Appendix A

Conjugate Exponential family
examples

The following two tables present information for a variety of exponential family distributions,
and include entropies, KL divergences, and commonly required moments. Where used, tilde
symbols (e.g6), denote the parameters of a different distribution of the same form. Therefore
KL(6||6) is shorthand for the KL divergence between the distribution with pararfietad the
distribution with parametefl (averaging with respect to the first distribution that is specified).
The remainder of the notation should be self-explanatory.
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Appendix B

Useful results from matrix theory

B.1 Schur complements and inverting partitioned matrices

In chapter5 on Linear Dynamical Systems, we needed to obtain the cross-covariance of states
across two time steps from the precision matrix, calculated from combining the forward and
backward passes over the sequences. This precision is based on the joint distribution of the
states, yet we are interested only in the cross-covariance between states.off2 x 2 block

form, we can use Schur complements to obtain the following results for the partitioned inverse
of A, and its determinant in terms of its blocks’ constituents.

The partitioned inverse is given by

—1
A A _ ' — A A Fy! B.1)
Ag1 Az —F5' Ay A Fyy'
_ [ AR AR A Fy An AY — Py Az Ay
— Ay} Ag Fi Ayt + Ay Ao  FT P Ap A
(B.2)

and the determinant by

Al App
= |Aa2| - |F11| = |An]| - | F22], (B.3)
Ag1 Ao
where
Fi1 = Ajy — A Ay Ay (B.4)
Fhy = Agg — Ag1 AT Ass . (B.5)
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Useful results from matrix theory B.2. The matrix inversion lemma

Notice that inverses afi;s or A,; do not appear in these results. There are other Schur com-
plements that are defined in terms of the inverses of these ‘off-diagonal’ terms, but they are not
needed for our purposes, and indeed if the states involved have different dimensionalities or are
independent, then these off-diagonal quantities are not invertible.

B.2 The matrix inversion lemma

Here we present a sketch proof of the matrix inversion lemma, included for reference only. In the
derivation that follows, it becomes quite clear that there is no obvious way of carrying the sort
of expectations encountered in chapiethrough the matrix inversion process (see comments
following equation $.109).

The matrix inversion result is most useful whdnis a large diagonal matrix an8 has few
columns (equivalentlyp has few rows).

(A+BCD) ' =A71 —A7'B(C™' + DA™'B)"'DA™!. (B.6)
To derive this lemma we use the Taylor series expansion of the matrix inverse

(A+ M)t =AYIT+MA! 12 (B.7)

where the series is only well-defined when the spectral radidg af ! is less than unity. We
can easily check that this series is indeed the inverse by directly multiplyingiby M),
yielding the identity,

(A4+ M)A Z = AATN [T - MAT 4 (MATY)? — (MATY)? 4+
+MATY[ T - MATY 4 (MATH? -]

(B.8)

=1. (B.9)
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Useful results from matrix theory B.2. The matrix inversion lemma

In the series expansion we find an embedded expansion, which forms the inverse matrix term
on the right hand side, as follows

(A+BCD)™ ' = AY(I+BCDA™H™! (B.10)
= A1 i(—ni(BCDA—l)i (B.11)
=0
=A"1 <1 + i(—ni(BCDA—l)i) (B.12)
=1
=A"t <I —~ BC i(—ni(DA—lBC)i DA—1> (B.13)
=0
= A" (I-BC(I+DA'BC)"'DA™) (B.14)
= A - A'B(C '+ DATIB) DAL (B.15)

In the above equations, we assume that the spectral radicaDA~! (B.11) and DA~ BC

(B.13) are less than one for the Taylor series to be convergent. Aside from these constraints,
we can post-hoc check the result simply by showing that multiplication of the expression by its
proposed inverse does in fact yield the identity.
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Appendix C

Miscellaneous results

C.1 Computing the digamma function

The digamma function is defined as

d

U() = - InT(a), (c.1)

wherel'(z) is the Gamma function given by

I(z) = /0 dr %7 le T, (C.2)

In the implementations of the models discussed in this thesis, the following expansion is used
to compute the)(x) for large positive arguments

1 1 1 1 1
TR (C.3)

~lnz— — — _ .
V@) =ne = o = o5t 1500~ 25246 T 24028

If we have small arguments, then we would expect this expansion to be inaccurate if we only
used a finite number of terms. However, we can make use of a recursion of the digamma function
to ensure that we always pass this expansion large arguments. The Gamma function has the well
known recursion:

l=T(r+1)=al'(z) =x(z - 1)!, (C.4)

from which the recursion for the digamma function readily follows:

P(x4+1) = % +Y(z) . (C.5)
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Miscellaneous results C.2. Multivariate gamma hyperparameter optimisation

In our experiments we used an expansiGr3( containing terms as far &(1/x'4), and used
the recursion to evaluate this only for arguments/¢f) greater thar6. This is more than
enough precision.

C.2 Multivariate gamma hyperparameter optimisation

In hierarchical models such as the VB LDS model of chaptehere is often a gamma hyper-
prior over the noise precisions on each dimension of the data. On taking derivatives of the lower
bound with respect to the shapeand inverse scalk of this hyperprior distribution, we obtain

fixed point equations of this form:

IR 1
w(a)zlnb—i-];Zlnps, g:—ZE (C.6)
s=1

where the notatioin p, andp; is used to denote the expectations of quantities under the varia-
tional posterior distribution (see sectibrB.6for details). We can rewrite this as:

1 d
=1Inb - = - C.7
@) =lbte, =2, ©7)
where
1 —— 1<
c:fE In ps , and d:fg Ds - (C.8)
ps—l ps—l

Equation C.7) is the generic fixed point equation commonly arrived at when finding the varia-
tional parameters andb which minimise the KL divergence on a gamma distribution.

The fixed point fora is found at the solution of
Y(a) =Ina—1Ind+ ¢, (C.9)

which can be arrived at using the Newton-Raphson iterations:

Y(a) —Ina+Ind —c
ay'(a) =1 ’

(C.10)

Qpew <« a |1 —

where/’(z) is the first derivative of the digamma function. Unfortunately, this update cannot
ensure that remains positive for the next iteration (the gamma distribution is only defined for
a > 0) because the gradient information is taken locally.

There are two immediate ways to solve this. Firstishould become negative during the
Newton-Raphson iterations, reset it to a minimum value. This is a fairly crude solution. Alter-
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Miscellaneous results C.3. Marginal KL divergence of gamma-Gaussian variables

natively, we can solve a different fixed point equationdowherea = exp(a’), resulting in the
multiplicative updates:

Y(a) —Ina+Ind—c
a'(a) — 1

This update has the same fixed point but exhibits different (well-behaved) dynamics to reach
it. Note that equatiorl©.10is simply the first two terms in the Taylor series of the exponential
function in the above equation.

(C.11)

Opew <~ G EXP | —

Once the fixed point* is reached, the correspondibtigis found simply from

a*

b = —. C.12
: (€12)

C.3 Marginal KL divergence of gamma-Gaussian variables

This note is intended to aid the reader in computing the lower bound appearing in equation
(5.147 for variational Bayesian state-space models. Terms such as the KL divergence between
two Gaussian or two gamma distributions are straightforward to compute and are given in ap-
pendixA. However there are more complicated terms involving expectations of KL divergences
for joint Gaussian and gamma variables, for which we give results here.

Suppose we have two variables of interasandb, that are jointly Gaussian distributed. To be
more precise let the two variables be linearly dependent on each other in this sense:

q(a,b) = g(b)g(a|b) = N(b |, Xp) - N(a| g, o) (C.13)
where p, =y —Gb. (C.149)

Let us also introduce a prior distributigifa | b) in this way:
p(a|b) = N(a| f1,, %) (C.15)
where neither parametgr, nor 3, are functions ob.

The first result is the KL divergence between two Gaussian distributions (given in apgendix

KL {g(a|b) [ plab)] = [ daglab)in 4212 (16)
= _%ln iglzd + %tr S(;l {ZU« - itl + (I“l’a - /:l‘a) (/J‘a - ﬁa)T] :
(C.17)
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Miscellaneous results C.3. Marginal KL divergence of gamma-Gaussian variables

Note that this divergence is written w.r.t. théa | b) distribution. The dependence dnis not
important here, but will be required later. The important part to note is that it obviously depends
on each Gaussian’s covariance, but also on the Mahalanobis distance between the means as
measured w.r.t. the non-averaging distribution.

Consider now the KL divergence between the full joint posterior and full joint prior:

KL [q(a,b) || p(a, b)] = / dadb g(a,b)In ZEZ E; (C.18)
; PRMNPITTES atb)
_/dbq(b)/d lalb)n o +/dbq(b)1 b €19

The last term in this is equation is simply the KL divergence between two Gaussians, which
is straightforward, but the first term is tlexpectedKL divergence between the conditional
distributions, where the expectation is taken w.r.t. the marginal distribgtionh After some
simple manipulation, this first term is given by

(KL [g(a b) | p(a | b)), = / b g(b) / dagfa b)n 42 1) (.20

:—fln -1y,

~1 [za D SN el

(v = Gy~ i) (v~ G, — )| . (€.20)

Let us now suppose that the covariance terms for the ptiand posteriot, have the same
multiplicative dependence on another variapte’. This is the case in the variational state-
space model of chaptémwhere, for example, the uncertainty in the entries for the output matrix
C should be related to the setting of the output ngigsee equation(44) for example). In
equation C.17) it is clear that if both covariances are dependent on the garhethen the KL
divergence will not be a function of ! providedthat the means of both distributions are the
same. If they are different however, then there is a residual dependepce doe to thé];l

term from the non-averaging distributigria | b). This is important as there will usually be
distributions over thig variable of the form

q(p) = Ga(p|ep, fp) (C.22)

with e and f shape and precision parameters of a gamma distribution. The most complicated
term to compute is the penultimate term §X47, which is

(KLlg(alb.p) [palb. o)) =

/dpq /dbqb|p/daqa\b,p EZ',E”; (C.23)

In the variational Bayesian state-space model, the prior and posterior for the parameters of the
output matrixC' (andD for that matter) are defined in terms of the same noise precision variable
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Miscellaneous results C.3. Marginal KL divergence of gamma-Gaussian variables

p. This means that all terms but the last one in equat®@1) are not functions op and pass
through the expectation iIl€(23 untouched. The final term has a dependence bat on taking
expectations w.r.iz(p) this simply yields a multiplicative factor gf) a0 It is straightforward

to extend this to the case of data with several dimensions, in which case the lower bound is a
sum over allp dimensions of similar quantities.
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