
Appendix A

Conjugate Exponential family

examples

The following two tables present information for a variety of exponential family distributions,

and include entropies, KL divergences, and commonly required moments. Where used, tilde

symbols (e.g.̃θ), denote the parameters of a different distribution of the same form. Therefore

KL(θ̃||θ) is shorthand for the KL divergence between the distribution with parameterθ̃ and the

distribution with parameterθ (averaging with respect to the first distribution that is specified).

The remainder of the notation should be self-explanatory.
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Appendix B

Useful results from matrix theory

B.1 Schur complements and inverting partitioned matrices

In chapter5 on Linear Dynamical Systems, we needed to obtain the cross-covariance of states

across two time steps from the precision matrix, calculated from combining the forward and

backward passes over the sequences. This precision is based on the joint distribution of the

states, yet we are interested only in the cross-covariance between states. IfA is of 2× 2 block

form, we can use Schur complements to obtain the following results for the partitioned inverse

of A, and its determinant in terms of its blocks’ constituents.

The partitioned inverse is given by(
A11 A12

A21 A22

)−1

=

(
F−1

11 −A−1
11 A12F

−1
22

−F−1
22 A21A

−1
11 F−1

22

)
(B.1)

=

(
A−1

11 +A−1
11 A12F

−1
22 A21A

−1
11 −F−1

11 A12A
−1
22

−A−1
22 A21F

−1
11 A−1

22 +A−1
22 A21F

−1
11 A12A

−1
22

)
(B.2)

and the determinant by∣∣∣∣∣ A11 A12

A21 A22

∣∣∣∣∣ = |A22| · |F11| = |A11| · |F22| , (B.3)

where

F11 = A11 −A12A
−1
22 A21 (B.4)

F22 = A22 −A21A
−1
11 A12 . (B.5)
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Useful results from matrix theory B.2. The matrix inversion lemma

Notice that inverses ofA12 or A21 do not appear in these results. There are other Schur com-

plements that are defined in terms of the inverses of these ‘off-diagonal’ terms, but they are not

needed for our purposes, and indeed if the states involved have different dimensionalities or are

independent, then these off-diagonal quantities are not invertible.

B.2 The matrix inversion lemma

Here we present a sketch proof of the matrix inversion lemma, included for reference only. In the

derivation that follows, it becomes quite clear that there is no obvious way of carrying the sort

of expectations encountered in chapter5 through the matrix inversion process (see comments

following equation (5.105)).

The matrix inversion result is most useful whenA is a large diagonal matrix andB has few

columns (equivalentlyD has few rows).

(A+BCD)−1 = A−1 −A−1B(C−1 +DA−1B)−1DA−1 . (B.6)

To derive this lemma we use the Taylor series expansion of the matrix inverse

(A+M)−1 = A−1(I +MA−1)−1 = A−1
∞∑
i=0

(−1)i(MA−1)i , (B.7)

where the series is only well-defined when the spectral radius ofMA−1 is less than unity. We

can easily check that this series is indeed the inverse by directly multiplying by(A + M),
yielding the identity,

(A+M)A−1
∞∑
i=0

(−1)i(MA−1)i = AA−1
[
I −MA−1 + (MA−1)2 − (MA−1)3 + . . .

]
+MA−1

[
I − MA−1 + (MA−1)2 − . . .

]
(B.8)

= I . (B.9)
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Useful results from matrix theory B.2. The matrix inversion lemma

In the series expansion we find an embedded expansion, which forms the inverse matrix term

on the right hand side, as follows

(A+BCD)−1 = A−1(I +BCDA−1)−1 (B.10)

= A−1
∞∑
i=0

(−1)i(BCDA−1)i (B.11)

= A−1

(
I +

∞∑
i=1

(−1)i(BCDA−1)i
)

(B.12)

= A−1

(
I −BC

[ ∞∑
i=0

(−1)i(DA−1BC)i
]
DA−1

)
(B.13)

= A−1
(
I −BC(I +DA−1BC)−1DA−1

)
(B.14)

= A−1 −A−1B(C−1 +DA−1B)−1DA−1 . (B.15)

In the above equations, we assume that the spectral radii ofBCDA−1 (B.11) andDA−1BC

(B.13) are less than one for the Taylor series to be convergent. Aside from these constraints,

we can post-hoc check the result simply by showing that multiplication of the expression by its

proposed inverse does in fact yield the identity.
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Appendix C

Miscellaneous results

C.1 Computing the digamma function

The digamma function is defined as

ψ(x) =
d

dx
ln Γ(x) , (C.1)

whereΓ(x) is the Gamma function given by

Γ(x) =
∫ ∞

0
dτ τx−1e−τ . (C.2)

In the implementations of the models discussed in this thesis, the following expansion is used

to compute theψ(x) for large positive arguments

ψ(x) ' lnx− 1
2x
− 1

12x2
+

1
120x4

− 1
252x6

+
1

240x8
+ . . . . (C.3)

If we have small arguments, then we would expect this expansion to be inaccurate if we only

used a finite number of terms. However, we can make use of a recursion of the digamma function

to ensure that we always pass this expansion large arguments. The Gamma function has the well

known recursion:

x! = Γ(x+ 1) = xΓ(x) = x(x− 1)! , (C.4)

from which the recursion for the digamma function readily follows:

ψ(x+ 1) =
1
x

+ ψ(x) . (C.5)
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Miscellaneous results C.2. Multivariate gamma hyperparameter optimisation

In our experiments we used an expansion (C.3) containing terms as far asO(1/x14), and used

the recursion to evaluate this only for arguments ofψ(x) greater than6. This is more than

enough precision.

C.2 Multivariate gamma hyperparameter optimisation

In hierarchical models such as the VB LDS model of chapter5, there is often a gamma hyper-

prior over the noise precisions on each dimension of the data. On taking derivatives of the lower

bound with respect to the shapea and inverse scaleb of this hyperprior distribution, we obtain

fixed point equations of this form:

ψ(a) = ln b+
1
p

p∑
s=1

ln ρs ,
1
b

=
1
pa

p∑
s=1

ρs (C.6)

where the notationln ρs andρs is used to denote the expectations of quantities under the varia-

tional posterior distribution (see section5.3.6for details). We can rewrite this as:

ψ(a) = ln b+ c ,
1
b

=
d

a
, (C.7)

where

c =
1
p

p∑
s=1

ln ρs , and d =
1
p

p∑
s=1

ρs . (C.8)

Equation (C.7) is the generic fixed point equation commonly arrived at when finding the varia-

tional parametersa andb which minimise the KL divergence on a gamma distribution.

The fixed point fora is found at the solution of

ψ(a) = ln a− ln d+ c , (C.9)

which can be arrived at using the Newton-Raphson iterations:

anew ← a

[
1− ψ(a)− ln a+ ln d− c

aψ′(a)− 1

]
, (C.10)

whereψ′(x) is the first derivative of the digamma function. Unfortunately, this update cannot

ensure thata remains positive for the next iteration (the gamma distribution is only defined for

a > 0) because the gradient information is taken locally.

There are two immediate ways to solve this. First ifa should become negative during the

Newton-Raphson iterations, reset it to a minimum value. This is a fairly crude solution. Alter-
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Miscellaneous results C.3. Marginal KL divergence of gamma-Gaussian variables

natively, we can solve a different fixed point equation fora′ wherea = exp(a′), resulting in the

multiplicative updates:

anew ← a exp
[
−ψ(a)− ln a+ ln d− c

aψ′(a)− 1

]
. (C.11)

This update has the same fixed point but exhibits different (well-behaved) dynamics to reach

it. Note that equationC.10is simply the first two terms in the Taylor series of the exponential

function in the above equation.

Once the fixed pointa∗ is reached, the correspondingb∗ is found simply from

b∗ =
a∗

d
. (C.12)

C.3 Marginal KL divergence of gamma-Gaussian variables

This note is intended to aid the reader in computing the lower bound appearing in equation

(5.147) for variational Bayesian state-space models. Terms such as the KL divergence between

two Gaussian or two gamma distributions are straightforward to compute and are given in ap-

pendixA. However there are more complicated terms involving expectations of KL divergences

for joint Gaussian and gamma variables, for which we give results here.

Suppose we have two variables of interest,a andb, that are jointly Gaussian distributed. To be

more precise let the two variables be linearly dependent on each other in this sense:

q(a,b) = q(b)q(a |b) = N(b |µb,Σb) ·N(a |µa,Σa) (C.13)

where µa = y −Gb . (C.14)

Let us also introduce a prior distributionp(a |b) in this way:

p(a |b) = N(a | µ̃a, Σ̃a) (C.15)

where neither parameter̃µa nor Σ̃a are functions ofb.

The first result is the KL divergence between two Gaussian distributions (given in appendixA)

KL [q(a |b) ‖ p(a |b)] =
∫
da q(a |b) ln

q(a |b)
p(a |b)

(C.16)

= −1
2

ln
∣∣∣Σ̃−1

a Σa

∣∣∣+ 1
2
tr Σ̃−1

a

[
Σa − Σ̃a + (µa − µ̃a) (µa − µ̃a)

>
]
.

(C.17)
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Miscellaneous results C.3. Marginal KL divergence of gamma-Gaussian variables

Note that this divergence is written w.r.t. theq(a |b) distribution. The dependence onb is not

important here, but will be required later. The important part to note is that it obviously depends

on each Gaussian’s covariance, but also on the Mahalanobis distance between the means as

measured w.r.t. the non-averaging distribution.

Consider now the KL divergence between the full joint posterior and full joint prior:

KL [q(a,b) ‖ p(a,b)] =
∫
da db q(a,b) ln

q(a,b)
p(a,b)

(C.18)

=
∫
db q(b)

∫
da q(a |b) ln

q(a |b)
p(a |b)

+
∫
db q(b) ln

q(b)
p(b)

. (C.19)

The last term in this is equation is simply the KL divergence between two Gaussians, which

is straightforward, but the first term is theexpectedKL divergence between the conditional

distributions, where the expectation is taken w.r.t. the marginal distributionq(b). After some

simple manipulation, this first term is given by

〈KL [q(a |b) ‖ p(a |b)]〉q(b) =
∫
db q(b)

∫
da q(a |b) ln

q(a |b)
p(a |b)

(C.20)

= −1
2

ln
∣∣∣Σ̃−1

a Σa

∣∣∣+ 1
2
tr Σ̃−1

a

[
Σa − Σ̃a +GΣbG

>

+(y −Gµb − µ̃a) (y −Gµb − µ̃a)
>
]
. (C.21)

Let us now suppose that the covariance terms for the priorΣ̃ and posteriorΣa have the same

multiplicative dependence on another variableρ−1. This is the case in the variational state-

space model of chapter5 where, for example, the uncertainty in the entries for the output matrix

C should be related to the setting of the output noiseρ (see equation (5.44) for example). In

equation (C.17) it is clear that if both covariances are dependent on the sameρ−1, then the KL

divergence will not be a function ofρ−1 providedthat the means of both distributions are the

same. If they are different however, then there is a residual dependence onρ−1 due to theΣ̃−1
a

term from the non-averaging distributionp(a |b). This is important as there will usually be

distributions over thisρ variable of the form

q(ρ) = Ga(ρ | eρ, fρ) (C.22)

with e andf shape and precision parameters of a gamma distribution. The most complicated

term to compute is the penultimate term in (5.147), which is〈
〈KL [q(a |b, ρ) ‖ p(a |b, ρ)]〉q(b)

〉
q(ρ)

=∫
dρ q(ρ)

∫
db q(b | ρ)

∫
da q(a |b, ρ) ln

q(a |b, ρ)
p(a |b, ρ)

. (C.23)

In the variational Bayesian state-space model, the prior and posterior for the parameters of the

output matrixC (andD for that matter) are defined in terms of the same noise precision variable
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Miscellaneous results C.3. Marginal KL divergence of gamma-Gaussian variables

ρ. This means that all terms but the last one in equation (C.21) are not functions ofρ and pass

through the expectation in (C.23) untouched. The final term has a dependence onρ, but on taking

expectations w.r.t.q(ρ) this simply yields a multiplicative factor of〈ρ〉q(ρ). It is straightforward

to extend this to the case of data with several dimensions, in which case the lower bound is a

sum over allp dimensions of similar quantities.
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