which infers the variational distribution over the parameters given

the result of the VBE step. The lower bound gap is then given by the KL divergence between

the variational joint posterior over hidden variables and parameters, and the corresponding exact

posterior.

Significant progress in understanding the VB EM optimisation was made by considering the

form of the update equations in the case of conjugate-exponential (CE) models. We showed

that if the complete-data likelihood for the model is in the exponential family and the prior

over parameters is conjugate to this likelihood, then the VB update equations take on analyt-

ically tractable forms and have attractive intuitive interpretations. We showed that, in theory,

it is possible to use existing propagation algorithms for performing the VBE step, even though

we have at all times a distribution over the parameters. This is made possible by passing the

propagation algorithm thevariational Bayes pointparameter,θBP ≡ φ−1(〈φ(θ)〉qθ(θ)), which
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is the result of inverting the exponential family’s natural parameter mapping after averaging the

natural parameters under the variational posterior. This is a very powerful result as it means

that variational Bayesian inference (the VBE step) is possible in the same time complexity as

the standard E step for the point-parameter case (with the only overhead being that of inverting

the mapping). We also presented corollaries of this result applied to directed (Bayesian) and

undirected (Markov) networks — see corollaries2.2and2.4.

In chapter3 we presented a straightforward example of this important result applied to Bayesian

learning in a hidden Markov model. Here the variational Bayes point parameters are sub-

normalised transition and emission probabilities for the HMM, and the well-known forward-

backward algorithm can be used unchanged with these modified parameters. We carried out

experiments (some of which are suggested inMacKay, 1997) which showed that the VB algo-

rithm was capable of determining the number of hidden states used to generate a synthetic data

set, and outperforms ML and MAP learning on a task of discriminating between forwards and

backwards English sentences. This shows that integrating over the uncertainty in parameters is

important, especially for small data set sizes. The linear dynamical system of chapter5 has the

same structure as the HMM, so we might expect it to be equally suitable for the propagation

corollary. However for this model it was not found to be possible to invert the natural parameter

mapping, but nevertheless a variational Bayesian inference algorithm was derived with the same

time complexity as the well-known Rauch-Tung-Striebel smoother. It was then shown that the

VB LDS system could use automatic relevance determination methods to successfully deter-

mine the dimensionality of the hidden state space in a variety of synthetic data sets, and that

the model was able to discard irrelevant driving inputs to the hidden state dynamics and output

processes. Some preliminary results on elucidating gene-expression mechanisms were reported,

and we expect this to be an active area of future research.

Chapter4 focused on a difficult model selection problem, that of determining the numbers

of mixture components in a mixture of factor analysers model. Search over model structures

for MFAs is computationally intractable if each analyser is allowed to have different intrinsic

dimensionalities. We derived and implemented the variational Bayesian EM algorithm for this

MFA model, and showed that by wrapping the VB EM optimisation within a birth and death

process we were able to navigate through the space of number of components using the lower

bound as a surrogate for the marginal likelihood. Since all the parameters are integrated out in

a Bayesian implementation, we are at liberty to begin the search either from the simplest model

or from a model with very many components. Including an automatic relevance determination

prior on the entries of each of the factor loading matrices’ columns allowed the optimisation

to simultaneously find the number of components and their dimensionalities. We demonstrated

this on several synthetic data sets, and showed improved performance on a digit classification

task as compared to a BIC-penalised ML MFA model. We noted that for this mixture model the

death process was an automatic procedure, and also suggested several ways in which the birth

processes could be implemented to increase the efficiency of the structure search.
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Also in this chapter we presented a generally applicable importance sampling procedure for ob-

taining estimates of the marginal likelihood, predictive density, and the KL divergence between

the variational and exact posterior distributions. In the sampler, the variational posteriors are

used as proposal distributions for drawing importance samples. We found that although the

lower bound tends to correlate well with the importance sampling estimate of the marginal like-

lihood, the KL divergence (the bound gap) increases approximately linearly with the number of

components in the MFA model, which would suggest that the VB approximation has an inherent

bias towards simpler models. We note also that importance sampling can fail for poor choices

of proposal distribution and is not ideal for high dimensional parameter spaces. We attempted

to improve the estimates by using heavier tailed and mixture distributions derived from the vari-

ational posteriors, but any improvements are not very conclusive. The problems with simple

importance sampling have motivated attempts at combining variational methods with more so-

phisticated MCMC methods, but to date there have been few successful implementations, and

this is an area of future work.

We showed in chapter2 that the variational Bayesian EM algorithm is a generalisation of the EM

algorithm for ML/MAP optimisation — the standard EM algorithm is recovered by restricting

the form of the variational posterior distribution over parameters to a delta function, or a point-

estimate. There is also the interesting observation that the VB approximation reduces to the BIC

approximation in the limit of an infinitely large data set, for which we provided a brief proof in

the case of CE models. However, we have also found intriguing connections between the VB

lower bound and Cheeseman-Stutz approximations to the marginal likelihood. In particular we

proved with theorem2.3that the CS criterion is a strict lower bound on the marginal likelihood

for arbitrary models (not just those in the CE family), which was a previously unrecognised

fact (althoughMinka (2001b) makes this observation in a mixture modelling context). We then

built on this theorem to show with corollary2.5 that there is a construction for obtaining a VB

approximation whichalwaysresults inat least as tight a boundas the CS criterion. This is a

very interesting and useful result because it means that all existing implementations using CS

approximations can now be made more faithful to the exact marginal likelihood by overlaying a

variational Bayesian approximation. This is only a very recent discovery, and as a result has not

yet been exploited to the full.

We saw superior performance of the variational Bayesian lower bound over the Cheeseman-

Stutz and BIC criteria in chapter6, where the task was finding the particular structure (out of a

small class of structures) that gave rise to an observed data set, via the marginal likelihood. This

was despite not making use of the aforementioned construction derived in corollary2.5 (which

we were not aware of when carrying out the chapter’s experiments). In these experiments we

found that VB outperformed both BIC and CS approximations, and also tended to provide more

reliable results than the sampling gold standard, annealed importance sampling. Not only does

the VB approximation provide a bound on the marginal likelihood (which in the experiments

often showed AIS estimates to be ‘invalid’), but it also arrives at this bound in a fraction (about
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1%) of the time of the sampling approach. Moreover the VB approximation does not require the

tuning of proposal distributions, annealing schedules, nor does it require extensive knowledge of

the model domain to produce a reliable algorithm. We presented a number of extensions to the

AIS algorithm, including a more general algorithm for computing marginal likelihoods which

uses estimates based on more than one sample at each temperature (see algorithm6.1). In the

near future we hope to prove whether estimates using this algorithm are biased or not (personal

communication with R. Neal).

To conclude, I hope that this thesis has provided an accessible and coherent account of the

widely applicable variational Bayesian approximation. We have derived variational Bayesian

algorithms for a variety of statistical models and provided the tools with which new models

can be tackled, especially with a view to building software for automated algorithm derivation.

This should throw open the doors to Bayesian learning in a host of models other than those

investigated here. There are many directions for this research to be taken in and much work

left to be done. The hope is that the experimental findings and insights documented in these

chapters will stimulate and guide future research on variational Bayes.
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