Q1 of 5 (8 pts) Prove that $\sum_{k=1}^{n} k^{1/4} = \Theta(n^{5/4})$.
Q2 of 5 (4 pts) Discuss the advantages and disadvantages of a linear array of size n as compared to a hypercube of size n. Be very clear and concise.
Q3 of 5 (4 pts) Draw a mesh-of-trees of base size 16.
Q4 of 5 (8 pts) Give an asymptotically optimal algorithm to sum a set of \(n \) values on a PRAM of size \(n \). Initially, there exists one such value in each of the first \(n \) memory locations. When complete, the sum of these values should be in memory location \(n + 1 \). State and justify the *asymptotic running time* of your algorithm and *asymptotic cost* of your algorithm.

a. Algorithm (4 pts)
b. Asymptotic Running Time of Your Algorithm (2 pts)
c. Asymptotic Cost of Your Algorithm (2 pts)
Q5 of 5 (6 pts) Draw an optimal combinational circuit to determine the minimum of 8 input items.