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Preface

Effective computing requires the design, analysis, implementation, and evaluation 
of algorithms to solve problems of interest. Computational problems come from 

a wide variety of areas including science, engineering, business, athletics, architec-
ture, medicine, management, economics, psychology, anthropology, and entertain-
ment, to name a few. In addition, exciting new challenges exist in the field of 
computational science and engineering, which is the “third science,” complementing 
both theoretical and laboratory science. Computational science and engineering unites 
computer science and mathematics with disciplinary expertise in biology, chemistry, 
physics, and other applied scientific and engineering fields. Multidisciplinary efforts 
in these STEM (Science, Technology, Engineering, and Mathematics) areas typically 
require efficient algorithms that run on high- performance computers in order to per-
form simulation and modeling of physical and human environments.

With current technology, it is difficult to increase significantly the density of 
computer chips, and, hence, the inherent speed of a traditional computer processor. 
Since there continues to be a demand for increased computing power, state-of-the-
art computer systems are now being designed around architectures that consist of 
multiple processing units. That is, computing systems are currently being con-
structed based on multiple processors and/or processors with multiple cores. In 
fact, it is quite difficult to find even a consumer-based compute system that does 
not consist of multiple processing units. This includes desktops, laptops, netbooks, 
tablets, smart phones, gaming systems, and high-end computing systems. In 
fact, many of these systems contain Graphics Processing Units (GPUs) that con-
sist of numerous processors targeted at enhancing a gaming and visualization 
environment.

Since mainstream computing consists of multiprocessor units, whether it is 
within a local system or in a remotely accessed “cloud,” it is critical for scientists, 
engineers, and users of this 21st century computational infrastructure to have a 
working knowledge of multiprocessor algorithms and architectures. For historical 
reasons and due to legacy and “dusty deck” computer programs, it is also impor-
tant that the reader have a basic understanding of how to manipulate uniprocessor 
systems efficiently.

Due to the state of current technology, the focus of this book is on parallel and 
sequential algorithms and architectures, including clouds, grids, clusters, fine-
grained network models, shared- and distributed-memory machines, and the tradi-
tional von Neumann architecture. We discuss algorithms and their analysis for a 

 xvii
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xviii Preface

variety of compute models in a unified approach by presenting a solution strategy, 
and then discussing a comparison of resources for the implementation of the high-
level solution strategy on such architectures. Analyses of these resources consider 
the number of computational units (processors or cores), the amount of memory, 
interconnection networks, and running time, to name a few.

Computer Science Courses in Algorithms: Many computer science depart-
ments offer courses in “Analysis of Algorithms,” “Algorithms,” “An Introduction 
to Algorithms,” or “Data Structures and their Algorithms” at the junior or senior 
level. In addition, a course in “Analysis of Algorithms” is required of most gradu-
ate students pursuing an advanced degree in computer science. Throughout the 
1980s, the vast majority of these course offerings focused on algorithms for 
sequential (von Neumann) computers. In fact, not until the late 1980s did courses 
covering an introduction to parallel algorithms begin to appear in research-
oriented departments. Furthermore, these courses in parallel algorithms were typi-
cally presented to advanced graduate students. However, by the early 1990s, 
courses in parallel computing began to emerge at the undergraduate level, espe-
cially at progressive 4-year colleges.

Throughout much of the 1990s, traditional algorithms-based courses changed 
very little. Gradually, such courses began to incorporate a component of parallel 
algorithms, typically one to three weeks near the end of the semester. During the 
later part of the 1990s, however, it was not uncommon to find algorithms courses 
that contained as much as 1/3 of the material devoted to parallel algorithms.

In this book, we take a very different approach to an algorithms-based course. 
Parallel computing has moved into the mainstream, with clusters of commodity-off-
the-shelf (COTS) machines dominating the list of top supercomputers in the world 
(www.top500.org), and smaller versions of such machines being exploited in many 
research laboratories. Therefore, the time is right to teach a fundamental course in 
algorithms that covers paradigms for both sequential and parallel models.

This Book’s Approach to Presenting Algorithms: The approach we take in 
this book is to integrate the presentation of sequential and parallel algorithms. 
Specifically, we employ a philosophy of presenting a paradigm, such as divide-
and-conquer, and then discussing implementation issues for both sequential and 
parallel models. Due to the fact that we present design and analysis of paradigms 
for sequential and parallel models, the reader might notice that the number of para-
digms we can treat within a semester is limited when compared to a traditional 
sequential algorithms text.

This book has been used successfully at a wide variety of colleges and 
universities.

Prerequisites: We assume a basic knowledge of data structures and mathemati-
cal maturity. The reader should be comfortable with notions of a stack, queue, list, and 
binary tree, at a level that is typically taught in a CS2 course. The reader should also 
be familiar with fundamentals of Discrete Mathematics and Calculus. Specifically, 
the reader should be comfortable with limits, summations, and integrals.

C8208_fm.indd   xviiiC8208_fm.indd   xviii 11/15/12   7:01 AM11/15/12   7:01 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Preface xix

Overview of Chapters

Background material for the course is presented in Chapters 1, 2, and 3. Chapter 1 
introduces the concept of asymptotic analysis. While the reader might have seen 
some of this material in a course on data structures, we present this material in a 
fair amount of detail. The reader who is uncomfortable with some of the funda-
mental material from a freshman-level Calculus sequence might want to brush up 
on notions such as limits, summations and integrals, and derivatives, as they natu-
rally arise in the presentation and application of asymptotic analysis. Chapter 2 
focuses on fundamentals of induction and recursion. While many students have 
seen this material in previous courses in computer science and/or mathematics, we 
have found it important to review this material briefly and to provide the students 
with a reference for performing the necessary review. In Chapter 3, we present the 
Master Method, a very useful cookbook-type of system for evaluating recurrence 
equations that are common in an algorithms-based setting.

Chapter 4 introduces fundamental models of computation, including the RAM 
(a formal sequential architecture) and a variety of parallel architectures. We intro-
duce multiprocessor systems that include the PRAM, linear array, ring, mesh, tree, 
pyramid, mesh-of-trees, hypercube, and the Coarse-Grained Multicomputer. 
Chapter 4 also introduces computational systems that are abundantly available in 
standard academic and industrial settings, including a Network of Workstations, 
Cluster, Grid, and Cloud, as well as some standard terminology in the field of par-
allel computing. In Chapter 5, we present an overview of combinational circuits 
and sorting networks. This work is used to motivate the natural use of parallel mod-
els and to demonstrate the blending of architectural and algorithmic approaches.

The focus of Chapter 6 is the important problem of matrix multiplication, 
which is considered for a variety of models of computation. In Chapter 7, we intro-
duce the parallel prefix operation. This is a very powerful operation with a wide 
variety of applications. We discuss implementations and analysis for a number of 
the models presented in Chapter 5 and give sample applications. In Chapter 8, we 
introduce pointer jumping techniques and show how some list-based algorithms 
can be efficiently implemented in parallel.

In Chapter 9, we introduce the powerful divide-and-conquer paradigm. We 
discuss applications of divide-and-conquer to problems involving data movement, 
including sorting, concurrent reads/writes, and so forth. Algorithms and their anal-
ysis are presented for a variety of models.

Chapters 10 and 11 focus on two important application areas, respectively, 
Computational Geometry and Image Processing. In these chapters, we focus on 
interesting problems chosen from these important domains as a way of solidifying 
the approach of this book in terms of developing machine independent solution 
strategies, which can then be tailored for specific models, as required.

Chapter 12 focuses on fundamental graph theoretic problems. Initially, we 
present standard traversal techniques, including breadth-first search and depth-first 
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xx Preface

search. Finally, we couple these techniques with greedy algorithms to solve prob-
lems, such as labeling the connected components of a graph, determining a mini-
mal spanning forest of a graph, and problems involving shortest or minimal-weight 
paths in a graph.

Chapter 13 is an optional chapter concerned with some fundamental numeri-
cal problems. A focus of the chapter is on sequential algorithms for polynomial 
evaluation and approximations of definite integrals.

There are several appendices in which we give proofs of theorems that will be 
difficult for many readers. We believe that only those with the interest and mathe-
matical aptitude to make the experience worthwhile should read these appendices. 
We recommend that instructors allow students to use the results discussed in the 
appendices whether they understand the material or not, in the fashion of computer 
programmers who often use library routines developed by others.

Recommended Use

This book has been successfully deployed in both elective and required courses, 
with students typically ranging from sophomores (2nd-year undergraduate stu-
dents) to 3rd-year graduate students. A student in a course using this book need 
not have an advanced understanding of mathematics. A fundamental background 
in mathematics will suffice.

Correspondence

Please feel free to contact the authors directly with any comments or criticisms of 
this book. Russ Miller may be reached at miller@ buffalo.edu and Laurence Boxer 
may be reached at boxer@niagara.edu. In addition, a Web site for the book can be 
found from http://www.cse.buffalo.edu/faculty/miller/papers.shtml. This Web site 
contains information related to the book, including pointers to education-based 
pages, relevant parallel computing links, and errata.

Instructor Resources

Teaching tools are available for this book. When this book is used in a classroom 
setting, the following materials are available for download at login.cengage.com.

PowerPoint Presentations. A set of PowerPoint slides is available for each 
chapter. Slides may be used to guide classroom presentation, to make available to 
students for review, or to print as classroom handouts. Instructors are welcome to 
customize the slides to suit their course needs.

Figure Files. The complete set of images from the text is available for use in 
classroom presentations.

Solution Files. A detailed set of solutions to all exercises is available to 
instructors.
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Reference Guide

Asymptotic Relationships

Assume f and g are positive functions of n. Then the following relationships exist.

 1. f (n) = O1g(n)2⇔ g(n) = Ω1 f (n)2.
 2. f (n) = Θ1g(n)2⇔ g(n) = Θ1 f (n)2.
 3. f (n) = Θ1g(n)2⇔ f (n) = O1g(n)2 and f (n) = Ω1g(n)2.
 4. f (n) = o1g(n)2⇔ g(n) = ω 1 f (n)2.
 5. f (n) = o1g(n)2⇔ lim

n→∞
 
f (n)

g(n)
 = 0.

 6. f (n) = ω 1g(n)2⇔ lim
n→∞

 
f (n)

g(n)
 = ∞ .

 7. f (n) = o1g(n)2 ⇒ f (n) = O1g(n)2, but the converse is false.

 8. f (n) = ω 1g(n)2 ⇒ f (n) = Ω1g(n)2, but the converse is false.

 9. f (n) is bounded above and below by positive constants if and only if 
f (n) = Θ(1).

 xxiii
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xxiv Reference Guide

Limits and Asymptotic Relationships

In order to determine the relationship between functions f and g, it is often useful 
to examine

lim
n→∞

 
f (n)

g(n)
= L.

The possible outcomes of this relationship, and their implications, are given below.

 1. L = 0. This means that g(n) grows at a faster rate than f (n). Therefore, 
f (n) = O(g(n)), f (n) ≠ Θ(g(n)), and f (n) = o(g(n)).

 2. L = ∞ . This means that f (n) grows at a faster rate than g(n). Therefore,  
f (n) = Ω(g(n)), f (n) ≠ Θ(g(n)), and f (n) = ω (g(n)).

 3. L ≠ 0 is finite. This means that f (n) and g(n) grow at the same rate, to within 
a constant factor. Therefore, f (n) = Θ(g(n)) and g(n) = Θ( f(n)). Notice that 
this also means that f (n) = O(g(n)), g(n) = O( f (n)), f (n) = Ω(g(n)), 
g(n) = Ω( f (n)), f (n) ≠ o(g(n)), and f (n) ≠ ω (g(n)).

 4. There is no limit. In the case where 

lim
n→∞

 
f (n)

g(n)

  does not exist, this technique cannot be used to determine the asymptotic rela-
tionship between  f (n) and g(n).
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Reference Guide xxv

Logarithmic Properties and Notation

Several properties of logarithms that are useful in the analysis of algorithms are 
given below.

• loga 1 = 0
• loga a = 1
• loga xy = loga x + loga y

• logb a =
logc a

logc b

• loga xy = y loga x

• loga 
x
y

= loga x − loga y

In the scientific literature, the following are common abbreviations for logarithms 
of the given base.

• loge x is written as ln x

• log2 x is written as lg x

• log10 x is written as log x
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Standard Terminology

These terms are fairly standard, appearing in many texts and the scientific literature.

An algorithm with running time is said to run in

Θ(1) constant time

Θ(log n) logarithmic time

O(logk n), k a positive integer polylogarithmic time

o(log n) sublogarithmic time

Θ(n) linear time

o(n) sublinear time

Θ(n2) quadratic time

O1 f (n)2, where f (n) is a polynomial polynomial time
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Master Theorem

Let a ≥ 1 and b ≥ 1 be constants. Let f (n) be a positive function defined on the 
positive integers. Let T(n) be defined on the positive integers by

 T (n) = aT a n

b
b + f (n), (3.1)

where we can interpret n/b as meaning either ⎣n/b⎦  or ⎡n/b⎤ . Then the following 
hold.

 1. Suppose f (n) = O1nlogb a−ε2 for some constant ε > 0. Then T(n) = Θ1nlogb a2.
 2. Suppose f (n) = Θ1nlogb a2. Then T(n) = Θ1nlogb a log n2.
 3. Suppose f (n) = Ω(nlogb a+ ε) for some constant ε > 0, and there are  constants c 

and N, 0 < c < 1 and N > 0, such that n/b > N ⇒ af (n/b) ≤ cf (n). Then 
T(n) = Θ1 f (n)2.
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xxviii Reference Guide

Common Recurrence Equations

Representative Algorithm Recurrence Equation Asymptotic Solution

Binary Search T (n) = T (n/2) + Θ(1) T (n) = Θ( log n)
Sequential Search T(n) = T(n − 1) + Θ(1) T (n) = Θ(n)
Tree Traversal T (n) = 2T (n/2) + Θ(1) T (n) = Θ(n)
Selection Sort T (n) = T (n − 1) + Θ (n) T (n) = Θ(n2)
Merge Sort T (n) = 2T (n/2) + Θ(n) T (n) = Θ(n log n)
Parallel Merge Sort T (n) = T (n/2) + Θ(n) T (n) = Θ(n)
Bitonic Sort T (n) = 2T (n/2) + Θ (n log n) T (n) = Θ(n log2 n)
Hypercube Bitonic Sort T (n) = T (n/2) + Θ (log n) T (n) = Θ (log2 n)

Mesh Divide-and-Conquer T (n) = T (n/4) + Θ (n1/2) T (n) = Θ(n1/2)
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Reference Guide xxix

Common Summations

Sum of Constant Terms:a
n

i=1

1 = n

Arithmetic Series:a
n

i=1

ai = n ca1 +
(n − 1)d

2
d , where ai+1 = ai + d, for some constant d.

Example of an arithmetic series: a
n

i=1

i =
n(n + 1)

2

Geometric Series:a
n

i=1

a0 r i−1 =
a0(1 − rn)

(1 − r)
, where r =

ai+1

ai
 is a constant, r ≠ 1.

Example of a geometric series: a
 log2 n

i=1

 n/2i = n − 1

Sum of Consecutive Squares: a
n

i=1

i2 =
n(n + 1)(2n + 1)

6

Sum of Consecutive Integers Raised to a Power:a
n

i=1

ik = Θ1nk+12, for k > 0 a 
constant.

Sum of Consecutive Reciprocals:

a
n

i=1

1

i
=  1 +

1

2
+ g+

1
n

≈ ln n + γ , where γ ≈ 0.5772c(Euler’s constant)

Bounding a Sum for a Nondecreasing Function f(x): 

∫
u

l − 1 
f (x)dx ≤ a

u

i=l
 f (i) ≤ ∫

u + 1

l
f (x)dx

Bounding a Sum for a Nonincreasing Function f(x): 

∫
u + 1

l
f (x)dx ≤ a

u

i=l
 f (i) ≤ ∫

u

l − 1 
f (x)dx
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Models of Computation

Model Communication diameter Bisection width

RAM Θ(1) -
PRAM of size n equivalent to Θ(1) equivalent to Θ(n2)
Linear array of size n Θ(n) Θ(1)
Mesh of size n Θ(n1/2) Θ(n1/2)
Hypercube of size n Θ(log n) Θ(n)
Pyramid of base size n Θ(log n) Θ(n1/2)

Mesh of trees of base size n Θ(log n) Θ(n1/2)

Note that for the RAM, n represents the size of the memory.
Note that for the other models, which are multiprocessor models, n represents 

the number of processors, where each processor is assumed to have some (small) 
finite amount of memory.
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Asymptotic Running Times

Broadcast a 
unit of data

Semigroup operation 
on n data evenly 
distributed

Parallel prefix 
on n data 
evenly 
distributed

Sort n data evenly 
distributed 
(comparison-based 
algorithm)

RAM N/A Θ(n) Θ(n) Θ(n log n)

CR PRAM of size n Θ(1) Θ(log n) Θ(log n) Θ(log n)

ER PRAM of size n Θ(log n) Θ(log n) Θ(log n) Θ(log n)

Linear array of size n Θ(n) Θ(n) Θ(n) Θ(n)

Mesh of size n Θ(n1/2) Θ(n1/2) Θ(n1/2) Θ(n1/2)

Hypercube of size n Θ(log n) Θ(log n) Θ(log n) O(log2 n)

Pyramid of base size n Θ(log n) Θ(log n) Θ(n1/2) Θ(n1/2)

Mesh-of-Trees of base 
size n

Θ(log n) Θ(log n) Θ(log n) Θ(n1/2)

CGM(n,q) – coarse 
grained multicomputer 
of q processors with 
enough memory for n 
data

O(q) Θ(n/q) Θ(n/q) Not discussed in 
this book
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Acomprehensive study of algorithms includes the design, analysis, implementation, 
and scientific evaluation through experimentation of algorithms to solve impor-

tant problems. In this chapter, we introduce some basic tools and techniques that are 
required in order to evaluate effectively both a theoretical and an experimental analysis 
of algorithms. It is important to realize that without analysis, it is often difficult to 
 justify the choice of one algorithm over another or to justify the need for developing a 
new algorithm. Therefore, a critical aspect of most courses covering advanced data 
structures or  algorithms is on the development of techniques for estimating resources 
for a given algorithm. Such resources include the running time, disk space, memory, 
and number of processors utilized by an efficient implementation of the algorithm 
under consideration.

While we often focus on the running time of an algorithm, it is critical that the 
algorithm under consideration produce correct results. In fact, it is not uncommon for 
one to develop computer programs that run very fast and produce incorrect results. 
Such programs can be extremely harmful. However, for pragmatic reasons, nontrivial 
proofs of correctness are not covered in this text. 

There are other goals when one is developing computer algorithms and programs 
to solve problems. Such goals include maximizing the use of human and computer 
resources. Human resources include current and future staff time for understanding the 
problems to be solved, devising efficient solutions, providing theoretical analyses of 
resources required by such solutions, implementing appropriate solutions, and per-
forming empirical evaluations of such solutions on representative data sets. It is impor-
tant to note that there is evidence to support the claim that efficiency of human 
resources is often a function of the clarity of code written. 

Computer resources include processing time, computer memory, communication 
latency and bandwidth, number of processors, and the manner in which the processors 
communicate, to name a few. It is not unusual for there to be a conflict in the utiliza-
tion of some of these resources. In particular, we will discuss a number of examples in 
this book where there is a tradeoff in asymptotic running time and the asymptotic 
amount of additional memory and/or processors required by an algorithm. That is, 
there are times when one can devise an algorithm that runs faster if additional memory 
and/or processors are available.

Throughout this book, we will focus on resources associated with a given algo-
rithm. Specifically, we will be concerned with quantities that include the number of 
processors, the size of the memory, and the running time of the algorithm under con-
sideration. A comparison of such quantities will allow for a reasonable comparison 
between algorithms, typically resulting in an informed choice as to the appropriate 
algorithm to use. For example, such analyses will allow us to make a more informed 
decision as to which sorting algorithm to use on a sequential machine given data with 
certain properties that are maintained in specific data structures. 
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4 Chapter 1  Asymptotic Analysis

In practice, it often is the case that the most important computer resource is 
 running time. This may surprise students who have been exposed primarily to rela-
tively small homework projects that, once freed of compiler errors and infinite 
loops, begin printing results almost immediately. However, many important appli-
cations require massive processing of large data sets, where a world-class  computer 
may run for hours or even days before determining a solution. Examples of such 
applications are found in areas such as simulating disasters and responses as well 
as the spread and containment of infectious disease. Additional examples include 
data mining, traffic simulation, molecular modeling, weather forecasting, global 
warming, image analysis, geographical surveying, and modeling new physical 
structures, such as buildings, bridges, and roads, to name a few. Aside from the 
financial cost of computer time, human impatience or serious deadlines may limit 
the use of such applications. For example, it only helps to have a weather forecast 
if it is made available in advance of the forecast period. By contrast, it is not 
uncommon to be able to devise  algorithms and their associated data structures 
such that the memory requirements are quite reasonable.

Consider, for example, the prominence of simulation and modeling in modern 
science and engineering. In fact, discovery in our digital data-driven society relies 
increasingly on simulation and modeling. A U.S. National Science Foundation 
report on “Simulation-based Engineering Science” echoes the following important 
statements. 

• Simulation is typically less expensive and safer than conducting experiments 
with a physical prototype for many scientific and engineering devices. As a 
result, some of the most powerful computing systems in the world are used 
to simulate the detonation of nuclear devices and their effects. Others are 
used to simulate natural catastrophes including hurricanes, tornadoes, and 
tsunamis.

• Simulation often provides a more realistic result than a traditional physical 
experiment, as it can be set up to allow for ease of configuration of environ-
mental parameters found in the final product. Examples include simulation of 
environmental systems, including ground-water flow, weather, oceans, and 
lakes.

• Simulations can often be constructed and evaluated much more efficiently 
than physical simulators. Furthermore, computer simulation can often run 
much faster than a real-time simulation on a physical simulator, allowing for 
many more parameters to be evaluated in the same amount of time.

Simulation and modeling are typically data driven, often requiring high-end 
computing systems. Simulation and modeling of natural systems occur in various 
scientific and engineering disciplines, including physics, chemistry, and biology, 
as well as in human systems including economics and the social sciences.

Currently, the generation and storage of data is increasing at an astonishing 
rate. In part, this is due to very high-end scientific devices that have come on-line 
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Notation and Terminology 5

recently. It is also due to consumer consumption of available technology, specifi-
cally various data-intensive multimedia forms of networked-based entertainment. 
So, in order to compete effectively in a knowledge-based economy, scientists, 
engineers, and technologists need to be proficient at the collection, organization, 
maintenance, analysis, and visualization of data.

Let’s begin our journey into the design and analysis of algorithms for sequen-
tial and multiprocessor systems by developing mathematical tools for the analysis 
of resources required by computer algorithms. Because running time is more often 
the subject of our analysis than computer memory, we will use time-related termi-
nology while presenting introductory material. However, the same tools may natu-
rally be applied to the analysis of memory requirements or error tolerance.

Notation and Terminology

In this section, we introduce some notation and terminology that will be used 
throughout the text. The notation and terminology that we introduce is standard in 
the literature.

In this book, we use the term algorithm to mean a procedure for correctly 
 solving a problem in a finite number of steps. The focus of this book is on the 
analysis of resources for a reasonable implementation of a given algorithm to solve 
a given problem correctly. Specifically, the analysis of an algorithm is concerned 
with estimating resources, such as running time and computer memory, used by 
the efficient implementation of an algorithm. In general, we will remove the awk-
wardness of stating “an efficient implementation of an algorithm” and simply 
assume that the implementation is efficient. Thus, we will simply refer to the 
 analysis of an algorithm. 

A sequential algorithm is an algorithm designed to run on a sequential, i.e., 
single-processor computer, while a parallel algorithm is an algorithm designed to 
run on a parallel computer, i.e., a multiprocessor system. In general, an efficient 
parallel algorithm utilizes multiple processors working in a cooperative fashion to 
solve a given problem significantly faster than it could be solved on a sequential 
 computer.

Typically, we use the positive integer n to denote the size of the data set pro-
cessed by an algorithm. We may process an array of n entries, for example, or a 
linked list, tree, or graph of n nodes. We will use T(n) to represent the running time 
of an algorithm operating on a data set of size n.

An algorithm can be implemented on a variety of hardware/software platforms. 
We expect that the same algorithm operating on the same data values will execute 
faster if implemented in the assembly language of a supercomputer than if imple-
mented in an interpreted language on a personal computer from, say, the 1980s. 
Thus, it rarely makes sense to analyze an algorithm in terms of actual CPU time. 
Rather, we want our analysis to reflect the intrinsic efficiency of the algorithm 
without regard to such factors as the speed of the hardware/software environment 
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6 Chapter 1  Asymptotic Analysis

in which the algorithm is to be implemented. That is, we seek to measure the effi-
ciency of our programming methods, not their actual  implementations.

Thus, the analysis of algorithms generally adheres to the following principles.

 1. Ignore machine-dependent constants. We will not be concerned with how 
fast an individual processor executes a machine instruction.

 2. Look at growth of resources as n → ∞ . Even an inefficient algorithm will 
often finish its work in acceptable time when operating on a small data set. 
Thus, we are usually interested in T(n), the running time of an algorithm for 
large n, where n is typically the size of the data input to the algorithm.

Asymptotic analysis implies that we are interested in the general behavior of 
the function T(n) as the input parameter gets large. That is, we are interested in the 
behavior of T(n) as n → ∞ . Therefore, since we are interested in the growth rate of 
the function as n gets large, we may ignore low-order terms as well as multiplica-
tive constant factors when expressing asymptotic analysis. This is not to say that 
these terms are irrelevant in practice, just that they are not useful in terms of 
 considering the growth rate of a function. So, for example, we say that the function 
3n3 + 10n2 + n + 17 grows as n3. That is, for large values of n, the quadratic, linear, 
and constant terms, respectively, 10n2, n, and 17, are insignificant  compared with 

y = g(n)

y = f(n)

better

T(n)

n0 n

FIGURE 1-1 An illustration of the growth rate of 
two functions, f (n) and g(n). Notice that for large 
values of n, an algorithm with an  asymptotic 
 running time of f (n) is typically more desirable 
than an algorithm with an asymptotic running 
time of g(n). In this  illustration, “large” is 
defined as n ≥ n0. The value n0 represents a point 
beyond which the “eventually larger” function 
g(n)  dominates the “eventually smaller” f (n).
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Notation and Terminology 7

the cubic term when considering growth rate of the function. Consider another 
example. As n gets large, would you prefer to use an algorithm with running time 
95n2 + 405n + 1997 or one with a running time of 2n3 + 12? We hope you chose 
the former, which has a growth rate of n2, as opposed to the latter, which has a 
growth rate of n3. Naturally, though, if n were small, one would prefer 2n3 + 12 to 
95n2 + 405n + 1997. In fact, you should be able to determine the value of n that is 
the breakeven point. Figure 1-1 presents an illustration of this situation.

Asymptotic Notation

In this section, we introduce some standard notation that is useful in expressing 
the asymptotic behavior of a function of n. That is, the behavior of a function as
n approaches infinity. Since we often have a function that we wish to express in 
terms of a “simpler” function, we introduce this notation in terms of functions
f and g, both of which are positive functions of n.

 1. f (n) = Θ(g(n)), to be read as “f of n is theta of g of n,” if and only if there exist 
positive constants c1, c2, and n0 such that c1g(n) ≤  f (n) ≤ c2g(n) whenever 
n ≥ n0. That is, f grows at the same asymptotic rate as g. See  Figure 1-2.

 2. f (n) = O(g(n)), to be read as “f of n is oh of g of n” or “f of n is big oh of g 
of n,” if and only if there exist positive constants c and n0 such that f (n) ≤ cg(n) 
whenever n ≥ n0. That is, f grows at no more than the same asymptotic rate as g. 
Equivalently, f is asymptotically bounded from above by g. See Figure 1-3.

FIGURE 1-2 An illustration of Θ-notation. 
f (n) = Θ(g(n)) since functions f (n) and g(n) 
grow at the same rate for all n ≥ n0.

y = g(n)

y = f(n)

n0
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8 Chapter 1  Asymptotic Analysis

 3. f (n) = Ω(g(n)), to be read as “f of n is omega of g of n” or “f of n is capital 
omega of g of n” or “f of n is big omega of g of n,” if and only if there exist 
positive constants c and n0 such that cg(n) ≤ f (n) whenever n ≥ n0. That is, f 
grows at least at the same asymptotic rate as g. Equivalently, f is asymptoti-
cally bounded from below by g. See Figure 1-4.

 4. f (n) = o(g(n)), to be read as “f of n is little oh of g of n,” if and only if for 
every positive constant C there is a positive integer n0 such that f (n) < Cg(n) 
whenever n ≥ n0. That is, f is strictly bounded from above by g, where f and g 
do not have the same growth rate. See Figure 1-5.

FIGURE 1-4 An illustration of Ω-notation. 
f (n) = Ω(g(n)) since function f (n) is 
bounded from below by g(n) for all n ≥ n0.

y = g(n)

y = f(n)

n0

FIGURE 1-3 An illustration of O-notation. 
f (n) = O(g(n)) since function f (n) is 
bounded from above by g(n) for all n ≥ n0.

y = g(n)

y = f(n)

n0

n0(C)

y = g(n)

y = Cg(n)

y = C'g(n)

y = f(n)

 n0(C')

FIGURE 1-5 An illustration of o-notation: f (n) = o( g(n)). Note that n0(C) corresponds to n0 
in the definition of o-notation for the pair of functions f (n) and Cg (n). Similarly, n0(C ') 
 corresponds to n0 in the definition of o-notation for the pair of functions f (n) and C 'g (n).
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Notation and Terminology 9

 5. f (n) = ω (g(n)), to be read as “f of n is little omega of g of n,” if and only if for 
every positive constant C there is a positive integer n0 such that f (n) > Cg(n) 
whenever n ≥ n0. That is, f is strictly bounded from below by g, where f and g 
do not have the same growth rate. See Figure 1-6.

Strictly speaking, Θ, O, Ω, o, and ω  are set-valued functions. Therefore, it 
would be appropriate to write (3n2 + 2) ∈ Θ(n2). In fact, some authors have tried to 
use this membership notation, but it is not the standard. In the literature, this idea 
is typically expressed as 3n2 + 2 = Θ(n2). While not correct in the mathematical 
sense, such an expression is the standard in the field of algorithms when express-
ing the growth rate of a resource such as running time, memory, number of proces-
sors, and so forth. The expression 3n2 + 2 = Θ(n2) is read as “3 n squared plus 2 is 
theta of n squared.” Note that one does not write Θ(n2) = 3n2 + 2.

The set-valued functions Θ, O, Ω, o, and ω  are referred to as asymptotic nota-
tion. Recall that we use asymptotic notation to simplify analysis and capture 
growth rate. Therefore, we want the simplest and best function as a representative 
of each Θ, O, Ω, o and ω  expression. Some examples follow.

EXAMPLE

Given f (t) = 5 + sin t and g(t) = 1, then 5 + sin t = Θ(1) since  4 ≤ 5 + sin t ≤ 6. 
(See Figure 1-7.) Note also that f (t) = O(1) and f (t) = Ω(1), but the best choice 
for notation is to write f (t) = Θ(1) since Θ conveys more information than 
 either O or Ω.

n0(C)

y = C'g(n)

y = f(n)

y = Cg(n)

y = g(n)

n0(C')

FIGURE 1-6 An illustration of ω -notation: f (n) = ω (g(n)). n0(C) is the value of 
n0 in the definition of ω -notation for the pair ( f (n), Cg(n)). Similarly, n0(C ') is 
the value of n0 in the definition of ω -notation for the pair ( f (n), C 'g(n)).
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10 Chapter 1  Asymptotic Analysis

Additional Notation

Floor and Ceiling Functions. We will often find the floor and ceiling functions 
useful. Given a real number x, there is a unique integer n such that

n ≤ x < n + 1.

We say that n is the “floor of x”, denoted

⎣x⎦ = n.

In other words, ⎣x⎦  is the largest integer that is less than or equal to x.
Similarly, given a real number x, there is a unique integer n such that

n < x ≤ n + 1.

Then n + 1 is the “ceiling of x,” denoted

⎡x⎤ = n + 1.

In other words, ⎡x⎤  is the smallest integer that is greater than or equal to x.
For example, ⎣3.2⎦ = 3, ⎡3.2⎤ = 4, and ⎣18⎦ = ⎡18⎤ = 18.
Notice for all real numbers x we have

x − 1 < ⎣x⎦ ≤ x ≤ ⎡x⎤ < x + 1.

It follows that ⎣x⎦ = Θ(x) and ⎡x⎤ = Θ(x).

Variable Assignment. In describing the assignment of a value to a variable, we 
will use either the equal sign or the left arrow, as both are widely used in computer 
science. That is, either of the notations

left = right

or

left ← right

will mean “assign the value of right as the new value of left.”

FIGURE 1-7 Graph of f (t) = 5 + sin t.

π2− π− 3π2ππ

1
2
3
4
5
6

t
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Notation and Terminology 11

EXAMPLE 

Show that

a
n

k=1

kp = Θ1np+12,
for p > 1 a fixed constant. First, we consider an upper bound on the summation. 
We know that

a
n

k=1

kp ≤ n × np

since the summation contains n terms, the largest of which is np. Therefore, we 
know that

a
n

k=1

kp = O1np+12.
Next, we consider a lower bound on the summation. Notice that it is easy to 
derive a trivial lower bound of Ω(n), since there are n terms in the summation, 
the least of which is equal to 1. However, we can derive a more useful, larger, 
lower bound as follows. Notice that

a
n

k=1

kp = a
⎣n/2⎦

k=1

kp + a
n

k=⎣n/2⎦+1

kp ≥ a
n

k=⎣n/2⎦+1

kp.

Looking closely at

a
n

k=⎣n/2⎦+1

kp,

notice that there are n − ⎣n/2⎦  terms for which (⎣n/2⎦ + 1)p is the smallest 
term. Therefore, we have

a
n

k=1

k p > (n/2)(n/2)p =
np+1

2p+1
.

Since 2p+1 is a constant, we have

a
n

k=1

kp = Ω1np+12.
In fact, we have shown that

np+1

2p+1
 ≤ a

n

k=1

kp ≤ np+1.

That is,

a
n

k=1

kp = Θ1np+12.
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12 Chapter 1  Asymptotic Analysis

Asymptotic Relationships

Useful relationships exist among Θ, O, Ω, o, and ω , some of which are given in 
the proposition below. The reader might wish to try to prove some of these.

Proposition: Let f and g be positive functions of n. Then we have the following 
relationships.

 1. f (n) = O1g(n)2⇔ g(n) = Ω1 f (n)2.
 2. f (n) = Θ1g(n)2⇔ g(n) = Θ1 f (n)2.
 3. f (n) = Θ1g(n)2⇔ f (n) = O1g(n)2  and  f (n) = Ω1g(n)2.
 4. f (n) = o1g(n)2⇔ g(n) = ω 1 f (n)2.
 5. f (n) = o1g(n)2⇔ lim

n→∞
 
f (n)

g(n)
 = 0.

 6. f (n) = ω 1g(n)2⇔ lim
n→∞

 
f (n)

g(n)
 = ∞ .

 7. f (n) = o1g(n)2 ⇒ f (n) = O1g(n)2, but the converse is false.

 8. f (n) = ω 1g(n)2 ⇒ f (n) = Ω1g(n)2, but the converse is false.

 9. f (n) is bounded above and below by positive constants if and only if 
f (n) = Θ(1).

Asymptotic Analysis and Limits

In order to determine the relationship between functions f and g, it is often useful 
to examine

lim
n→∞

 
f (n)

g(n)
= L.

The possible outcomes of this relationship, and their implications, are given 
below.

 1. L = 0. This means that g(n) grows at a faster rate than f (n), and hence that 
f (n) = O(g(n)). Indeed, f (n) = o(g(n)) and f (n) ≠ Θ(g(n)).

 2. L = ∞ . This means that f (n) grows at a faster rate than g(n), and hence that 
f (n) = Ω(g(n)). Indeed, f (n) = ω (g(n)) and f (n) ≠ Θ(g(n)).

 3. L ≠ 0 is finite. This means that f (n) and g(n) grow at the same rate, to within a 
constant factor, and hence that f (n) = Θ(g(n)), or equivalently, g(n) = Θ( f(n)). 
Notice that this also means that f (n) = O(g(n)), g(n) = O( f (n)), f (n) = Ω(g(n)), 
g(n) = Ω( f (n)), f (n) ≠ o(g(n)), and f (n) ≠ ω (g(n)).
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Asymptotic Relationships 13

 4. There is no limit. In the case where lim
n→∞

 
f (n)

g(n)
 does not exist, this technique 

  cannot be used to determine the asymptotic relationship between  f (n) and g(n).

We now give some examples of how to determine asymptotic relationships based 
on taking limits of a quotient.

EXAMPLE

Let

f (n) =
n(n + 1)

2
 and g(n) = n2.

Then we can show that f (n) = Θ(g(n)) since

lim
n→∞

 
f (n)

g(n)
= lim

n→∞
 
n2 + n

2n2
=

(dividing both numerator and denominator by n2)

lim
n→∞

 

1 +
1
n

2
=

1

2
.

EXAMPLE

If P(n) is a polynomial of degree d > 0, then P(n) = Θ(nd). This can be seen as 

follows. The hypothesis implies P(n) = a
d

i=0

ai ni for some set of coefficients 

5ai6d
i=0 with ad ≠ 0. Therefore,

lim
n→∞

 
P(n)

nd
= lim

n→∞
 
a

d

i=0

aini

nd
= lim

n→∞
c aa

d−1

i=0

 
ai

nd−i
 b + ad d = ad.

The assertion follows.
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14 Chapter 1  Asymptotic Analysis

At this point, we take a slight detour to discuss logarithmic notation, as loga-
rithms play an important role in asymptotic analysis. As appropriate, we will use 
fairly standard terminology in referring to logarithms. In particular, we write

•  loge x as ln x,
•  log2 x as lg x, and
•  log10 x as log x.

We now continue with an example that uses logarithms.

EXAMPLE

Compare n100 and 2n. We remind the reader that

d

dx
 e f (x) = e f (x) f �(x).

We have

lim
n→∞

 
2n

n100
= lim

n→∞
 
eln 2n

n100
= lim

n→∞
 
en ln 2

n100
.

We can apply L’Hopital’s Rule to the numerator and denominator of this limit 
100 times, which yields

lim
n→∞

 
2n

n100
= lim

n→∞
 
en ln 2

n100
= lim

n→∞
 
1ln 221002n

100!
= ∞ .

The result of this limit yields n100 = O(2n) and 2n = Ω(n100). In addition, using 
some of the properties previously presented, we have n100 = o(2n) and 
2n = ω (n100). Further, these results yield n100 ≠ Θ(2n).

EXAMPLE

Let f (n) =  ln n and g(n) = n. Then, by applying L’Hopital’s Rule, we have

lim
n→∞

 
n

 ln n
  =  lim

n→∞
 

1

1/n
,

which evaluates as

lim
n→∞

 
1

1/n
 = lim

n→∞
n = ∞ .

Therefore,  ln n = O(n).
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Asymptotic Relationships 15

We remind the reader that logb n = (logb a)(loga n), for positive a, b, and n with 
a ≠ 1 ≠ b. Therefore, we have logb n = C loga n, for the constant C = logb a. More 
importantly, this yields logb x = Θ(log x). Since we generally assume that a and b 
are greater than 1, the latter can be interpreted as showing that the base of a loga-
rithm is irrelevant in asymptotic relationships.

Summations and Integrals

Since many algorithms involve looping and/or recursion, it is not uncommon 
for the analysis of an algorithm to include a dependence on some function f (n) 
that is best expressed as the sum of simpler functions. For example, it may be 
that the dominant term in an analysis of an algorithm can be expressed as 
f (n) = h(1) + h(2) +g+ h(n). When we consider the worst-case number of 
 comparisons in the insertion sort routine later in this chapter, we will find that the 
total number of comparisons can be computed as f (n) = 1 + 2 + 3 +g+ n =
n(n + 1)/2 = Θ(n2).

We first consider the case where the function h(i) is nondecreasing. Notice 
that the worst-case number of comparisons used in Insertion Sort, as mentioned 
above, uses the nondecreasing function h(i) = i. Specifically, let

f (n) = a
n

i=1

h(i),

where h is nondecreasing. An illustration of this situation is presented in Figure 1-8.
In order to evaluate f (n), we can consider summing n unit-width rectangles. 

Specifically, the ith rectangle has height h(i) and width 1. In Figure 1-8, we present 
these rectangles in two ways in order to obtain tight bounds on the asymptotic 
behavior of the total area of the rectangles, i.e., on the value of f (n). On the left, 
we draw the rectangles so that the ith rectangle is anchored on the left. That is, the 
left edge of the unit-width rectangle with height h(i) has its left edge at value i on 
the x-axis and its right edge at value i + 1 on the x-axis. In this way, you will notice 
that each rectangle is below the curve of h(t), where t takes on values between 1 
and n + 1, where, for simplicity, we are assuming 1 is the value of the lower bound 
and n is the value of the upper bound in the sum.

Conversely, on the right of Figure 1-8, we draw the rectangles so that the ith unit-
width rectangle is anchored on the right. That is, the right edge of the unit-width 
rectangle with height h(i) has its right edge at value i on the x-axis and its left edge 
at value i − 1 on the x-axis. This allows us to use the rectangles to bound the area of 
the curve, between 0 and n, assuming as before that 1 is the value of the lower bound 
and n is the value of the upper bound, from above. Notice that in  Figure 1-8, we give 
the relationships of the area under the curve bounding the total area of the rectangles 
(Figure 1-8 left side) and the total area of the rectangles bounding the area under the 
curve (Figure 1-8 right side). In addition, we show how to combine these relation-
ships to obtain a bound on the summation by related integrals.
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16 Chapter 1  Asymptotic Analysis

The method of determining asymptotic analysis of a summation by integration 
is quite powerful. Next, we give several examples, and in doing so, illustrate a vari-
ety of techniques and review some basic principles of integration.

FIGURE 1-8 An illustration of bounding the summation a
n

i=1

h(i) by the integral of 

the nondecreasing function h(t). On the left, we demonstrate how to use 

the  integral ∫ n+1

1
h(t)dt to derive an upper bound on the summation by 

aligning the unit-width rectangles to the right. Note that a “unit-width rectangle” 

has a width of  1. Therefore, a
n

i=1

h(i) ≤ ∫
n+1

1
h(t)dt. On the right, we show how to use 

the  integral ∫ n

0
 h(t)dt to derive a lower bound on the summation by aligning the 

unit-width rectangles to the left. This yields ∫
n

0  h(t)dt ≤ a
n

i=1

h(i). Therefore, we have 

∫
n

0 h(t)dt ≤ a
n

i=1

h(i) ≤ ∫
n+1

1
h(t)dt.

h(n)
h(1)

0 11 2 . . .. . . . . . . . . n − 1 n 

h(n)
h(1)

Rectangles aligned
to the right.

Rectangles aligned
to the left.

EXAMPLE

Find the asymptotic complexity of

f (n) = a
n

i=1

i.

First, we consider the integral bounding principles that were given above. Since 
the function h(i) = i is nondecreasing, we can apply the conclusion directly and 
arrive at the bound

∫ n

0
tdt ≤ a

n

i=1

i ≤ ∫ n+1

1
tdt.
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Asymptotic Relationships 17

Evaluating both the left-hand side and right-hand side simultaneously yields

t2

2
`
0

n

≤ a
n

i=1

i ≤
t2

2
`
1

n+1

,

which can be evaluated in a fairly routine fashion, resulting in

n2

2
 ≤ a

n

i=1

i ≤  
1n + 122

2
 −  

1

2
.

Working with the right-hand side of this inequality, we can obtain

(n + 1)2

2
 −  

1

2
 =  

1

2
 n2 + n.

Further simplification of the right-hand side can be used to give

1

2
 n2 + n ≤  

1

2
 n2 + n2

for n ≥ 1. Therefore,

1

2
 n2 ≤ a

n

i=1

i ≤  
3

2
 n2.

Since the function

f (n) = a
n

i=1

i

is bounded by a multiple of n2 on both the left- and right-hand sides, we can 
conclude that

f (n) = a
n

i=1

i = Θ1n22.

EXAMPLE

Find the asymptotic complexity of

f (n) = a
n

k=1

 
1

k
.

First, it is important to realize that the function 1
k is a nonincreasing function. 

This requires an update in the analysis presented for nondecreasing functions. 
In Figure 1-9, we present a figure that illustrates the behavior of a nonincreasing 
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18 Chapter 1  Asymptotic Analysis

function over the interval [a,b]. Notice that with the proper analysis, you should 
be able to show that

a
b

k=a+1

f (k) ≤ ∫ b

a  
f (x)dx ≤ a

b−1

k=a
 f (k).

Based on this analysis, we can now attempt to produce an asymptotically tight 
bound on the function f (n). First, we consider a lower bound on f (n). Our 
analysis shows that

∫ n+1

1
 
1
x

dx ≤ a
n

k=1

 
1

k
.

Since

∫ n+1

1
 
1
x

 dx = ln x 0 1n+1 = ln(n + 1) − ln 1 = ln(n + 1),

we know that f (n) is bounded from below by  ln(n + 1). 
Next, we consider an upper bound on f (n). Notice that if we blindly apply 

the result of our analysis for a nonincreasing function, we obtain

a
n

k=1

 
1

k
 ≤ ∫ n

0
 
1
x

 dx = ln x 0 0n = ∞ .

Unfortunately, this result, while providing some information, does not yield a 
tight enough upper bound. However, notice that the cause of the upper bound 
resulting in ∞  is evaluation of the integral at the specific point of 0. This prob-
lem can be alleviated by carefully rewriting the equation to avoid the problem-
atic point. Let’s consider the more restricted inequality

a
n

k=2

 
1

k
≤ ∫ n

1
 
1
x

 dx.

Notice that the integral evaluates to  ln n. Therefore, if we now add back in the 
problematic term, we arrive at

a
n

k=1

 
1

k
 = 1 + a

n

k=2

 
1

k
 ≤ 1 + ∫ n

1
 
1
x

 dx = 1 + ln n.

Combining the results of both the upper and lower bounds on f (n), we arrive at

ln n < ln(n + 1) ≤ a
n

k=1

1

k
≤ 1 + ln n ≤ 2 ln n

for n large enough, a conclusion we suggest that the reader verify. Therefore,

a
n

k=1

 
1

k
 = Θ(ln n).
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Asymptotic Relationships 19

EXAMPLE

As our final example of evaluating the asymptotic behavior of a summation by 
integrals, we consider the function

f (n) = a
n

k=1

kp

for p > 0. Recall that we showed earlier in this chapter that

f (n) = a
n

k=1

kp = Θ1np+12.
However, the purpose of this example is to show how to obtain this result by 
the method we have been considering that relates summations to integrals. 
 Recall that a function f is increasing if u < v ⇒ f (u) < f(v). Consider the deriva-
tive of kp. For k > 0, we have

d

dk
 k p = pkp−1 > 0.

Therefore, the function kp is an increasing function of k. A quick sketch of an 
increasing function, in a setting more general than illustrated earlier, appears in 
Figure 1-10.

FIGURE 1-9 An illustration of  bounding the summation a
n

i=1

f (i) for 

a nonincreasing function f. For f  nonincreasing, we can derive the 

relationship a
b

k=a+1

f (k) ≤ ∫
b

a
 f (x)dx ≤ a

b−1

k=a

 f (k) in a straightforward 

fashion by considering rectangles to the left and right as we did 

for nondecreasing functions. This translates into a bound on the 

summation as ∫
b+1

a
f (t)dt ≤ a

b

i=a

f (i) ≤ ∫ b

a−1
f (t)dt.

Note: f (x) is nonincreasing

a   a 1 b 1   b
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20 Chapter 1  Asymptotic Analysis

Using the analysis associated with Figure 1-10, we have both

∫
n

0
xpdx ≤ a

n

k=1

k p and a
n

k=1

k p ≤ ∫ n+1

1
xpdx.

Thus,

xp+1

p + 1
`
0

n

≤ a
n

k=1

k p ≤
xp+1

p + 1
`
1

n+1

, or

np+1

p + 1
 ≤ a

n

k=1

kp ≤  
1n + 12 p+1 − 1

p + 1
<
1n + 12 p+1

p + 1
.

Since n + 1 ≤ 2n for n ≥ 1,

np+1

p + 1
≤ a

n

k=1

 kp ≤
1n + 12p+1

p + 1
 ≤  
12n2p + 1

p + 1
=

2p+1np+1

p + 1
, or

1

p + 1
 np+1 ≤ a

n

k=1

kp ≤  
2p+1

p + 1
 np+1,

which, based on asymptotic properties given earlier in this chapter, yields the 
expected solution of

a
n

k=1

kp = Θ1np+12.

FIGURE 1-10 An increasing function in 
the range [a, b]. We have

a
b−1

k=a

f (k) < ∫
b

a f (x)dx < a
b

k=a+1

f (k).

a b 
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Rules for Analysis of Algorithms 21

Rules for Analysis of Algorithms

The application of asymptotic analysis is critical in order to provide an effective 
means of evaluating both the running time and space of an algorithm as a function 
of the size of the input and number of processors. In this section, we present fun-
damental information related to the analysis of algorithms and give several exam-
ples to illustrate the major points of emphasis.

Fundamental operations execute in Θ(1) time. Traditionally, it is assumed that 
“fundamental” operations require a constant amount of time to execute, i.e., a fixed 
number of computer “clock cycles.” We assume that the running time of a funda-
mental operation is bounded by a constant, irrespective of the data being processed. 
These operations include the following.

• Arithmetic operations, including +, −, × , /, as applied to a constant number of 
fixed-size operands.

• Comparison operators, including < , ≤ , > , ≥ , = , ≠ , as applied to 2 fixed-size 
operands.

• Logical operators, including AND, OR, NOT, XOR, as applied to a constant 
number of fixed-size operands.

• Bitwise operations, as applied to a constant number of fixed-size operands.
• Conditional/branch operations.
• The evaluation of certain elementary functions. Notice that such functions 

need to be considered carefully. For example, when the function sinθ  is to be 
evaluated for “moderate-sized” values of θ , it is reasonable to assume that 
Θ(1) time is required for each application of the function. However, for very 
large values of θ , a loop dominating the calculation of sinθ  may require a 
significant number of operations before stabilizing at an accurate approxima-
tion. In this case, it may not be reasonable to assume Θ(1) time for this 
 operation.

• Input and output, or I/O, operations that are used to read or write a constant 
number of fixed-size data items. Note this does not include input from a key-
board, mouse, or other human-operated device, as the user’s response time is 
unpredictable.

Additional fundamental properties follow.

• Suppose the running times of operations A and B are, respectively, O( f (n)) 
and O(g(n)). Then the sequence of operations consisting of A followed by B 
runs in O( f (n) + g(n)) time. Note that this analysis holds for Θ, Ω, o and ω , 
as well.

• Suppose that each iteration of the body of a loop runs in O( f (n)) time, and the 
loop executes its body O(g(n)) times. Then the time required to  execute the 
loop is O( f (n)g(n)). A similar property holds for Θ, Ω, o and ω .
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22 Chapter 1  Asymptotic Analysis

EXAMPLE (INSERTION SORT)

As an example, we consider the analysis of Insertion Sort, a simple sorting 
technique that is introduced in many first-semester computer science courses. 

Suppose we are given a set of data arbitrarily distributed in an array and we 
wish to rearrange the data so that it appears in increasing order. We give pseudo-
code for the algorithm and then present an analysis of both its time and space 
requirements. Note that later in this book, we compare more advanced algo-
rithms to Insertion Sort, and also show how Insertion Sort can be effectively 
exploited in restricted situations, e.g., where the set of data presented to 
Insertion Sort is such that no item is very far from where it  belongs.

Subprogram InsertionSort(X )
Input: an array X of n entries
Output: the array X with its entries in ascending order
Algorithm: Insertion Sort
Local Variables: indices current, insertPlace

Action:

 For current = 2 to n do
   {Current is initially set to 2 as the first 

current − 1 entries of X are ordered.}
  a.  Search X[1...current − 1] to determine the index 

where X[current] should be inserted. This index 
will be denoted as insertPlace, which has a 
value in the range of 1,...,current.
If insertPlace < current then

  b.  Make a copy of X[current].
  c.  Shift the elements X[insertPlace,..., 

current − 1] by one position into elements 
X[insertPlace + 1,...,current]. The details 
of this shift are discussed below in our 
Insert routine.

  d.  Place the copy of X[current] made in step b) 
into its proper position at X[insertPlace].

    End If
 End For

The description above presents a top-level view of Insertion Sort. An 
 example is given in Figure 1-11. We observe that the search called for in the 
first step of the loop can be performed by a straightforward sequential search 
that runs in O(k) time, where k is the value of current. The reader should  verify 
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Rules for Analysis of Algorithms 23

that this step runs in Θ(k) time on average. Alternately, an O(log k) time binary 
search can be performed, as will be discussed in the chapter on Induction and 
Recursion, though this will not improve the overall asymptotic running time in 
the expected or worst case.

For illustrative purposes, let us consider the total time required to perform 
all n searches. That is, we consider the time to perform the searches and only the 
searches. At this point, we do not yet consider the time required to move the data. 
If sequential searches are used, then the running time for the n − 1 searches is

Oaa
n

k=2

kb = O1n22.
If binary searches are used during each of the n − 1 iterations, then the time for 
the searches is given by

Oaa
n

k=2

 log kb = O1n log n2.
Notice that O-notation is used, as both results represent upper bounds on the 
search time since the time taken by any individual search is a function of the 
search value and the data values being searched.

Now, we consider the time to move the data. Once insertPlace is deter-
mined, current/2 data moves are required, on average, in order to move the data 
so as to free up position insertPlace in order to be able to place a copy of the 
data at the current there. In fact, in the worst case, the insert step always re-
quires X[current] to be moved to position number 1, requiring current − 1 data 
items in the array to be moved out of the way. Therefore, the running time of the 
algorithm is dominated by the data movement, which is given by

T(n) = a
n

k=2

 shiftk,

where shiftk, the length of the segment for which members are shifted, is 0 in 
the best case, k − 1 in the worst case, and (k − 1)/2 in the average case. Hence, 
the running time of Insertion Sort is Θ(n) in the best case, when data is already 
sorted and a sequential search from (current − 1) downto 1 is used. Insertion 
Sort runs in Θ(n2) time in the average or expected case, and Θ(n2) time in the 
worst case. The reader should verify these results by substituting the appropri-
ate values into the summation and simplifying the equation. Notice that since 
the average- and worst-case running times are dominated by the data movement 
operations, in terms of the asymptotic running time, it is irrelevant as to whether 
a sequential or binary search is used to determine position insertPlace.

Finally, notice that Θ(n) space is required for the algorithm to store the 
n data items. More importantly, the amount of extra space required for this 
algorithm is constant, i.e., Θ(1). An insertion routine is presented below.
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24 Chapter 1  Asymptotic Analysis

Subprogram Insert(X, current, insertPlace)
Insert X[current] into the ordered
subarrary X[1. . . current − 1] at position
insertPlace.
We assume 1 ≤ insertPlace ≤ current ≤ n
Local variables: index j, entry-type hold

Action:

  If current ≠ insertPlace, then {there’s work to do}
  hold = X[current]
  For j = current − 1 downto insertPlace, do
   X[j + 1] = X[j]
  End For
   X[insertPlace] = hold
 End If

For completeness, we present an efficient implementation of the Insertion Sort 
algorithm based on the analysis we have presented.

Subprogram InsertionSort(X, n)
Input: an array X of n entries
Output: the array X with its entries in ascending order
Algorithm: Insertion Sort
 {This is a simple version of the Insertion Sort algorithm 
with sequential search.}

 For i = 2 to n, do
  hold = x[i]
  position = 1
  While hold > x[position], do
   position = position + 1
  End While
  If position < i, then
   For j = i downto position, do
    x[j] = x[j − 1]
   End For
   x[position] = hold
  End If
 End For
End InsertionSort
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Rules for Analysis of Algorithms 25

It is often possible to modify an algorithm designed for one data structure to 
accommodate a different data structure. In the exercises, we ask the reader to adapt 
Insertion Sort to linked lists.
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FIGURE 1-11 An example of the Insertion Sort algorithm, as given in 
Subprogram InsertionSort. It is initially assumed that the first item, 4, 
is in the correct position. Then the second item, 3, is placed into 
 position with respect to all of the items in front of it, resulting in (3,4) 
being properly ordered. The algorithm continues until the last item, 2, 
is placed in its proper position with respect to the items (1,3,4,5) that 
are in front of it.

EXAMPLE: BIN SORT

Sorting is a fundamental operation as a major use of computers is to maintain 
order within large collections of data. Perhaps for this reason, the computer 
 science community has developed numerous algorithms for ordering data. 
Some of these algorithms are considerably faster than others in the abstract. 
Yet, under certain conditions an asymptotically slower algorithm might be sig-
nificantly more efficient than an asymptotically faster algorithm due to the 
characteristics or size of the input data set. For this reason, we will present and 
discuss a variety of sorting algorithms in this book.

In the previous section, we presented an analysis of Insertion Sort. In one of 
the exercises at the end of this chapter, we present Selection Sort, another 
straightforward and useful sorting routine that runs in the same worst-case Θ(n2) 
time as Insertion Sort. Later in the book, we present alternative  comparison-based 
sorting algorithms that exhibit an asymptotically optimal Θ(n log n) worst-case 
running time. In fact, many of you may already be familiar with a result that 
states that comparison-based sorting algorithms run in Ω(n log n) time. That is, 
in order to sort a collection of n elements by a comparison-based sorting  routine, 
Ω(n log n) time is required.
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26 Chapter 1  Asymptotic Analysis

It is quite important to note, however, that not all sorting algorithms are 
based on comparisons. In fact, when one knows detailed and specific informa-
tion about the input data, it is not unusual to be able to construct a sorting algo-
rithm that runs in o(n log n) time. An important theme that runs through this 
book is that we should attempt to use a sorting algorithm that runs in o(n log n) 
time if we have constraints on the input data that will be used. 

For example, suppose we are required to sort data that is chosen from a 
restricted set. Further, suppose we know that the n keys take on no more than n 
values. In such a situation, we can employ an asymptotically optimal algorithm 
based on Bin Sort. This is an algorithm that is based on the process of placing 
labeled items, such as machine parts, directly into an ordered list of bins that 
only contain items with the same label. Alternatively, we might think about 
sorting a deck of cards by going through the deck once, tossing all the Aces in 
one pile, all the 2s in another, and so on. Once we have gone through all the 
cards and created 13 bins, then we simply need to pile the bins one on top of 
another, i.e., concatenate the bins, in order to create the final sorted set. Notice 
that if we sort more than one deck of cards, we still need only 13 bins. Given 
one complete deck of cards, each bin will wind up with exactly 4 cards in it. An 
example of Bin Sort is presented in Figure 1-12.

Below, we present BinSort, an implementation of the Bin Sort algorithm, 
where we assume that the data values to be ordered are in the range from 1 to n. It 
is known that Ω(n log n) comparisons are required to sort an arbitrary set of data 
by a comparison-based sort, so the reader should note that Bin Sort is not a com-
parison-based sorting algorithm. That is, Bin Sort does not rely on comparing 
data items to each other. In fact, the algorithm never compares two data items.

Subprogram BinSort(X)
Input: an array X of n entries
Output: the array X with its entries in ascending order
Algorithm: Bin Sort
Caveat: The entries of X are integers in [1,…, n]
Local variables: indices entry, stack_index
stack, an array of pointers, each representing a stack

Action:

 For entry = 1 to n, do
  {make stack[entry] an empty stack}
  stack[entry] = null
 For entry = 1 to n, do
  push(X[entry], stack[X[entry].key])
 End For
 stack_index = 1
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Rules for Analysis of Algorithms 27

 For entry = 1 to n, do
  while emptyStack(stack[stack_index])
    stack_index ← stack_index + 1
  end while
  pop(stack[stack_index], X[entry])
 end For

An analysis of the algorithm follows. It is easy to see that the first two For-
loops each run in Θ(n) time, after which each element is in one of the n bins. The 
initialization of each stack runs in Θ(1) time. The final For-loop requires that 
every item be examined once. Therefore, the final For-loop runs in Θ(n) time. 
Hence, the entire algorithm runs in Θ(n) time. Further, notice that the algorithm 
utilizes Θ(n) space to store the items and only Θ(n) additional space for indices, 
stack pointers, and the like. We observe that the linear amount of  additional 
space requires only a small constant of proportionality, since the items them-
selves are placed on the stacks, and no copies of the items are ever made. Later in 
this chapter, we make precise the notion of an optimal  algorithm. Our algorithm 
for Bin Sort is optimal as any asymptotically faster algorithm would require not 
examining all of the items, in which case the data might not wind up sorted.
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FIGURE 1-12 Bin Sort applied to an array of 10 items chosen from [1…5]. 
In (a), the initial array of data is given. In (b), the set of empty bins is created. 
In (c), the bins are shown after a complete pass through the array. In (d), the 
array is recreated by “concatenating” the bins.
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28 Chapter 1  Asymptotic Analysis

Limitations of Asymptotic Analysis

Suppose a given problem has two equally acceptable solution strategies. Further, 
suppose both of these algorithms have the same asymptotic running times and the 
same asymptotic space requirements. This might make it difficult to choose 
between the two algorithms.

Asymptotic analysis provides some guidelines for behavior, but we are aware 
that asymptotic analysis also hides high-order constants and low-order terms. In 
fact, suppose that algorithm A is 5 times faster than algorithm B for problems of a 
given size. Since 5 is just a constant, this will be hidden in the O-notation. Similarly, 
since low-order terms are masked with O-notation, it may be that one algorithm is 
superior for “small” data sets, where the low-order terms are important, but not for 
“large” data sets, where these low-order terms are, appropriately, masked.

Since your application might be used predominantly for “small” data sets or 
for data sets with special properties, it is always advisable to perform some basic 
experimental verification in terms of which algorithm is the best fit for your 
 particular application rather than for a generic application.

Consider the problem of sorting a set of data, and assume that based on knowl-
edge of the input, you decide that a general, comparison-based sorting algorithm is 
required. Among your choices are algorithms that copy data and algorithms that do 
not copy data. For example, sorting can be done by using pointer manipulation as 
well as by copying data. Suppose, for example, we consider three algorithms with 
running times dominated by the following steps.

a. Algorithm A: Θ(n2) comparisons, Θ(n2) copying operations

b. Algorithm B: Θ(n2) comparisons, Θ(n) copying operations

c. Algorithm C: Θ(n2) comparisons, Θ(n) pointer manipulation operations

All three algorithms run in Θ(n2) time, yet we should expect A to be slower 
than B, and B to be slower than C. For example, suppose the data being sorted 
 consists of 10,000-byte data records. Then at the machine level, every copying 
operation, an assignment statement of the form x ← y, can be thought of as a loop 
of the form

For byteNumber = 1 to 10000, do

x[byteNumber] ← y[byteNumber]

Therefore, a data-copying operation takes time proportional to the size of 
the data entity being copied. Thus, given data entries of significant size, where 
significant is machine-dependent, we expect Algorithm A to be slower than 
Algorithm B, even though the two algorithms have the same asymptotic 
running time.
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Asymptotic Relationships and Common Terminology 29

Pointers of four bytes, i.e., 32 bits, can theoretically be used to address 
232 bytes or four Gigabytes of memory. A sorting algorithm that uses Θ(n) 
pointer manipulations, might involve three to four pointer assignments, which 
might result in 12 to 16 bytes of assignments, per data movement. Therefore, 
such an algorithm would typically be more efficient than an algorithm that cop-
ies data, so long as the data items are sufficiently long. Of course, on real 
machines, some of these conjectures must be tested experimentally, as instruc-
tion sets and compilers can play a major role in choosing the most efficient 
algorithm.

Asymptotic Relationships and Common 
Terminology

We first gather material from earlier in the chapter so that this section can be used 
as a reference guide. The reader should note that a Reference Guide is presented 
immediately preceding this chapter. The Reference Guide contains the following 
information, as well as additional information that the reader will find useful in 
the context of Algorithms and their Analysis.

Let f and g be positive functions of n. Then the following hold.

 1. f (n) = O1g(n)2⇔ g(n) = Ω1 f (n)2.
 2. f (n) = Θ1g(n)2⇔ g(n) = Θ1 f (n)2.
 3. f (n) = Θ1g(n)2⇔ f (n) = O1g(n)2 and  f (n) = Ω1g(n)2.
 4. f (n) = o1g(n)2⇔ g(n) = ω 1 f (n)2.
 5. f (n) = o1g(n)2⇔ lim

n→∞
 
f (n)

g(n)
 = 0.

 6. f (n) = ω 1g(n)2⇔ lim
n→∞

 
f (n)

g(n)
 = ∞ .

 7. f (n) = o1g(n)2 ⇒ f (n) = O1g(n)2, but the converse is false. 

 8. f (n) = ω 1g(n)2 ⇒ f (n) = Ω1g(n)2, but the converse is false.

 9. f (n) is bounded above and below by positive constants if and only if 
f (n) = Θ(1).

We conclude this chapter by giving some common terminology that will be 
used throughout the text. These terms are fairly standard, appearing in many texts 
and the scientific literature.
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30 Chapter 1  Asymptotic Analysis

An algorithm with running time is said to run in

Θ(1) constant time

Θ(log n) logarithmic time

O(logk n), k a positive integer polylogarithmic time

o(log n) sublogarithmic time

Θ(n) linear time

o(n) sublinear time

Θ(n2) quadratic time

O1 f (n)2, where f (n) is a polynomial polynomial time

An algorithm is said to run in optimal time for the given computer architecture 
if its running time T(n) = O( f (n)) is such that Ω( f (n)) time is required to solve the 
problem on that architecture. It is important to note that when we use terms such as 
optimality or efficiency, we compare the running time of a given algorithm to the 
lower bound on the running time to solve the problem being considered on a given 
architecture. For example, any algorithm to compute the minimum entry of an 
unsorted array of n entries must examine every item in the array, because any item 
skipped could be the minimal item. Therefore, any sequential algorithm to solve 
this problem requires Ω(n) time. So, an algorithm for this problem that runs in 
Θ(n) time is optimal.

Notice that we use the term optimal to mean asymptotically optimal. An opti-
mal algorithm need not be the fastest possible algorithm to give a correct solution 
to its problem, but it must be within a constant factor of being the fastest possible 
algorithm to solve the problem. Proving optimality is often difficult, and there are 
many problems for which optimal running times are not known. There are, how-
ever, problems for which proof of optimality is fairly easy, some of which will 
appear in this book.

Summary

In this chapter, we introduce fundamental techniques, strategies, notions, and ter-
minologies related to the analysis of algorithms. We discuss and give examples of 
a variety of techniques from algebra and calculus, including limits, L’Hopital’s 
Rule, summations, and integrals, by which algorithms are analyzed. We also dis-
cuss the limitations of asymptotic analysis.

Chapter Notes

The notion of applying asymptotic analysis to algorithms is often credited to 
 Donald E. Knuth, whose Web site is at www-cs-faculty.Stanford.EDU/~knuth/. 
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Although it served as the foundation for part of his seminal series The Art of 
 Computer Programming, Knuth, in fact, traces O-notation back to a number  theory 
textbook by Bachmann in 1892. The O-notation was apparently first introduced by 
Landau in 1909, but the modern use of this notation in algorithms is attributed to 
the paper by D.E. Knuth, “Big omicron and big omega and big theta,” ACM 
SIGACT News, 8(2)(1976): 18–23.

Historical developments of the asymptotic notation in computer science can 
be found in reviews by D.E. Knuth and in Algorithmics: Theory and Practice by 
Brassard and Bratley (Prentice Hall, 1988). One of the early books that earned 
“classic” status was The Design and Analysis of Computer Algorithms, by A.V. 
Aho, J.E. Hopcroft, and J.D. Ullman, which was released by Addison-Wesley in 
1974. More recent books that focus on algorithms and their analysis include 
 Introduction to Algorithms, by T.H. Cormen, C.E. Leiserson, R.L. Rivest, and 
C. Stein (3rd ed.: MIT Press, Cambridge, MA, 2009), and Computer Algorithms/
C+ + by E. Horowitz, S. Sahni, and S. Rajasekaran (Computer Science Press, 
New York, 1996).

Exercises

 1. Rank the following by growth rate: n, n1/2, log n, log(log n),  log2 n, (1/3)n, 4, 
(3/2)n, n!

 2. Prove or disprove each of the following.

  a. f (n) = O1g(n)2 ⇒ g(n) = O1 f (n)2
  b. f (n) + g(n) = Θ1max { f (n), g(n)}2
  c. f (n) = O1[ f (n)]22
  d. f (n) = O1g(n)2 ⇒ g(n) = Ω1 f (n)2
  e. f (n) + o1 f (n)2 = Θ1 f (n)2
 3. Use O, o, Ω, ω , and Θ to describe the relationship between the following 

pairs of functions.

  a. logk n, nε, where k and ε  are positive constants

  b. nk, cn, where k and c are constants, k > 0, c > 1

  c. 2n, 2n/2

 4. Prove that 17n1/6 = O1n1/52.
 5. Prove that a

n

k=1

k1/6 = Θ1n7/62.
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32 Chapter 1  Asymptotic Analysis

 6. Given a set of n integer values in the range of [1, . . . , 100], give an efficient 
sequential algorithm to sort these items. Discuss the time, space, and optimality 
of your solution.

 7. (Total function) Determine the asymptotic running time of the following 
algorithm, which is used to sum a set of values. Show that the running time is 
optimal.

Function Total (list)
Input: an array, list, of numeric entries indexed from 1 to n
Output: the total of the entries in the array
Local variables: integer index, numeric subtotal

Action:

 subtotal = 0
 For index = 1 to n, do
  subtotal = subtotal + list[index]
 Return subtotal

 8. (Selection Sort) Determine the asymptotic running time of the following 
algorithm, which is used to sort a set of data. See Figure 1-13. Determine the 
total asymptotic space and the additional asymptotic space required.

FIGURE 1-13 An example of Selection Sort. A complete pass is made 
through the initial set of data in order to determine the item that 
belongs in the front of the list (1). A swap is performed between this 
minimum element and the element currently in the front of the list. 
Next, a pass is made through the remaining four items to determine the 
minimum (2) of these elements. This minimum element is swapped with 
the current second item (3). The procedure continues until n − 1 items 
have been properly ordered since this forces all n items to be properly 
ordered.
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Subprogram SelectionSort(List)
Input: array List[1, . . . , n], to be sorted in ascending order according 
to the key field of the records
Output: the ordered List
Algorithm: Selection Sort, as follows
 For each position in the List, we
1.  Determine the index corresponding to the entry from the unsorted 

portion of the List that is a minimum.
2.  Swap the item at the position just determined with the current item.
Local variables: indices ListPosition, SwapPlace

Action:

  {ListPosition is only considered for values up to 
n − 1, because once the first n − 1 entries have been 
swapped into their correct positions, the last item 
must also be correct.}

 For ListPosition = 1 to n − 1
 {Determine the index of correct entry 

for ListPosition and swap the entries.}
   SwapPlace = MinimumIndex(List,ListPosition)
   Swap(List[SwapPlace],List[ListPosition])
 End For
 End Sort

Subprogram Swap(A, B)
Input: Data entities A, B
Output: The input variables with their values interchanged, e.g., if on 
entry we have A = 3 and B = 5, then at exit we have A = 5 and B = 3.
Local variable: temp, of the same type as A and B

Action:

 temp = A {Backup the entry value of A}
 A = B {A gets entry value of B}
 B = temp {B gets entry value of A}
 end Swap

Function MinimumIndex(List, startIndex)
Input: List[1 . . . n], an array of records to be ordered by a key field; 
startIndex, the first index considered.
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34 Chapter 1  Asymptotic Analysis

Output: index of the smallest key entry among those indexed startIndex . . . n 
(the range of indices of the portion of the List presumed unordered)
Local variables: indices bestIndexSoFar, at

Action:

 bestIndexSoFar = startIndex
{at is used to traverse the 
rest of the index subrange}

 For at = startIndex + 1 to n, do
  If List[at].key < List[bestIndexSoFar].key
  then bestIndexSoFar = at
 End For
 Return bestIndexSoFar
End MinimumIndex

 9. Earlier in this chapter, we gave an array-based implementation of Insertion 
Sort. In this problem, we consider a linked list-based version of the  algorithm.

Subprogram InsertionSort(X)

  For every current entry of the list after the first 
entry:

   Search the sublist of all entries from the first 
entry to the current entry for the proper place-
ment, indexed insertPlace, of the current entry in 
the sublist;

   Insert the current entry into the same sublist at 
the position insertPlace.

 End For

Suppose we implement the Insertion Sort algorithm as just described for a 
linked list data structure.

  a.  What is the worst-case running time for a generic iteration of the Search step?

  b.  What is the worst-case running time for a generic instance of the Insert step?

  c.  Show that the algorithm has a worst-case running time of Θ(n2).

  d.  Although both the array-based and linked list-based implementations of 
Insertion Sort have worst-case running times of Θ(n2), in practice, we usu-
ally find that the linked list-based implementation, applied to the same 
data, in the same input order, is faster. Why should this be? Think in terms 
of entries consisting of large data records.
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Exercises 35

 10. Array implementations of both Insertion Sort and Selection Sort have Θ(n2) 
worst-case running times. Which is likely to be faster if we time both in the 
same hardware/software environment for the same input data? Why?

 11. The Stable Marriage Problem (SMP) requires establishing a stable match-
ing between two sets of elements given a set of preferences for each element. 
Suppose there are arrays him[1 . . . n] and her[1 . . . n] of identically structured 
person records, where one of the fields in the record is partner. Suppose the 
entries of these arrays represent members of couples, with the value of the 
partner field indexing the member of the opposite array that is the entry’s part-
ner. For example, if him[5] and her[8] are a couple, then him[5].partner = 8 
and her[8].partner = 5. Suppose there is an evaluation function of two person 
records that executes in Θ(1) time, returning a numerical evaluation of how 
the person represented by the first parameter evaluates the person represented 
by the second parameter. There is an unstable situation if an uncoupled pair, 
one from the him array and one from the her array, each evaluates the other 
higher than his/her own partner.

  a.  Give an efficient algorithm that determines whether or not the him and 
her arrays represent an unstable situation, and analyze its worst-case run-
ning time.

  b. Analyze the best-case running time of this algorithm.

  c.  If your algorithm is efficient, argue that it has optimal worst-case 
running time. 
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In this chapter, we present fundamental mathematical techniques that are used 
throughout the book in order to derive analyses of algorithms. These techniques, 

including mathematical induction and recursion, are typically taught in courses such as 
Calculus and Discrete Mathematics. For some readers, much of this chapter will serve 
as a review. For other readers, a careful reading of this chapter may provide a solid 
understanding of induction and recursion, which is critical to the design and analysis 
of algorithms.

Mathematical induction, to which we will often refer simply as induction, is a 
technique for proving statements about sets of consecutive integers. One can view this 
as being done by inducing our knowledge of the next case from that of its 
predecessor.

Recursion is a technique of designing algorithms in which we

  i. divide a large problem into smaller subproblems,

ii. solve the subproblems recursively, unless the problems are small enough to be 
solved directly, and then

iii. combine the solutions to our subproblems in order to obtain a solution to the 
 original problem.

So, in order to solve a given problem P1 by recursion, we might first divide P1 into two 
subproblems, say P2 and P3. We would then recursively solve P2 and P3, and then com-
bine their results in order to obtain the required result for P1. Notice that in order to 
solve P2 and P3, we might continue with the recursion of dividing problem P2 into 
subproblems P4 and P5, and similarly dividing problem P3 into subproblems P6 and P7. 
Before combining P4 and P5, and similarly P6 and P7, these problems must first be 
solved, typically by way of recursion. Therefore, we might recursively divide problems 
P4, P5, P6, and P7 into subproblems, recursively solve them, and so on. This recursive 
subdivision of problems typically continues until subproblems have simple/trivial solu-
tions, in which case they are solved directly.

Thus, recursion resembles induction in that a recursive algorithm solves a problem 
by making use of its capability to solve simpler problems, inducing a solution to the 
initial problem from solutions of these simpler problems.
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38 Chapter 2  Induction and Recursion

Mathematical Induction

Suppose we have a statement about positive integers, and we wish to show that the 
statement is always true. Formally, let P(n) be a predicate, a statement that is true or 
false, depending on its argument n, which we assume to be a positive integer. For 
example, the statement “the product of the positive integers from 1 to n is divisible 
by 10” is a predicate. This predicate is true for n = 5, since 1 × 2 × 3 × 4 × 5 = 120, 
which is divisible by 10, and is false for n = 4, since 1 × 2 × 3 × 4 = 24, which is 
not divisible by 10. However, if we have a predicate P(n) that it is true for all posi-
tive integers n, we often can prove the latter by using the following principle.

EXAMPLE

Prove that for all positive integers n, a
n

i=1

i =
n(n + 1)

2
.

Principle of Mathematical Induction: Let P(n) be a predicate, where n is an 
arbitrary positive integer. Suppose we can accomplish the following.

 1. Show that P(1) is true.

 2. Show that whenever P(k) is true, it follows that P(k + 1) is also true.

If we can achieve these two goals, then it follows that P(n) is true for all posi-
tive integers n.

Why does this work? Suppose we have proven the two statements given above. 
So, we know from statement 1 that P(1) is true, and thus by statement 2 that 
P(1 + 1) = P(2) is true, and thus by statement 2 that P(2 + 1) = P(3) is true, and 
thus by statement 2 that P(3 + 1) = P(4) is true, and so forth. That is, statement 2 
allows us to induce the truth of P(n) for every positive integer n from the truth of 
P(1). For a mathematically stronger argument, see Appendix 1.

We often refer to the statement P(1) as the base case of the problem being 
considered. The assumption in statement 2 that P(k) = true is called the Inductive 
Hypothesis due to the fact that statement 2 is typically used to induce the conclu-
sion that P(k + 1) is true.

The Principle of Mathematical Induction is stated above as an assertion. 
Further, we have also given an informal argument as to its validity. For the sake of 
mathematical completeness, we prove the assertion in Appendix 1.

Induction Examples
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Induction Examples 39

Before we give a proof, we show how we might guess that a
n

i=1

i =
n(n + 1)

2
. 

Let S = a
n

i=1

i. Then we have

 S = 1 + 2 + g+ (n − 1) + n. (a)

Now, if we write S in reverse order, we have

 S = n + (n − 1) + g+ 2 + 1. (b)

Again, note that the current exposition is not a proof, due to the impreci-
sion of the “g” notation. So, if we add these two equations by combining the 
first terms of the right sides, the second terms of the right sides, and so on, we 
obtain

2S = (n + 1) + (n + 1) + (n + 1) + g+ (n + 1) + (n + 1).

That is,

2S = n(n + 1)  or  S =
n(n + 1)

2
.

Now, we formally prove that a
n

i=1

i =
n(n + 1)

2
. The equation claims that the 

sum of the first n positive integers is 
n(n + 1)

2
. For n = 1, the left side of the 

asserted equation is

a
1

i=1

i = 1

and the right side of the asserted equation is

1(1 + 1)

2
 = 1.

Thus, for n = 1, the asserted equation is true. That is, we have achieved the 
first step of an induction proof, namely, the base case.

Suppose the asserted equation is valid for n = k, for some positive integer 
k. Notice that we are justified in stating this assumption by our demonstration 
above that the case n = k = 1 is an instance for which the assumption is valid. 
Then we need to prove the asserted equation is true for the next case, namely, 
n = k + 1. That is, by using the assumption for n = k, we want to prove that

a
k+1

i=1

i =  
(k + 1)(k + 2)

2
 .
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40 Chapter 2  Induction and Recursion

Notice that we can rewrite the left side of the latter equation as

a
k+1

i=1

i = aa
k

i=1

ib + (k + 1).

Substituting from the inductive hypothesis, we have

a
k+1

i=1

i =  
k(k + 1)

2
 + (k + 1) =  

(k + 1)(k + 2)

2
 ,

as desired. Thus, our proof is complete.

EXAMPLE

Prove that n! > 2n for all integers n ≥ 4. Notice that we may view this as a state-
ment about all positive integers, not just those greater than or equal to 4, by 
observing that the assertion is equivalent to the statement that for all positive 
integers j, ( j + 3)! > 2 j+3. This observation easily generalizes so that mathemat-
ical induction can be viewed as a technique for proving the truth of predicates 
defined for all integers greater than or equal to some fixed integer m. In this 
generalized view of induction, the first step of an inductive proof requires 
showing that P(m) = true. The proof of our assertion follows.

 1. We first show that the assertion is true for the base case of n = 4. Since 
4! = 24 > 16 = 24, the assertion is true for the base case.

 2. Now, suppose k! > 2k for some integer k ≥ 4. This assumption is the induc-
tive hypothesis. Based on this assertion, we must now show that 
(k + 1)! > 2k+1. Note that (k + 1)! = (k + 1)(k!), which, by the inductive 
 hypothesis and the assumption that k ≥ 4, is an expression at least as large 
as 5(2k) > 2(2k) = 2k+1, as desired. This completes the proof.

EXAMPLE

Prove that 
d

dx
 xn = nxn−1, for all integers n.

Proof: Even though this is a statement about all integers, we can use mathe-
matical induction to give the proof for n, an arbitrary positive integer, and then 
use fundamental rules of calculus to handle other values of n.
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Recursion 41

First, assume that n is a positive integer. For the base case, we let n = 1, in 
which case the assertion simplifies to

d

dx
 x = 1,

which is true. Next, consider the inductive step. Suppose the assertion is true 
for some positive integer k. That is, the inductive hypothesis is the statement

d

dx
 xk = kxk−1.

Now, consider the case of n = k + 1. By utilizing the product rule of calcu-
lus and the inductive hypothesis, we have

d

dx
 xk+1 =

d

dx
 (xxk) = 1xk + x 

d

dx
 xk = xk + xk xk−1 = (k + 1)xk,

as desired. Thus, the proof is complete for positive integers n.
For n = 0, the assertion simplifies to

d

dx
 x0 = 0,

which is true.
Finally, if n < 0, we can apply the quotient rule to the result of applying our 

assertion to the positive integer −n. That is,

d

dx
 xn =

d

dx
  

1

x−n
 =

0x−n − 1(−n)x−n−1

(x−n)2
 = nxn−1,

as desired. Therefore, we have shown that for all integers n,

d

dx
 xn = nxn−1.

Recursion

A subprogram that calls upon itself, either directly or indirectly, is called recursive. 
Formally, an algorithm exhibits recursive behavior when it can be defined by two 
properties.

 1. A simple base case or cases.

 2. A set of rules that reduce all other cases towards the base case.

To the beginner unfamiliar with this notion, it may sound like recursion is a 
recipe for an infinite loop in disguise, as indeed it may be if not used with care. 
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42 Chapter 2  Induction and Recursion

However, recursion is typically used in such a way that each recursive call is made 
only with a smaller/simpler instance of the problem. Furthermore, in order to avoid 
infinite recursion, it is crucial that when the program is invoked with a small 
enough, i.e., simple enough, set of data, the subprogram will compute the required 
answer and return without issuing another call to itself.

So, a recursive algorithm typically exhibits the following behavior.

• Recursive calls are made with a smaller/simpler set of data.

• When a call is made with a sufficiently small/simple enough set of data, the 
call is resolved directly.

Notice the similarity of mathematical induction and recursion. Just as mathe-
matical induction is a technique for inducing conclusions for “large n” from our 
knowledge of “small n,” recursion allows us to process large or complex data sets 
based on our ability to process smaller or less complex data sets.

A classic example of recursion is computing the factorial function, which has 
a recursive definition. Although it can be proven that, for n > 0, n!, to be read as 
“n factorial,” is the product of the integers from 1 to n, and, therefore, can be 
 computed using a tight loop, the definition of n! is recursive and lends itself to a 
recursive calculation.

Definition of n Factorial: Let n be a nonnegative integer. Then n! is defined as

n! = e 1 if  n = 0;

n[(n − 1)!] if  n > 0.
f

For example, we use the Definition of n Factorial to compute 3! as follows. 
From the recursive definition, we know that 3! = 3 × 2!. Thus, we need the 
value of 2!. Using the second line of the recursive definition, we know that 
3! = 3 × 2! = 3 × 2 × 1! = 3 × 2 × 1 × 0!. Notice that the first line of the Definition 
of n Factorial tells us that 0! = 1. This is the simplest case of n considered by the 
definition of n!, a case that does not require further use of recursion and there-
fore is a base case. A recursive definition or algorithm may have more than 
one base case. It is the existence of one or more base cases, and logic that drives 
the computation toward base cases, that prevent recursion from producing an 
 infinite loop.

In our example, we substitute 1 for 0! in order to resolve our calculations. If 
we proceed in the typical fashion of a person calculating with pencil and paper, we 
would make this substitution in the above and complete the multiplication,

3! = 3 × 2 × 1 × 0! = 3 × 2 × 1 × 1 = 6.
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Recursion 43

A typical computer implementation of this example’s recursion follows. 
Substitute 0! = 1 to resolve the calculation of 1!, obtaining 1! = 1 × 0! = 1 × 1 = 1. 
Next, substitute the result of 1! in the calculation of 2!, obtaining 2! = 2 × 1! =
2 × 1 = 2. Finally, substitute the result for 2! into the calculation of 3!, which yields 
3! = 3 × 2! = 3 × 2 = 6.

Below, we give a recursive algorithm for computing the factorial function. It is 
important to note that this algorithm is given for illustrative purposes only. If one 
really wants to write an efficient program to compute the factorial function, a sim-
ple tight loop would typically be much more efficient.

Integer function factorial (integer n)
Input: n is assumed to be a nonnegative integer.
Algorithm: Produce the value of n! by using recursion.

Action:

 If n = 0, then return 1
 Else return n × factorial(n − 1)

How do we analyze the running time of such an algorithm? Notice that while 
the size of the data set does not decrease with each invocation of the procedure, the 
value of n decreases monotonically with each successive call. Therefore, let T(n) 
denote the running time of the procedure with input value n. We see from the base 
case of the recursion that T(0) = Θ(1), since the time to compute 0! is constant. 
From the recurrence given above, we can define the time to compute n!, for n > 0, 
as T(n) = T(n − 1) + Θ(1). The conditions

 e T(0) = Θ(1);

T(n) = T(n − 1) + Θ(1)
f  (1)

form a recursive relation. We wish to evaluate T(n) in such a way as to express 
T(n) without recursion. A naïve approach uses repeated substitution of the recur-
sive relation. This results in

T(n) = T(n − 1) + Θ(1) =

T(n − 2) + Θ(1) + Θ(1) = T(n − 2) + 2Θ(1) =

T(n − 3) + Θ(1) + 2Θ(1) = T(n − 3) + 3Θ(1).

It is important to note the pattern that is emerging is T(n) = T(n − k) + k Θ(1). 
Such a pattern will lead us to conjecture that T(n) = T(0) + n Θ  (1), which, by the base 
case of the recursive definition, yields T(n) = Θ(1) + n Θ(1) = (n + 1)Θ(1) = Θ(n).

Indeed, the conjecture that we have arrived at is correct. However, the “proof ” 
given is not correct. Although naïve arguments are often useful for recognizing 
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44 Chapter 2  Induction and Recursion

patterns, they do not serve as proofs. In fact, whenever one detects a pattern and 
uses such a conjecture as a proof, there is a logical hole in the proof. After all, such 
an argument fails to rule out the possibility that the pattern is incorrect for some 
case that wasn’t considered. Such an approach reminds us of the well-known Sidney 
Harris cartoon in which a difficult step in the derivation of a formula is explained 
with the phrase “THEN A MIRACLE OCCURS” (see http://www.sciencecartoons
plus.com/gallery.htm). Thus, once we think that we have recognized a solution to a 
recursive relation, it is still necessary to give a solid mathematical proof.

In the case of the current example, the following proof can be given. We 
observe that the Θ-notation in condition (1) is a generalization of proportionality. 
Suppose we consider the simplified recursive relation

 e T(0) = 1;

T(n) = T(n − 1) + 1.
f  (2)

Our previous observations lead us to suspect that this turns out to be 
T(n) = n + 1, which we can prove by mathematical induction, as follows.

• For n = 0, the assertion is T(0) = 1, which is true.

• Suppose the assertion T(n) = n + 1 is true for some positive integer k. Thus, 
our inductive hypothesis is the equation T(k) = k + 1. We need to show 
T(k + 1) = k + 2. Now, using the recursive relation (2) and the inductive 
hypothesis, we have T(k + 1) = T(k) + 1 = (k + 1) + 1 = k + 2, as desired.

Thus, we have completed an inductive proof that our recursive relation (2) 
simplifies as T(n) = n + 1. Since condition (1) is a generalization of (2), in which 
the Θ-interpretation is not affected by the differences between (1) and (2), it 
 follows that condition (1) satisfies T(n) = Θ(n). Thus, our recursive algorithm for 
computing n! runs in Θ(n) time.

Sequential Search

A sequential search is efficiently implemented in an iterative fashion. We present the 
traditional non-recursive sequential search algorithm so that it can be compared to 
the recursive implementation of binary search that is given in the following section.

Consider the problem of searching an arbitrarily ordered set of data by a tradi-
tional sequential search. Notice that in the worst case, every item must be exam-
ined, since the item we are looking for i) might not exist or ii) might be the last 
item listed. So, without loss of generality, let’s assume that our sequential search 
starts at the beginning of the unordered data set and concludes based on one of the 
 following conditions.

• The search succeeds when the required item is located.

• The search fails after every item has been examined without finding the item 
being sought.
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Sequential Search 45

Since the data is not known to be ordered, the sequential examination of data 
items is necessary, because were we to skip over any item, the skipped item could 
be the one that we wanted (see Figure 2-1).

FIGURE 2-1 An example of sequential 
search. Given the array of data, a 
search for the value 4 requires five key 
comparisons. A search for the value 
9 requires three key comparisons. 
A search for the value 1 requires seven 
key comparisons in order to determine 
that the requested value is not present.

5 7 9 3 4 6 8

Thus, we give the following algorithm for a sequential search.

Subprogram SequentialSearch (X, searchValue, success, foundAt)
Algorithm: Perform a sequential search on the array X[1 . . . n] for searchValue.
If an element with a key value of searchValue is found, then return 
success = true and foundAt, where searchValue = X[ foundAt].key, and where 
X[ foundAt].key is the first instance of searchValue.
Otherwise, return success = false.
Local variable: index position

Action:

 position = 1
 Do
  success = (searchValue = X[position].key)
  If success, then foundAt = position
  Else position = position + 1
 While (Not success) and (position ≤ n)       {End Do}
 Return success, foundAt
End Search

Analysis: The set of instructions inside the Do-While loop runs in Θ(1) 
time since each instruction runs in constant, i.e., Θ(1), time. In the worst case, the 
body of the loop will be executed n times. This occurs when either the search is 
 unsuccessful or when the item we are searching for is the last item in the array X. 
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46 Chapter 2  Induction and Recursion

Thus, one can say that the worst-case sequential search runs in Θ(n) time. 
Assuming that the data is ordered in a truly random fashion, then a successful 
search will, on average, succeed after examining half of the entries. That is, a suc-
cessful search of an unordered data set in which the items are randomly distrib-
uted, requires examining n/2 items on average. Indeed, the expected-case or 
average-case running time of a successful sequential search is Θ(n). Finally, since 
the data is presented in a random fashion, it is possible that we find the item we 
are searching for immediately, which means that the time required for the best-
case search is Θ(1).

Binary Search

In contrast with our recursive algorithm for computing n!, recursion is more com-
monly used when every recursive call involves a significant reduction in the size of 
the current instance of the problem. An example of such a recursive algorithm is 
Binary Search. Searching for a data value is a fundamental operation, in which 
efficiency is crucial. For example, consider searching for an entry of a phone book, 
a sorted listing of names and telephone numbers, or for an entry of a dictionary, a 
sorted listing of words and their definitions. Since hardcopy phone books and dic-
tionaries are examples of sorted databases, we can take advantage of the fact that 
the data is ordered when we attempt to find an element. For example, when search-
ing a hardcopy phone book for “Miller,” we would not start at the very beginning 
of the book and search entry by entry, page by page, in hopes of finding “Miller”. 
Instead, we would likely open the book to the middle and decide whether “Miller” 
appears on the page(s) before, after, or on the page being examined.

We now consider the impact of performing a search on a sorted set of data. 
Think about designing an algorithm that mimics what you would do to find “Miller” 
in a hardcopy phone book. That is, grab a bunch of pages and flip back and forth, 
each time grabbing fewer and fewer pages, until the desired item is located. Notice 
that this method considers very few data values relative to the number considered 
by the sequential search. A question we need to consider is whether or not this algo-
rithm is asymptotically faster than the sequential search algorithm, since it may be 
faster by just a high-order constant or low-order term. Before we consider a proper 
analysis of this binary search, we present a detailed description of the algorithm.

Subprogram BinarySearch (X, searchValue, success, foundAt, minIndex, 
maxIndex)
Algorithm: Binary search algorithm to search ordered subarray 
X [minIndex cmaxIndex] for a key field equal to searchValue.
The algorithm is recursive. In order to search the entire array X [1, . . . , n], the 
initial call is of the form Search(X, searchValue, success, foundAt, 1, n).
If searchValue is found, return success = true and foundAt as an index at 
which searchValue is found; otherwise, return success = false.
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Binary Search 47

Local variable: index midIndex

Action:

 If minIndex > maxIndex, then {The subarray is empty}
  success = false, foundAt = 0 
 Else {The subarray is nonempty}

  midIndex = j minIndex + maxIndex
2

k
  If searchValue = X[midIndex].key, then
   success = true, foundAt = midIndex
  Else {searchValue ≠ X[midIndex].key}
   If searchValue < X[midIndex].key, then
    BinarySearch(X, searchValue, success, foundAt, 

minIndex, midIndex − 1)
   Else {searchValue > X[midIndex].key}
    BinarySearch(X, searchValue, success, foundAt, 

midIndex + 1, maxIndex)
  End {searchValue ≠ X[midIndex].key}
 End {Subarray is nonempty}
 Return success, foundAt
End Search

See Figure 2-2. Notice that the running time, T(n), of our binary search algo-
rithm satisfies the recursive relation

T(1) = Θ(1);

T(n) ≤ T(n/2) + Θ(1).

FIGURE 2-2 An example of binary 
search. Given the array of data, a search 
for the value 4 requires two key com-
parisons (6,4). A search for the value 9 
requires three key comparisons (6,8,9). 
A search for the value 1 requires three 
key  comparisons (6,4,3) in order to 
determine that the value is not present.

3 4 5 6 7 8 9
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48 Chapter 2  Induction and Recursion

To analyze the worst-case running time implied by this recursive relation, we 
can again use the naïve approach of repeated substitution into this recursive rela-
tion to try to find a pattern, interpret the pattern for a non-recursive base case, then 
try to prove the resulting assertion by mathematical induction. This results in an 
expansion that looks like

T(n) = T(n/2) + Θ(1) =

T(n/4) + Θ(1) + Θ(1) = T(n/4) + 2 × Θ(1) =

T(n/8) + Θ(1) + 2 × Θ(1) = T(n/8) + 3 × Θ(1).

Notice that the pattern beginning to emerge is T(n) = T(n/2k) + k × Θ(1), where 
the argument of T reaches the base value 1 = n/2k when k = log2 n. Such a pattern 
leads us to the conjecture that

T(n) = T(1) +  log2 n × Θ(1) = Θ(log n).

Based on this “analysis,” we believe that a binary search exhibits a worst-case 
running time of Θ(log n).

Notice that in our “analysis” above, we made the simplifying assumption that 
n is a positive integer that is a power of 2. It turns out that this assumption only 
simplifies the analysis of the running time without changing the result of the 
analy sis (see the Exercises).

As before, it is important to realize that once we have recognized what appears 
to be the pattern of the expanded recursive relation, we must prove our conjecture. 
To do this, we can use mathematical induction. We leave the proof of the running 
time of binary search as an exercise for the reader.

The term binary, when applied to this search procedure, is used to suggest 
that during each iteration of the algorithm, the search is being performed on 
roughly 1/2 the number of items that were used during the preceding iteration. 
Although such an assumption makes the analysis more straightforward, it is 
important for the reader to note that the asymptotic running time holds so long as 
at the conclusion of each recursion, some fixed fraction of the data is removed 
from consideration.

Additional Notes on Sequential and Binary Searches

It is important to recall that a sequential search can be used on a list, whether or 
not the list is known to be ordered. By contrast, a binary search requires an ordered 
list, assuming the user wants to be assured of a correct result. Notice that Binary 
Search correctly solves the search problem for an ordered list with a Θ(log  n) 
worst-case running time, while Sequential Search solves the search problem on an 
arbitrarily ordered list in Θ(n) worst-case running time.
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Merging and Merge Sort 49

Merging and Merge Sort

Many efficient sorting algorithms are based on a recursive paradigm in which the 
list of data to be sorted is split into sublists of approximately equal size, each of the 
resulting sublists is sorted recursively, and then the sorted sublists are combined 
into a completely sorted list (see Figure 2-3).
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FIGURE 2-3 Recursively sorting a set of data. Take the initial list and divide it 
into two lists, each roughly half the size of the original list. Recursively sort each 
of the sublists. Merge these sorted sublists to create the final sorted list.

The recursive relation that describes the running time of such an algorithm is 
given by

T(1) = Θ(1);

T(n) = S(n) + 2T(n/2) + C(n),

where S(n) is the time used by the algorithm to split a list of n entries into two sub-
lists of approximately n/2 entries apiece, and C(n) is the time used by the algo-
rithm to combine two sorted lists of approximately n/2 entries apiece into a single 
sorted list. An example of such an algorithm is Merge Sort, discussed below.

Merging two ordered lists A and B into a single ordered list C requires  properly 
intermingling the members of A and B in order to produce C. Think of it as having 
half a deck of cards in each hand, both of which are ordered, and combining them 
to get a final ordered list.
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50 Chapter 2  Induction and Recursion

This operation is most natural to describe when the lists are maintained as linked 
lists, i.e., pointer-based lists. In the following discussion, we consider our data to be 
arranged as a singly linked list in which each data record has the following.

  i. A field called sortkey, which is used as the basis for sorting.
  ii. Zero or more other fields, denoted otherinfo in Figure 2-4, that are used to 

store information pertinent to the record but are not used by the sort routine.
iii. A field called next, which is a pointer to the next element in the list.

sortkey 

next 

otherinfo 

3 

-- 

head 
sortkey 

next . . . 

otherinfo 

8 

-- 

sortkey 

next 

otherinfo 

405 

-- 

FIGURE 2-4 An illustration of a linked list in a language that supports 
dynamic allocation of elements. Notice that the head of the list is simply a 
pointer and not a complete record, and that the last item in the list has its 
next pointer set to NULL. An algorithm to merge two ordered linked lists 
containing a total of n elements in O(n) time is given below. An example 
of merging is shown in Figure 2-5.

Initial
Configuration:

Step 1:

head1 1 3 8 9 10

1 2 3 4 5 6

head2

headMerge

2 4 5 6 7

head1 3 8 9 10

head2

headMerge

2 4

1

5 6 7

Step 2: head1 3 8 9 10

head2

headMerge 1

4 5

2

6 7

Step 6: head1 8 9 10

head2

headMerge

7

1 2 3 4 5 6 7 8 9 10

Step 8: head1

head2

headMerge

FIGURE 2-5 An example of merging two ordered lists, initially indexed by 
head1 and head2, to create an ordered list headMerge. Snapshots are pre-
sented at various stages of the algorithm. As the merge progresses, head1 
and head2 each indexes the first unmerged node in their respective list.
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Merging and Merge Sort 51

Note that a programming language typically has a special pointer constant that 
is defined to point to no element, e.g., “NULL” or “nil”. This value is typically 
used to mark boundaries of pointer-based data structures, e.g., the last member of 
a linked list typically has a next field with this special value. Figure 2-4 presents a 
representation of such a data structure. Notice that in Figure 2-4, we assume the 
sortkey data is of type integer.

Subprogram Merge(head1, head2, headMerge)
Input: head1 and head2 point to two distinct ordered lists that are to be 
merged with respect to field sortkey. We assume all ordered lists are in 
ascending order.
Output: This routine produces a merged list addressed by headMerge.
Local variable: atMerge, a pointer to a link of the merged list

Action:

 If head1 = null, then return headMerge = head2
 Else {The first input list is nonempty}
   If head2 = null, then return headMerge = head1
   Else {Both input lists are nonempty}
    If head1.sortkey ≤ head2.sortkey, then

{Start merged list with 1st element of 1st list}
      headMerge = head1; head1 = head1.next
     Else {Start merged list with 1st element of 2nd list}
       headMerge = head2; head2 = head2.next
    End {Decide first merge element}
    atMerge = headMerge
    While (head1 ≠ null and head2 ≠ null), do
     If head1.sortkey ≤ head2.sortkey then

    {Merge element of 1st list}
      atMerge.next = head1
      atMerge = head1
      head1 = head1.next
     Else {Merge element of 2nd list}
      atMerge.next = head2
      atMerge = head2
      head2 = head2.next
     End If
    End While

{Now, one of the lists is exhausted, but 
the other isn’t. So concatenate the 
unmerged portion of the unexhausted 

list to the merged list.}
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52 Chapter 2  Induction and Recursion

   If head1 = null, then atMerge.next = head2
   Else atMerge.next = head1
  End Else {Both input lists are nonempty}
  End Else {First input list is nonempty}
  Return headMerge
 End Merge

It is useful to examine the merge algorithm above in terms of both the best-
case, i.e., minimal running time, and the worst-case, i.e., maximal running time. In 
the best case, one of the input lists is empty, and the algorithm finishes its work in 
Θ(1) time. In the worst-case, when one of the input lists is exhausted, only one 
item remains in the other list. In this case, since each iteration of the While-loop 
requires a constant amount of work to merge one element into the merged list that 
is being constructed, the running time for the entire procedure is Θ(n). We note 
also that the algorithm processes every element of one of its input lists. Therefore, 
the running time of this simple merge algorithm is Θ(k), where k is the number of 
nodes from both input lists that have been merged when the first input list is 
exhausted. So, if the total length of both lists combined is Θ(n), e.g., if we are 
merging two lists of length n/2 each, then the worst-case running time of this 
merge algorithm is Θ(n).

In addition to being able to merge two ordered lists, the Merge Sort algorithm 
requires a routine that will split a list into two sublists of roughly equal size. 
Suppose we are given a deck of cards and don’t know how many cards are in the 
deck. A reasonable way to divide the deck into two piles so that each pile had 
roughly the same number of cards in it is to deal the cards alternately between the 
two piles. We give such an algorithm for splitting a list below.

Subprogram Split(headIn, headOut)
Algorithm: Split an input list indexed by headIn, a pointer to the first 
element, into two output lists by alternating the output list to which an input 
element is assigned.
The output lists are indexed by headOut[0…1].
Local variables: current_list, an index alternating between output lists temp, 
a temporary pointer to current link of input list

Action:

{Initialize output lists as empty.}
  headOut[0] = headOut[1] = null
  current_list = 0
  While headIn ≠ null, do
   temp = headIn
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Merging and Merge Sort 53

   headIn = headIn.next
   temp.next = headOut[current_list]
   headOut[current_list] = temp
    current_list = 1 − current_list 

{Switch value between 0, 1}
  End While
  Return headOut
 End Split

In the Split algorithm above, every iteration of the loop takes one element 
from the input list and places it at the head of one of the output lists. This opera-
tion runs in Θ(1) time. Thus, if the initial list has n elements, the algorithm runs in 
Θ(n) time.

Since we have introduced and analyzed the tools necessary for Merge Sort, we 
now present an implementation of the algorithm in Subprogram MergeSort.

Subprogram MergeSort(head)
Algorithm: Sort a linked list by using the Merge Sort algorithm
Input: a linked list indexed by head, a pointer to the first element
Output: an ordered list
Local variables: temp[0…1], an array of two pointers

Action:

 If head ≠ null, then {Input list is nonempty}
  If head.next ≠ null, then
    {There’s work to do, as the list 

has at least 2 elements.}
   Split(head, temp)
   MergeSort(temp[0])
   MergeSort(temp[1])
   Merge(temp[0], temp[1], head)
  End If
 End If
 Return head
End Sort

Before we analyze the Merge Sort algorithm given above in Subprogram 
MergeSort, we make the following observations. The algorithm is recursive, so a 
question that should be raised is, “what condition represents the base case?” 
Actually, two base cases are present, but they are both so simple that they are 
 easily missed.
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54 Chapter 2  Induction and Recursion

 1. Consider the statement “If head ≠ null, then” in Subprogram MergeSort. The 
consequent action does not seem like the simple case we expect in a base case of 
recursion. It does, however, suggest that we consider the opposite case, 
head = null. The latter case is not mentioned at all in the algorithm, yet clearly it 
can happen. This, in fact, is a base case of recursion. Notice that if head = null, 
then there is no work to be done, as the list is empty. It is tempting to say that 
when this happens, no time is used, but we should attribute to this case the Θ(1) 
time necessary to recognize that head = null.

 2. Consider the inner “If ” clause, “If head.next ≠ null.” Notice that this condition 
is only tested when the outer If-condition is true, and therefore represents the 
condition of having a list with at least one element beyond the head element. 
That is, the list must have at least two elements. Thus, negation of the inner 
If-condition represents the condition of having a list with exactly one node, 
since the outer If ’s condition being true means there is at least one node. As 
above, the condition head.next = null results in no listed action, corresponding 
to the fact that a list of one element must be ordered. As above, we analyze the 
case head.next = null as using Θ(1) time.

It is important to observe that a piece of code of the form

 If A, then
  actionsForA
 End If A

is logically equivalent to

 If not A, then {no action}
 Else {A is true}
  actionsForA
 End Else A

We usually prefer the former form for its brevity, but in discussing Merge 
Sort, the latter form helps us distinguish base cases that require no action from 
recursive cases.

Analysis: Let T(n) be the running time of the Merge Sort algorithm, which 
sorts a linked list of n items. Based on the analysis above, we know that the split-
ting time is S(n) = Θ(n). We also know that the time to merge is M(n) = O(n). 
Given the time for splitting and merging, we can construct a recurrence equation 
for the running time of the entire algorithm, as follows.

 T(1) = Θ(1); 

 T(n) = S(n) + 2T(n/2) + M(n) = 2T(n/2) + Θ(n). (a)

Before we proceed further, notice that the latter equation, in the worst case, 
could have been written as

 T(n) = 2[T(n/2) + Θ(n)]. (b)
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Common Recurrence Equations 55

Roughly, equations (a) and (b) are equivalent because 2Θ(n) = Θ(2n) = Θ(n). 
In order to proceed with the analysis, we again consider using repeated substitu-
tion as a means of obtaining a conjecture about the running time. Therefore, we 
have, from equation (a),

T(n) = 2T(n/2) + Θ(n) =

2[2T(n/4) + Θ(n/2)] + Θ(n) = 4T(n/4) + 2 × Θ(n) =

4[2T(n/8) + Θ(n/4)] + 2 × Θ(n) = 8T(n/8) + 3 × Θ(n).

The emerging pattern is T(n) = 2kT(n/2k) + k × Θ(n), reaching the base case 
1 = n/2k for k =  log2 n. This pattern results in a conjecture that

T(n) = nT(1) + Θ(n log n) = Θ(n) + Θ(n log n) = Θ(n log n).

If we are still not comfortable by the remark above that equations (a) and (b) 
are equivalent, notice that had we based our search for a conjecture on repeated 
substitution into equation (b), we would have obtained

T(n) = 2[T(n/2) + Θ(n)]

2{2[T(n/4) + Θ(n/2)]} + 2Θ(n) = 4T(n/4) + 4Θ(n) =

4{2[T(n/8) + Θ(n/4)]} + 4Θ(n) = 8T(n/8) + 6Θ(n).

The emerging pattern is T(n) = 2kT(n/2k) + 2kΘ(n), reaching its base case for 
k = log2 n, substitution of which into the pattern equation yields the conjecture 
T(n) = nT(1) + (2 log2 n)Θ(n) = Θ(n log n), as above.

Our conjecture can be proved using mathematical induction on k for n = 2k 
(see Exercises). Therefore, the running time of our Merge Sort algorithm is 
Θ(n log n).

Common Recurrence Equations

In this section, we give some common recurrence equations, several of which were 
derived in this chapter.

Representative Algorithm Recurrence Equation Asymptotic Solution

Binary Search T(n) = T(n/2) + Θ(1) T(n) = Θ(log n)

Sequential Search T(n) = T(n − 1) + Θ(1) T(n) = Θ(n)

Tree Traversal T(n) = 2T(n/2) + Θ(1) T(n) = Θ(n)

Insertion Sort T(n) = T(n − 1) + Θ(n) T(n) = Θ(n2)

Merge Sort T(n) = 2T(n/2) + Θ(n) T(n) = Θ(n log n)
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56 Chapter 2  Induction and Recursion

Summary

In this chapter, we introduce the related notions of mathematical induction and 
recursion. Mathematical induction is a technique for proving statements about sets 
of successive integers. Often, the set of concern takes the form of all integers 
greater than or equal to an initial integer. This is done by proving a base case and 
then proving that the truth of a successor case follows from the truth of its prede-
cessor. Recursion is a technique of solving problems by dividing the original prob-
lem into multiple smaller problems, solving these smaller problems, and combining 
the solutions to the smaller problems in order to obtain the desired solution to the 
original problem. Note that the step of “solving these smaller problems” is done 
recursively unless a simple base case is reached where the problem can be solved 
directly. Examples of both of these powerful tools are presented, including appli-
cations to fundamental data processing operations such as searching and sorting.

Chapter Notes

A classic reference for the material presented in this chapter is Fundamental 
Algorithms, volume 1 of The Art of Computer Programming, by Donald Knuth. The 
book, published by Addison-Wesley, originally appeared in 1968, and, along with the 
companion volumes, is a classic that should be on every computer scientist’s desk. An 
excellent book on discrete mathematics is Discrete Algorithmic Mathematics by S.B. 
Maurer & A. Ralston (Addison-Wesley Publishing Company, Reading, Massachusetts, 
1991). An interesting book, combining discrete and continuous mathematics, is 
Concrete Mathematics by R.L. Graham, D.E. Knuth, & O. Patashnik (Addison-Wesley 
Publishing Company, Reading, Massachusetts, 1989). Finally, we should mention an 
excellent book, Introduction to Algorithms, by T.H. Cormen, C.E. Leiserson, R.L. 
Rivest, and C. Stein (3rd ed.: MIT Press, Cambridge, MA, 2009). This book covers 
fundamental mathematics for algorithmic analysis in a thorough fashion.

Exercises

Note: Some of our exercises are based on the sequence of Fibonacci numbers 
f1,  f2,  f3, c, defined recursively as

f1 = f2 = 1;

fn+2 = fn + fn+1.

 1. Suppose we have a positive number c and define a sequence g1,g2,g3, c, 
recursively by

g1 = g2 = c;

gn+2 = gn + gn+1.

 Show that for every positive integer n, we have gn = cfn, where fn is the nth 
Fibonacci number.
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Exercises 57

The next two exercises may be completed with non-recursive algorithms. These 
algorithms may be used in subsequent exercises.

 2. Devise a Θ(n) time algorithm that takes as input an array X and produces as 
output a singly linked list Y such that the ith element of Y has the same data as 
the ith entry of X. Prove that the algorithm runs in Θ(n) time.

 3. Devise a Θ(n) time algorithm that takes as input a singly linked list X and pro-
duces as output an array Y such that the ith entry of Y has the same data as the 
ith element of X. Prove that the algorithm runs in Θ(n) time.

 4. Show that a
∞

i=1

 
1

2i
 = 1. This can be done by showing that for all positive  integers n,

a
n

i=1

 
1

2i
 = 1 −  

1

2n
, which can be shown by mathematical induction.

 5. (Arithmetic progression.) Show that a recursive algorithm, where the running 
time is given as a function of items

T(1) = Θ(1);

T(n) = T(n − 1) + Θ(n),

satisfies T(n) = Θ(n2).

 6. (Geometric progression.) Show that a recursive algorithm, where the running 
time is given as a function of items

T(1) = Θ(1);

T(n) = T(n/r) + Θ(n),

where r > 1 is a constant, satisfies T(n) = Θ(n).

 7. (Binary search.)

  a.  Show that the recursive relation used with the binary search algorithm,

T(1) = Θ(1);

T(n) ≤ T(n/2) + Θ(1),

 satisfies T(n) = O(log n) when n = 2k for some nonnegative integer k. 
Hint: Your proof should use mathematical induction on k to show that

T(1) = 1;

T(n) ≤ T(n/2) + 1,

satisfies T(n) ≤ 1 + log2 n.

C8208_ch02.indd   57C8208_ch02.indd   57 11/12/12   9:22 AM11/12/12   9:22 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



58 Chapter 2  Induction and Recursion

  b.  Even if n is not an integer power of 2, the recursive relation above satisfies 
T(n) = O(log n). Prove this assertion, using the result for the case of n being 
a power of 2. Hint: Start with the assumption that 2k < n < 2k+1 for some 
positive integer k. One approach is to show that only one more item need be 
examined, in the worst case, than in the worst case for n = 2k. Another 
approach is to prove that we could work instead with the recursive relation

T(1) = 1;

T(n) ≤ Tal  n − 1

2
 m b + 1,

then show how this, in turn, yields the desired conclusion.

 8. Prove that Subprogram MergeSort has a running time of Θ(n log n) by show-
ing that the recursive relation used in its partial analysis above,

T(1) = Θ(1);

T(n) = S(n) + 2T(n/2) + C(n) = 2T(n/2) + Θ(n),

 satisfies T(n) = Θ(n log n). As above, this can be done by an argument based 
on the assumption that n = 2k, for some nonnegative integer k, using mathe-
matical induction on k.

 9. Show that an array of n entries can be sorted in Θ(n log n) time by an algo-
rithm that makes use of the Merge Sort algorithm given above. Hint: see 
Exercises 2 and 3.

 10. More on Fibonacci numbers
a.  Develop a nonrecursive Θ(n) time algorithm to return the nth Fibonacci 

number.

b.  Below, we state a recursive algorithm to produce the nth Fibonacci number, 
based on the definition above. Show that this algorithm has a running time 
that is ω (n). This shows that the naïve use of recursion isn’t always a good 
idea.

integer function fibonacci(n)
Outputs the nth Fibonacci number
Input: n, a nonnegative integer

Action:

 If n ≤ 2, then return 1
 Else return fibonacci(n − 2) + fibonacci(n − 1)
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Exercises 59

Hint: The analysis can be achieved by the following steps.

•  Show that the running time T(n) can be analyzed by using the recursive 
relation T(n) = T(n − 1) + T(n − 2) + Θ(1).

•  Show the recursive relation obtained above implies T(n) > 2T(n − 2).

•  Use the above to show that T(n) = ω (n). Note it is not necessary to find 
an explicit formula for either fn or T(n) to achieve this step.

 11. A certain method for computing the determinant of an n × n matrix has run-
ning time T(n2) described, to within constants of proportionality, by

T(n2) = e nT1(n − 1)22 for  n > 1;

1 for  n = 1.

Show this recursion resolves as T(n2) = n!, the factorial function.
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The Master Method is an important tool that can provide solutions to a large class of 
recursion relations. This is important, for example, when we try to solve equations 

that provide the time, space, or memory requirements of an algorithm. Further, recur-
rence equations can often be used to suggest solution strategies, i.e., algorithms, to 
solve problems of interest.

Consider a recurrence of the form

T(n) = aTan
b
b + f (n),

where a ≥ 1 and b > 1 are constants, and f (n) is a positive function. In addition, we 
assume a base case of T(c) = Θ(1), for c ≤ 1 unless explicitly stated otherwise.

If T(n) is the running time of a problem of size n, we can interpret this recurrence 
as defining T(n) to be the time to solve a subproblems of size n/b, plus f (n), which is 
the sum of the following.

• The time to divide the original problem into the a subproblems.

• The time to combine the subproblems’ solutions in order to obtain the solution to 
the original problem.

Consider the problem of sorting a linked list of data using the Merge Sort algo-
rithm described in the previous chapter (see Figure 3-1). Assume that we split a list of 
length n into two lists, each of length n/2, recursively sort these new lists, and then 
merge them together. In terms of developing a recurrence equation, we have 2 sub-
problems to solve, each of size n/2. That is, we have a = 2 subproblems, each of size 
n/b, for b = 2.

Further, the interpretation is that f (n) is the time to split the list of length n into 
two lists of length n/2 each, plus the time to merge two ordered lists of length n/2 each 
into an ordered list of length n. See Figure 3-2.
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62 Chapter 3  The Master Method

FIGURE 3-1 A recursion tree representing the recurrence equation T(n) = aT(n/b) + f (n). 
The number of problems to be solved at each horizontal level of recursion is listed, along 
with the size of each problem at that level. “Time” is used to represent the time per 
 problem, not counting recursion, at each level.

n

n/bn/bn/b n/b

f (n)

. . .

. . .

n/b2 n/b2 n/b2 n/b2
f (n/b)

. . .

.  .  .

.  .  .

.  .  .

.  .  .

.  .  .

.  .  .

.  .  .

.  .  . 

f (n/b2)

. . .

a2

.  .  .  .  .

a

1

No. of Problems

n

n/b

n/b2

.  .  .

Each Problem Size

.  .  .  .  .

f (n/b2)

f (n/b)

f (n)

Time

FIGURE 3-2 A recursion tree for Merge Sort, as represented by T(n) = 2T(n/2) + Θ(n). 
Notice that level i of the recursion tree, for i ∈{1, 2, c, log2 n}, runs in 
2i × Θ1n/2i2 = Θ(n) time. This resolves as T(n) = Θ(n log n). 
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Master Theorem

The Master Method is summarized in the following “Master Theorem.”

Master Theorem: Let a ≥ 1 and b ≥ 1 be constants. Let f (n) be a positive 
function defined on the positive integers. Let T(n) be defined on the positive 
integers by

 T(n) = aTan
b
b + f (n), (3.1)

where we can interpret n/b as meaning either  ⎣n/b⎦  or ⎡n/b⎤ . Then the follow-
ing hold.

 1. Suppose f (n) = O1nlogb a−ε2 for some constant ε > 0. Then T(n) = Θ1nlogb a2.
 2. Suppose f (n) = Θ1nlogb a2. Then T(n) = Θ1nlogb a log n2.
 3. Suppose f (n) = Ω(nlogb a+ ε) for some constant ε > 0, and there are  constants 

c and N, 0 < c < 1 and N > 0, such that (n/b) > N ⇒ af (n/b) ≤ cf (n). Then 
T(n) = Θ1 f (n)2.

EXAMPLE

(Geometric progression) Consider the recurrence

T(c) = Θ(1) for c ≤ 1,

T(n) = T(n/r) + Θ(n) for c > 1,

for some constant r > 1. Notice that this geometric series was presented in an 
Exercise of Chapter 2, where it was to be resolved by mathematical induction. 
Many of you have been exposed to the case of r = 2, which is equivalent to 
T(n) = Θ(n + n/2 + n/4 + . . .) = Θ(n). 

If, instead, we use the Master Theorem to resolve the general recurrence, 
we have a = 1, b = r, and logb a = logr1 = 0. This yields 

f (n) = n = nlogb a+1

The reader should observe that the Master Theorem does not cover all 
instances of equation (3.1).

In Appendix 2, we sketch a proof for the Master Theorem. The proof is pro-
vided as a convenience to those who have the mathematical skills, interest, and 
background to appreciate it, but should be skipped by other readers.

Examples
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64 Chapter 3  The Master Method

EXAMPLE

Consider the recurrence

T(n) = T an
2
b + 1

that occurs in the analysis of Binary Search. Corresponding to the notation 
used in our statement of the Master Theorem, we have f (n) = 1 = nlog2 1, so by 
case 2 of the Master Theorem, T(n) = Θ(log n).

EXAMPLE

Consider the recurrence

T(n) = 2T an
2
b + n

that occurs in the analysis of Merge Sort. Corresponding to the notation used 
in our statement of the Master Theorem, we have a = 2, b = 2, and f (n) =
n = nlogb a. So, by case 2 of the Master Theorem, T(n) = Θ(n log n).

EXAMPLE

Consider the recurrence

T(n) = 4T an
4
b + n1/2

that occurs in the analysis of some image processing algorithms. We have

a = 4, b = 4,  logb a =  log4 4 = 1, and f (n) = n1/2 = nlogb a−1/2.

By case 1 of the Master Theorem, T(n) = Θ(n).

Further,

af (n/b) = n/r =
1
r
 f (n)

From the third case of the Master Theorem, it follows that even in the general 
case, T(n) = Θ(n).
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Summary

In this chapter, we present the Master Theorem, which provides solutions to many, 
although not all, types of recursive relationships. A proof of this theorem is given 
in Appendix 2. We show how to use this theorem with several examples.

Chapter Notes

In this chapter, we focus on the Master Method, a cookbook approach to solving 
certain recurrences of the form T(n) = aT(n/b) + f (n). This approach has been well 
utilized in texts by E. Horowitz and S. Sahni, including Computer Algorithms/
C++, by E. Horowitz, S. Sahni, and S. Rajasekaran (Computer Science Press, New 
York, 1996). The paper, “A general method for solving divide-and-conquer recur-
rences,” by J.L. Bentley, D. Haken, and J.B. Saxe, SIGACT News, 12(3): 36–44, 
1980, appears to serve as one of the earliest references to this technique.

Exercises

For each of the following recurrences, either solve by using the Master Theorem, 
or show it is not applicable, as appropriate. If the Master Theorem is not applica-
ble, try to solve the recurrence by another means.

EXAMPLE

Consider the recurrence

T(n) = T an
4
b + n1/2

that occurs in the analysis of many mesh computer algorithms that will be 
 presented later in the text. Corresponding to the notation used in our statement 
of the Master Theorem, we have

a = 1, b = 4, f (n) = n1/2 = Ω(nlogb a+0.5), 

and 

af (n/b) = (n/4)1/2 = n1/2/2 = 0.5f (n).

So, by case 3 of the Master Theorem, T(n) = n1/2.

 1. T(n) = 2Tan
2
b + 1

 2. T(n) = T(n − 2) + 1

 3. T(n) = 4Tan
2
b + n2

 4. T(n) = 4Tan
2
b + n3/2

 5. T(n) = 3Tan
2
b + n2

 6. T(n) = 8Tan
2
b +

n2

 log2 n

 7. T(n) = 16Tan
4
b +

n3

 log2 n

 8. T(n) = 2Tan
2
b + 2n
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In this chapter, we introduce a variety of models of computation that will be used 
throughout the book. Initially, we introduce the random access machine (RAM), which 

is the traditional sequential model of computation, i.e., the von Neumann model. The 
RAM has been an extremely successful model in terms of the design and analysis of 
sequential algorithms targeted at traditional sequential computers.

Next, we introduce the parallel random access machine (PRAM), which is the most 
popular model for the theoretical study of parallel computation, largely because the PRAM 
allows for the design and analysis of parallel algorithms without concern for communication 
of data. That is, when designing an algorithm for the PRAM, one may assume that any two 
processors can communicate in constant time and that any processor can access any memory 
location in constant time. For the PRAM, we present a variety of algorithms to perform 
essential operations and use these algorithms to solve a number of fundamental problems.

After introducing the RAM and PRAM, we introduce parallel models of computation 
that rely on specific interconnection networks. Each interconnection network consists of a 
set of direct connections between pairs of processors that contain on-board memory. The 
reader might picture a chessboard in which every square is a processor with memory and 
every generic processor is connected to its two horizontal neighbors and its two vertical 
neighbors. Such network models include the mesh, tree, pyramid, mesh-of-trees, and hyper-
cube, many of which have been built and sold by a variety of companies.

For these network models, we first present fundamental algorithms, including broadcast-
ing, semigroup operations, and parallel prefix, to name a few. These fundamental algorithms 
are used throughout the book to build efficient solutions to higher-level problems. This 
method of building efficient solutions to higher-level problems from fundamental algorithms 
provides us with the opportunity to point out the relative positives and negatives of these 
models with respect to each other, as well as with respect to the RAM and PRAM.

We will then present the Coarse-Grained Multicomputer, a theoretical model that is 
designed to represent a simple, practical parallel computing system. Finally, we introduce 
modern production systems that are widely deployed. These include the cloud, grid, cluster, 
and Network of Workstations (NOW ). Such multiprocessor systems are currently used by 
tens of thousands of companies, educational institutions, and government laboratories. 
These systems are typically used to solve large-scale computationally-intensive or data-
intensive problems and/or to provide solutions to problems that are large in the aggregate.

Algorithms that take advantage of high-end systems, including clusters and NOWs, typ-
ically address problems that come from areas of computational science and engineering. In 
addition, numerous solutions to problems on such systems also involve the manipulation of 
large databases. These high-end computational systems, which dominate the list of top 500 
most powerful computing systems1 in the world, will be included in discussions throughout 
the remainder of the text as we present the design and analysis of multiprocessor algorithms 
to solve disciplinary problems.

We conclude the chapter by presenting some standard terminology that is used in the 
literature and throughout the remainder of the text.

1 The reader is encouraged to review www.top500.org, which lists the 500 most powerful supercomputers in 
the world. At that website, the reader will also find interesting analysis and trends in supercomputing.
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68 Chapter 4  Models of Computation

RAM (Random Access Machine)

The random access machine, or RAM, is the traditional sequential model of com-
putation, as shown in Figure 4-1. It has proved to be quite successful since algo-
rithms designed for the RAM tend to perform as predicted on a single processing 
element, which is often referred to as a “core” on the processor of a standard 
multi-core desktop, laptop, tablet, or even cellular phone system.

FIGURE 4-1 The random access machine (RAM ) 
is a traditional sequential model of computation. 
It consists of a single processing element and 
local memory. The processor is able to access any 
 location of memory in Θ(1) time through the 
memory access unit.

Processor

Memory Access
Unit

Memory

The RAM has the following characteristics.

Memory: Assume that the RAM has M memory locations, where M is a large 
finite number. Each memory location has a unique address and is capable of stor-
ing a single piece of data. The memory locations can be accessed in a direct fash-
ion. That is, there is a constant C > 0 such that given any memory address A, the 
data stored at address A can be accessed in at most C units of time. Thus, memory 
access on a RAM is assumed to take Θ(1) time, regardless of the number of mem-
ory locations or the particular location of a memory cell.

Processor: The RAM contains a single processor, without multiple cores, and 
executes a sequential algorithm. That is, the processor issues one instruction at a 
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RAM (Random Access Machine) 69

time and each instruction is performed to completion before continuing with the 
next instruction. We assume that the processor can perform a variety of fundamen-
tal operations. These operations include loading and  storing data between memory 
and the processor’s registers, as well as performing basic arithmetic and logical 
operations on the contents of the data in the registers.

Memory Access Unit: The memory access unit is used to create a direct connec-
tion between the processor and a memory location.

Execution: Each step of an algorithm consists of three phases, namely, a 
read phase, a compute phase, and a write phase. In the read phase, the proces-
sor can read data from memory into one of its registers. In the compute phase, 
the processor can perform basic operations on the contents of its registers. 
Finally, during the write phase, the processor can send the contents of one of 
its registers to a specific memory location. This is a high-level interpretation 
of a single step/cycle of an algorithm, corresponding typically to several low-
level assembly or machine instructions. There is no distortion of analysis in 
such an interpretation, as several low-level instructions can be executed in 
Θ(1) time.

Running Time: We now consider running times for the read, process, and write 
phases that comprise each step of an algorithm. It is important to note that each 
register in the processor must be of size greater than or equal to log2 M  bits in 
order to accommodate M distinct memory locations. Due to the fan-out of “wires” 
between the processor and memory, any access to memory will require O(log M ) 
time. Notice, however, that it is often possible for k consecutive memory accesses 
to be pipelined to run in O(k + log M ) time on a slightly enhanced model of a 
RAM. Based on this analysis, and the fact that many computations are amenable to 
pipelining for memory access, we assume that both the read and the write phase of 
an execution cycle are performed in Θ(1) time.

Now consider the compute phase of the execution cycle. Given a set of 
k-bit registers, many of the fundamental operations can be performed in 
Θ(log k) time. The reader unfamiliar with these results might wish to consult a 
basic book on computer architecture and read about carry-lookahead adders, 
which provide an excellent example. Therefore, since each register has 
k = Θ(log M ) bits, the compute phase of each execution cycle can be performed 
in O(log log M ) time.

Historically, one assumes that every cycle of a RAM algorithm requires Θ(1) 
time. This is due to the fact that neither the O(k + log M ) time required for mem-
ory access nor the O(log log M ) time required to perform fundamental operations 
on registers typically affects the comparison of running time between algorithms. 
Further, these two asymptotic terms are relatively small and negligible in practice, 
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70 Chapter 4  Models of Computation

so much so that the running time of an algorithm is typically dominated by other 
considerations, including the following.

• The amount of data being processed.
• The instructions executed.
• The error tolerance.

It is important to note that this Θ(1) time model is the standard, and that most 
authors do not go into the analysis or justification of it. However, this model is 
properly referred to as the uniform analysis variant of the RAM. This is the model 
that we will assume throughout the book when we refer to the RAM and, as 
 mentioned, it is the model that is used in all standard algorithms and data struc-
tures books.

PRAM (Parallel Random Access Machine)

The parallel random access machine, or PRAM, is the most widely utilized 
theoretical parallel model of computation. The PRAM was developed with the 
intention that it would do for parallel computing what the RAM did for sequen-
tial computing. That is, the PRAM was developed so that parallel algorithms 
would run on real parallel computers using resources such as running time, 
memory, and number of processors, as predicted by analysis on the PRAM. The 
advantage of the PRAM is that it ignores communication and allows the user to 
focus on the potential parallelism available in the design of an efficient solu-
tion to the given problem. The PRAM has the following characteristics. 
(See Figure 4-2.)

Processors: The PRAM consists of n identical processors, say P1, P2, . . . , Pn, each 
of which is a RAM. These processors are often referred to as processing elements, 
PEs, or simply processors.

Memory: As with the RAM, there is a common/shared/global memory. All pro-
cessors have access to this shared memory. It is typically assumed that there are 
m ≥ n memory locations.

Memory Access Unit: The memory access unit of the PRAM is similar to the 
memory access unit of the RAM in that it assumes that every processor can access 
any memory location in Θ(1) time.

It is important to note that the processors are not directly connected to each 
other. So, if two processors wish to communicate in their effort to solve a prob-
lem, they must do so through the common memory. That is, PRAM algorithms 
often treat the common memory as a blackboard, to borrow a term from 
Artificial Intelligence. For example, suppose processor P1 maintains the value X 
in one of its registers. Then, in order for another processor to access this value, 
P1 must write X to a location in the global memory. Once it is there, other 
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PRAM (Parallel Random Access Machine) 71

processors that know the location can read this value. Therefore, even though 
processors are not directly connected, a pair of processors can share a unit of 
data in Θ(1) time.

Execution: As with the RAM, each step of an algorithm consists of three phases, 
namely, a read phase, a compute phase, and a write phase. During the read phase, 
all n processors can read simultaneously a piece of data from a, not necessarily 
unique, memory location. Each processor places the data item into one of its reg-
isters. In the compute phase, every processor can perform a fundamental operation 
on the contents of its registers. This phase is identical to that of the RAM. However, 
n independent compute operations, one per processor, can be performed simulta-
neously. During the write phase, every processor can simultaneously write an item 

FIGURE 4-2 Characteristics of a parallel random access machine (PRAM). The 
PRAM consists of a set of identical processing elements connected to a global 
memory through a memory access unit. All memory accesses are assumed to take 
Θ(1) time.

Control
Unit

Local
Memory
(Registers)

P2

Program

Memory Access
Unit

.    .    .    .    .

.   .   .   .   

.   .   .   .   

.    .    .    .    .

Global Memory

Local
Memory
(Registers)

P1

Local
Memory
(Registers)

PnProcessors

C8208_ch04.indd   71C8208_ch04.indd   71 11/16/12   12:24 PM11/16/12   12:24 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



72 Chapter 4  Models of Computation

from one of its registers to the global memory. Again, the write stage is very simi-
lar to the write stage of the RAM, with the exception that n simultaneous writes, 
one per processor, can occur.

It is important to note that conflicts can occur during both the read and write 
phases. We will consider resolutions to such conflicts shortly.

Running Time: As with the RAM, we consider the time to perform the read, 
compute, and write phases of a cycle. An analysis of the read and write phases 
will again show that the time required for each processor to access any of the m 
memory locations, due to constraints in fan-in, is O(log m). As discussed 
 previously, this can be improved by pipelining to allow k consecutive requests 
from all n processors to be handled in O(k + log m) time. Similarly, every pro-
cessor can perform fundamental operations on its own k-bit registers in O(log k) 
time. Finally, by  assuming a uniform access model, we can assume that every 
cycle can be  performed in Θ(1) time. Although this uniform access model is 
not perfect, it suits most of our needs and is the standard model used in the 
literature.

Memory Access (resolving data access conflicts): Conflicts in memory 
access can arise during both the read phase and the write phase of a cycle. How 
should one handle this? For example, if two processors are simultaneously 
 trying to read from the same memory location, should only one succeed? If so, 
which one? If two processors are simultaneously trying to write to the same 
memory location, i.e., the classic “race condition,” which one, if either, suc-
ceeds? Further, should a  processor be notified if it didn’t succeed? After we 
define the traditional PRAM variants of read and write access options, we will 
discuss ways in which they can be combined in order to produce common 
PRAM models.

Read Conflicts: Handling read conflicts is fairly straightforward. Two basic 
models exist.

 1. Exclusive Read (ER). The definition of an ER PRAM states that only one 
processor is allowed to read from a given memory location during a cycle. That 
is, it is considered an illegal instruction if at any point during the execution of a 
procedure, two or more processors attempt to read from the same memory lo-
cation. One might alternately think of this as a run-time error. So, while n reads 
may occur simultaneously during a read phase, no two simultaneous reads are 
permitted to be from the same memory location.

 2. Concurrent Read (CR). The definition of a CR PRAM states that multiple 
processors are allowed to read from the same memory  location during a 
clock cycle. So, while n reads may occur simultaneously during a read phase, 
there is no restriction on the memory locations from which the processors 
may read.
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PRAM (Parallel Random Access Machine) 73

Write Conflicts: Handling write conflicts is much more complex than handling 
read conflicts. A variety of options exist.

 1. Exclusive Write (EW). The exclusive write model permits only one processor 
to write to a given memory location during a clock cycle. That is, it is consid-
ered to be a run-time error if a piece of code results in two or more processors 
attempting to write to the same memory location during the same clock cycle. 
So, while n write operations may occur during the write phase, no two proces-
sors can write to the same memory location.

 2. Concurrent Write (CW). The concurrent write model allows multiple 
 processors to attempt to write to the same memory location simultaneously. 
That is, as many as n write operations occur during the write phase with no 
restriction on which processors write to which memory locations. This brings 
up an interesting point. How should one resolve write conflicts? A variety of 
arbitration schemes have been used in the literature. We list some of the 
 popular ones.

a. Priority CW. The priority CW model assumes that if two or more proces-
sors attempt to write to the same memory location during the same clock 
cycle, the processor with the highest priority succeeds. In this case, it is 
assumed that processors have been assigned priorities in advance of such 
an operation, and that the priorities are unique. Notice that there is no feed-
back to the processors as to which processor succeeds and which 
processor(s) fail.

b. Common CW. The common CW model assumes that all processors attempt-
ing a simultaneous write to a given memory location during the same clock 
cycle will write the same value. A run-time error occurs otherwise.

c. Arbitrary CW. The arbitrary CW model is quite interesting. This model 
assumes that if multiple processors try to write simultaneously to a given 
memory location during the same clock cycle, then one of them, arbitrarily, 
will succeed.

d. Combining CW. The combining CW model assumes that when multiple 
processors attempt to write simultaneously to the same memory location 
during the same clock cycle, the values written by these multiple proces-
sors are “magically” combined, and this combined value will be written to 
the memory location in question. Popular operations for the combining 
CW model include arithmetic functions such as sum and product, logical 
functions such as and, or, and xor, and higher-level fundamental opera-
tions such as min and max.

Standard PRAM Models. Now that we have defined some of the common 
ways in which reads and writes are arbitrated during the read and write phases 
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74 Chapter 4  Models of Computation

of an operation, respectively, on a PRAM, we will discuss the three popular 
PRAM models.

 1. CREW (Concurrent Read, Exclusive Write). The CREW PRAM is one of the 
most popular models because it is intuitively appealing to  assume that concur-
rent reads may occur, but concurrent writes may not occur.

 2. CRCW (Concurrent Read, Concurrent Write). The CRCW PRAM allows 
for both concurrent reads and concurrent writes. When we use such a model, 
the details of the concurrent write must be specified. Several choices of CW 
were discussed above.

 3. EREW (Exclusive Read, Exclusive Write). The EREW PRAM is the most 
restrictive form of a PRAM in that it forbids both concurrent reads and con-
current writes. Since only exclusive reads and writes are permitted, it is much 
more of a challenge to design efficient algorithms for this model. Further, due 
to the severe restrictions placed on the EREW PRAM model, notice that any 
algorithm designed for the EREW PRAM will run on the CREW and CRCW 
models. Note, however, that an optimal EREW algorithm may not be optimal 
on the CREW or CRCW PRAM.

One might also consider an ERCW (Exclusive Read, Concurrent Write) PRAM 
to round out the obvious combinations of options for PRAM reads and writes. 
However, the ERCW model is rarely mentioned in the literature. Notice that intui-
tively, if one assumes that hardware can perform concurrent writes, it is not intel-
lectually satisfying to assume that concurrent reads cannot be performed.

Discussion. The PRAM is one of the earliest and most widely studied parallel 
models of computation. However, it is important to realize that the PRAM is not a 
physically realizable machine. That is, while a machine with PRAM-type charac-
teristics can be built with relatively few processors, such a machine could not be 
built with an extremely large number of processors. In part, this is due to current 
technological limitations in connecting processors and memory. Regardless of the 
practical implications, the PRAM is a powerful model for studying the logical 
structure of parallel computation under conditions that permit theoretically opti-
mal communication. Therefore, the PRAM offers a model for exploring the limits 
of parallel computation, in the sense that the asymptotic running time of an opti-
mal PRAM algorithm should be at least as fast as that of an optimal algorithm on 
any other architecture with the same number of processors. It is worth noting that 
there are some exceptions to this last statement, but they are outside the scope of 
this book.

The great speed that is available through an efficient use of a PRAM is primar-
ily due to the fact that the PRAM ignores processor-to-memory communication 
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PRAM (Parallel Random Access Machine) 75

costs. This is because any two processors can communicate in Θ(1) time through 
the shared memory, as follows.

a. A source processor writes a data value to a predetermined memory location.

b. A destination processor reads the data value from the predetermined memory 
location.

By contrast, parallel computers based on other architectures may require a 
non-constant amount of time for communication between certain pairs of proces-
sors, as the data must be passed step-by-step between neighboring processors as it 
travels from a source processor to a destination processor.

EXAMPLES: FUNDAMENTAL ALGORITHMS

Now that we have introduced many of the critical aspects of the PRAM, it is 
appropriate to present several fundamental algorithms, along with some basic 
analysis of time and space. The first operation we consider is that of broadcast-
ing a piece of information. For example, suppose a particular processor con-
tains a piece of information in one of its registers that is required by all other 
processors. We can use a broadcast operation to distribute this information 
from the given source processor to all destination processors. The first broad-
cast algorithm we present is targeted at Concurrent Read PRAMs. Note that 
this algorithm will not work on Exclusive Read PRAM models.

Concurrent Read (CR) PRAM Broadcast Algorithm
Initial Condition: One processor, Pi, stores a value d in its jth register,
ri, j, that is to be broadcast to all processors.
Exit Condition: All processors store the value d in one of their registers.

Action:

 1.  Processor Pi writes the value d from register 
ri,j to shared memory location X.

 2.  In parallel, all processors read d from shared 
memory location X.

 End Broadcast

Step 1 runs in Θ(1) time, assuming that each processor knows whether or 
not it is the one broadcasting the data. Step 2 runs in Θ(1) time by using a con-
current read operation. Therefore, the running time of this algorithm is Θ(1), 
regardless of the number of processors.
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76 Chapter 4  Models of Computation

Now, consider the broadcast problem for an Exclusive Read PRAM. A simple 
modification to the previous algorithm could be made to allow each processor, in 
sequence, to read the data item from shared memory location X. However, this 
would result in an algorithm that runs in time linear in the number of processors, 
which is an inefficient use of the PRAM. That is, given an Exclusive Read PRAM 
with n processors, such an algorithm would run in Θ(n) time. Alternately, we could 
make multiple copies of the data, one for each processor, and then allow all pro-
cessors to read their respective copies simultaneously. We will take this approach. 
The algorithm follows.

Exclusive Read (ER) PRAM Broadcast Algorithm
Assumption: The ER PRAM has n processors.
Initial Condition: One processor, Pi, has the data value d stored in its jth 
register, ri, j, that is to be broadcast to all processors.
Exit Condition: All processors have the value d.

Action:

1.  Processor Pi writes the value d from register ri,j 
to shared memory location X1.

2.  For i = 1 to ⎡log2 n⎤, do
    In parallel, processors Pj, j ∈ {1,. . .,2i−1}, do
       read d from Xj
       If j + 2i−1 ≤ n then Pj writes d to xj+2i−1

    End Parallel
   End For
3.  Every processor Pi, i ∈ {1,. . .,n}, reads d from Xi.
End Broadcast

This is an example of a recursive doubling procedure. Note that during every 
iteration of the For-loop, the number of copies of the item to be broadcast doubles, 
either exactly or approximately. In general, such a procedure also implies that the 
number of processors that maintain a copy of the data item doubles from one step 
of the algorithm to the next. Note that for a PRAM, the number of memory loca-
tions associated with processors that contain a copy of the data doubles during 
each successive step. Since each step of reading and writing can be performed in 
Θ(1) time, regardless of the number of processors participating in the operation, an 
ER PRAM with n processors can perform a broadcast operation in Θ(log n) time.

Next, we consider PRAM algorithms to perform fundamental operations 
involving arrays of data. Let’s assume that the input to these problems consists of 
an array X = [x1, x2, . . . , xn], where each entry xi might be a record containing 
 multiple fields. When there is no confusion, we will make references to the key 
fields simply by referring to an entry xi.
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A semigroup operation is a binary associative operation. The term binary 
implies that the operator ⊗ takes two operands, say xi and xj, as input, and ⊗ is a 
well-defined operation for any values of its operands. The result of a semigroup 
operation ⊗ on xi and xj is denoted as xi ⊗ xj . The term associative means that 
(xi ⊗ xj) ⊗ xk = xi ⊗ (xj ⊗ xk). Note that we do not assume that ⊗ is commutative. 
That is, xi ⊗ xj may or may not be equal to xj ⊗ xi . Popular semigroup operators 
include max, min, sum, product, and OR. Sometimes we find it easier to present 
a concrete example. Therefore, we will choose min as our operator for several of 
the semigroup operations that follow. We first consider an efficient algorithm on a 
RAM to compute the minimum of a set X.

RAM Minimum Algorithm
Input: Array X.
Output: Minimum entry of X.
Local variables: i, min_so_  far

Action:

  min_so_far = x1
  For i = 2 to n, do
   If xi < min_so_far then min_so_far = xi
  End For
  return min_so_far
End Minimum

The analysis of this algorithm’s running time is fairly straightforward. Given 
an array of size n, each entry is examined exactly once, utilizing Θ(1) time per 
entry. Therefore, the running time of the algorithm is Θ(n). Further, given an 
unordered set of data, this is optimal since if we fail to examine any of the n ele-
ments, we may miss the minimal value and thus produce an incorrect result. 
Next, we consider the space requirements of this algorithm. Notice that Θ(n) 
space is used to store the array of data, and that the algorithm uses Θ(1) addi-
tional space.

Now consider a semigroup operation for the PRAM. The first algorithm we 
present is fairly intuitive. The algorithm uses a bottom-up, level by level, tree-like 
computation, as shown in Figure 4-3. The algorithm computes the minimum of 
disjoint pairs of items, then the minimum of these disjoint pairs, and so on until the 
global minimum has been determined. In Figure 4-4, we show how the processors 
cooperate in order to compute the minimum. The reader should note that the pro-
cessing presented in Figure 4-4 performs the computations that are presented in 
Figure 4-3. To simplify our presentation, we assume the size of the problem, n, is a 
power of 2.
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FIGURE 4-3 A bottom-up tree-like computation to compute 
the minimum of eight values. The global minimum can be 
computed in 3 parallel steps. Each step reduces the total 
number of candidates by half since computations are 
 performed in a simultaneous fashion throughout one level 
of processors at a time, from leaves to root.
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FIGURE 4-4 Another view of the minimum 
operation presented in Figure 4-3. This shows 
the action of a set of 4 processors. The data 
is presented as residing in a horizontal array. 
The processors that operate on data are 
shown for each of the three time steps.
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PRAM Minimum Algorithm (initial attempt)
Assumption: The CR or ER PRAM has n processors.
Input: An array X = [x1, x2, . . . , xn], in which the entries are drawn from a 
linearly ordered set.
Output: A smallest entry of X.

Action:

1.  Copy X to a temporary array T = [t1,t2,. . .,tn].
2.  For i = 1 to log2 n, do
      In parallel, processors Pj, j ∈ {1,.  . .,n/2i}, do
         a. Read t2j−1 and t2j
         b. Write min {t2j−1,t2j} to tj
      End Parallel
    End For
3.  If desired, broadcast t1 = min {x1,x2,. . .,xn}
End Minimum

Step 1 of the algorithm runs in constant time since all processors Pj can, in 
parallel, copy an element in Θ(1) time. That is, every processor can execute a state-
ment of the form tj ← xj in constant time. Notice that if we do not care about 
 preserving the input data, then we could omit Step 1. Step 2 runs in Θ(log n) time. 
This step performs the bottom-up, tree-type operation of computing pairwise 
 minima, then minima of minima, and so forth. The broadcast operation can be 
performed in Θ(1) time on a CR PRAM and in Θ(log n) time on an ER PRAM. 
Thus, the algorithm runs in Θ(log n) total time.

However, time is not the only measure of the quality of an algorithm. 
Sometimes we care about the efficient utilization of additional resources. We 
define a measure that considers both running time and productivity of the proces-
sors, as follows.

Definition: Let Tpar(n) be the time required for an algorithm on a parallel 
 machine with n processors. The cost of such an algorithm is defined as 
cost = n × Tpar(n), which represents the total number of cycles available during 
the execution of the given algorithm.

Since n processors are available in the preceding PRAM algorithm to deter-
mine the minimum value of an array, the cost of the algorithm is 
n × Θ(log n) = Θ(n log n). That is, during the time that the algorithm is execut-
ing, the machine has the capability of performing Θ(n log n) operations, regard-
less of how many operations it actually performs. Since the machine has the 
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80 Chapter 4  Models of Computation

capability of performing Θ(n log n) operations, and the problem can be solved 
with Θ(n) operations on a RAM, we know that this PRAM algorithm is not 
cost-optimal.

Let’s consider how we might improve this algorithm. In order to improve the 
cost of the algorithm, we might consider either reducing the number of processors, 
reducing the running time, or both. We might argue that with the model we have 
defined, we cannot combine more than a fixed number of data values in a proces-
sor during one clock cycle. Therefore, it must take a logarithmic number of clock 
cycles to combine the input data. Since our argument suggests that Θ(log n) time 
is required, let’s consider reducing the number of processors. So, consider the 
question of how many processors are required in order to obtain a cost-optimal 
algorithm without sacrificing the running time. That is, assuming that the running 
time remains at Θ(log n), what is the value of P, the number of processors, that 
will yield P × Θ(log n) = Θ(n)? The answer to this query is that the number of 
processors must be P = Θ(n/log n).

The algorithm that follows shows how to utilize P = Θ(n/log n) processors in 
order to determine the global minimum of n values in Θ(log n) time on a PRAM. 
Given a parallel architecture, where the processors can store more than a constant 
amount of data, the algorithm that follows will serve as an illustration of a hetero-
geneous fine-grained/coarse-grained algorithmic paradigm. Specifically, such an 
approach typically includes the following steps.

• An initial RAM algorithm that is run simultaneously on all processors.

• A “fine-grained” algorithm that operates on a single value per processor.

In addition, at times there is a final pass that executes a RAM algorithm simul-
taneously on all processors. See Figures 4-5 and 4-6. To simplify our presentation, 
we assume that n = 2k for some positive integer k. Note that if this assumption is 
not true, minor  modifications can be made to the algorithm that do not affect the 
asymptotic running time.

Processors:

Memory:

. . .

. . . . . . . . . . . . . .

P1

x1 x2 xnxlog n+1xlog n x2 log n xn-log n+1

P2 Pn/log n

FIGURE 4-5 Improving the performance of a PRAM algorithm by 
requiring each of n/log n processors to be responsible for log n 
data items.
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PRAM Minimum Algorithm (efficient and cost-optimal)
Assumption: The ER or CR PRAM has n/log2 n processors.
Input: An array X = [x1, x2, . . . , xn], drawn from a linearly ordered set.
Output: A smallest entry of X.

Action:

1.  Conceptually partition the data into n/log2 n 
 disjoint sets of log2 n items each. In parallel,  

    every processor Pj computes tj = min5xi6j log2 ni=(j−1)log2 n+1 
     using an optimal RAM algorithm, given previously. 

Since the data set operated on by Pj has size 
Θ(log n), this operation runs in Θ(log n) time.

2.  Use the previous PRAM algorithm to compute 
min{t1,t2,. . .,tn/log

2
 n} with n/log2 n processors in 

Θ(log (n/log n)) = Θ(log n) time.
End Minimum

The algorithm just described uses asymptotically fewer processors than 
there are data items of concern. This is an approach that we utilize throughout 

P1 

x1 xlog n . . .  . . . 

. . . P2 

t1 t2 

min{t1, t2, . . . , tn/log n} 

tn/log n 

Pn/log n 

P1 
. . . P2 Pn/log n 

. . . 

FIGURE 4-6 An algorithm for computing the  minimum 
of n items with n/ log2 n processors on a PRAM. 
Initially, every processor sequentially determines the 
minimum of the log2 n items that it is responsible for. 
Once these n/ log2 n results are known, then the 
 minimum of these values can be determined in 
Θ(log (n/log  n)) = Θ(log n − log log n) = Θ(log n) 
time on a PRAM with n/ log2 n processors.
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82 Chapter 4  Models of Computation

the text when considering cost-optimal or cost-efficient algorithms. In particu-
lar, we divide the data items over the number of processors. For example, sup-
pose there are P processors and D data items. Then we assume every processor 
is responsible for approximately D/P items. Each processor first works on its 
set of D/P items in a sequential manner. After the sequential phase of the algo-
rithm completes, each processor has reduced its information to only one item of 
concern, which in this case is the minimum of the items for which the processor 
is responsible. Finally, one item per processor is used as input into the simple, 
non-optimal parallel algorithm to complete the task. This may seem to be a 
 contradiction, but we will see several times in this book that a non-optimal 
algorithm can be a key tool in designing an optimal algorithm. Notice that 
this final parallel operation uses P items with P processors. Therefore, this 
PRAM algorithm runs in Θ(log n) time on n/log2 n processors. This results in a 
cost of n/log2 n × Θ(log n) = Θ(n), which is optimal. Therefore, we have a cost-
optimal PRAM algorithm for computing the minimum entry of an array of size 
n that also runs in time-optimal Θ(log n) time.

Now, let’s consider the problem of searching an ordered array on a PRAM. 
That is, given an array X = [x1, x2, . . . , xn] in which the elements are in some prede-
termined order, construct an efficient algorithm to determine if a given query ele-
ment q is present. Without loss of generality, let’s assume that our array X is given 
in nondecreasing order. If q is present in X, we will return an index i such that 
xi = q. Notice that i is not necessarily unique.

First, let’s consider a traditional binary search on a RAM. Given an ordered set 
of data, we have previously discussed how to perform a binary search in worst-
case Θ(log n) time (see Chapter 2, “Induction and Recursion”). Using this result as 
the base case for the parallel models, we know that we are aiming for algorithms 
with a worst-case total cost of Θ(log n), which is an extremely tight bound. The 
first model we consider is the CRCW PRAM.

CRCW PRAM Algorithm to Search an Ordered Array (initial attempt)
Assumption: We use an arbitrary CRCW PRAM of n processors.
Input: An ordered array, X = [x1, x2, . . . , xn], and search_value, the value 
sought
Output: succeeds, a flag indicating whether or not the search succeeds, and 
location, an index at which the search succeeds, if it does

Action:

 Processor P1 initializes succeeds = false
 In parallel, every processor Pi does the following.
  1.  read search_value and xi {Note that CR is used 

to read search_value.}
  2.  If xi = search_value then
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PRAM (Parallel Random Access Machine) 83

     succeeds = true
     location = i
      End If
 End Parallel
End Search

When this CRCW algorithm terminates, the value of the Boolean variable suc-
ceeds will be true if and only if search_value is found in the array. In the event that 
the item is found, the variable location is set to a position in the array where 
search_value exists. This position need not be unique, as there might be duplicate 
data values in the array. Now let’s consider the running time of the algorithm. 
Notice that the initial concurrent read runs in Θ(1) time. The time for every pro-
cessor simultaneously to compare its element to the query element is Θ(1). Finally, 
the two concurrent write operations run in Θ(1) time. Notice that the concurrent 
writes exploit the arbitrary property of the CRCW PRAM. Therefore, the total 
running time of the algorithm is Θ(1). Consider the cost of the algorithm on this 
architecture. Since Θ(1) time is required on a machine with n processors, the total 
cost is a less-than-wonderful Θ(n). Next, we present an alternative algorithm that 
is somewhat slower but more cost-efficient than the previous algorithm.

CRCW PRAM Algorithm to Search an Ordered Array (cost efficient)
Assumption: The arbitrary CRCW PRAM has f (n) = O(n) processors. For 
simplicity, we assume that f (n) is a factor of n.
Input: An ordered array X = [x1, x2, . . . , xn], and search_value, the item to 
search for

Action:

  Processor P1 initializes succeeds = false.
  In parallel, every processor Pi conducts a binary 

  search on the subarray cx(i−1)n
f(n)   +1

,x(i−1)n
f(n)   +2

,. . . ,x in
f(n) d 

End Search

The algorithm above is interesting in that it presents the user with a continuum 
of options in terms of the number of processors utilized and the effect that this 
number will have on the running time and total cost. So, if a primary concern is 
minimizing cost, notice that by using one processor, the worst case running 
time will be Θ(log n) and the cost will be Θ(log n), which is optimal. In fact, 
with the number of processors set to one, notice that this is the RAM binary 
search algorithm.

Now, suppose we are concerned with minimizing the running time. Then the 
more processors we use, the better off we are, although using more than n 
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84 Chapter 4  Models of Computation

 processors has no positive effect on the running time. In the case of an n processor 
system, we have already seen that the running time is Θ(1). In general, the 
 worst-case running time of this algorithm is Θ(log (n/f (n))), and the cost is 
Θ( f (n) log(n/f (n))). In particular, notice that if we use f (n) = Θ(log n) processors, 
the worst-case  running time will be Θ(log n), as in the case of the RAM, but pre-
sumably with a smaller constant of proportionality. In other words, this PRAM 
implementation should run significantly faster if other factors such as chip speed, 
optimized code, and so on, are the same. The cost of Θ(log2 n) will be very good, 
though not quite optimal.

Distributed-Memory vs. Shared-Memory Machines

Multiprocessor machines, i.e., parallel computing systems, are typically con-
structed with some combination of shared and distributed memory. When we 
 discuss such memory, it is important to note that we are discussing traditional, off-
chip, main memory. This memory is sometimes referred to as secondary memory 
to differentiate it from the various on-chip or near-chip cache memories.

A shared-memory machine provides physically shared memory for the proces-
sors, as shown on the left side of Figure 4-7. For small shared-memory machines, 

Memory Modules 

Interconnection Network 

M1 M2 Ml

P1 

M1 

P2 

M2 

Pk 

Mk 

P1 P2 Pk 

Interconnection N
etw

ork 

FIGURE 4-7 A traditional shared-memory machine is presented on 
the left, in which all k processors operate through an interconnec-
tion network and have equal unit-time access to all l memory 
 modules. A traditional distributed-memory machine is presented on 
the right in which each of the k processing elements, i.e., processor 
and memory pairs, communicates with every other processing 
element through an interconnection network.
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Interconnection Networks 85

networks can be constructed so that every processor can access every memory 
location in the same amount of time. Unfortunately, such machines cannot cur-
rently scale to large numbers of processors while preserving uniformly fast access 
time to memory.

In a distributed-memory machine, each processing element only has access to 
its own private/local memory, as shown on the right side of Figure 4-7. That is, in 
terms of the models discussed in this book, distributed-memory machines do not 
have global memory. Instead, one can think of the total memory of a distributed-
memory multiprocessor system as being distributed among the processors. On 
such machines, communication links are provided in order to allow processors to 
communicate with each other. This set of communication links defines the archi-
tecture’s interconnection network. So, in order for two processors that are not 
directly connected by a communication link to communicate, they must send data 
through intermediate processors that form a path between the two processors of 
interest. That is, processors that need to communicate must send messages to each 
other through their architecture’s interconnection network, which consists of the 
processing elements and their processor-to-processor bidirectional communica-
tion links.

Specifically, a distributed-memory parallel computer consists of a set of pro-
cessing elements, i.e., processor-memory pairs, and a well-defined set of bidirec-
tional interconnections between these processing elements. So, if processor Pi 
needs a copy of some information stored in the memory of processor Pj, then this 
information must be transported from processor Pj to processor Pi. This operation 
can be performed by having Pi initiate a request for information, which is sent 
through the interconnection network to processor Pj, followed by Pj sending the 
requested information back through the interconnection network to processor Pi. 
Such a communication can also be performed by a well thought-out algorithm in 
which processor Pj simply sends the information through the interconnection net-
work to Pi without receiving such a request.

In particular, it is very important to note that transporting a message from Pi to 
Pj might involve sending the message from Pi to Pa to Pb to Pc to . . . to Pj, where 
consecutive pairs of processors in the sequence are directly connected by commu-
nication links. That is, it is important to recognize that there is no guarantee that Pi 
and Pj are directly connected by the interconnection network, though there is a 
guarantee that in a distributed-memory parallel computer there exists at least one 
path between every pair of processors.

Interconnection Networks

In this section, we consider distributed-memory machines, which are con-
structed as processor-memory pairs connected by communication links to each 
other in a well-defined pattern. As stated in the previous section, a distributed-
memory machine consists of a set of processors, where every pair of processors 
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86 Chapter 4  Models of Computation

need not be connected, but in which there must exist a path between every pair 
of processors.

These machines also have a global control unit, which is used to broadcast 
instructions simultaneously to all processors in the network. Once an instruction is 
broadcast, it is executed by every processor simultaneously before the next instruc-
tion is issued. An important form of an instruction is a conditional instruction, 
which might act as a mask in terms of which processors perform operations of 
substance. For example, an instruction might be of the form “if the contents of 
register A is even, then add the contents of register B to the contents of register C 
and put the result in register D.” So, given a distributed-memory system with n 
processors, then all n processors will execute that instruction during the same 
clock cycle. However, only a processor with an even value stored in register A will 
add the contents of its register B to the contents of its register C and put the result 
in its register D. So, if 1 ≤ m ≤ n processors have an even value stored in register A, 
then m processors will simultaneously update the contents of their respective reg-
isters D. That is, m updates will occur simultaneously and depending on the values 
of registers B and C in each of these m processors, this might result in m different 
values being computed and stored throughout the distributed-memory machine.

These processor-memory pairs are often referred to as processing elements, or 
PEs, or sometimes just as processors, when this term will not cause confusion. 
The efficient use of an interconnection network to route data on a multiprocessor 
machine is often critical in the development of an efficient parallel algorithm. 
Interconnection networks can be characterized in a variety of ways. Some of the 
terminology used for this purpose follows.

 1. Degree of the network: The term degree comes from graph theory. The 
 degree of a processor is defined to be the number of bidirectional communica-
tion links attached to the processor. That is, the degree of processor A is the 
number of other processors to which processor A is directly connected. If we 
think of processors as corresponding to vertices and the communication links 
as corresponding to edges in an undirected graph, the degree of a processor is 
the degree of the corresponding vertex. Similarly, the degree of a network is the 
maximum degree of any processor in the network. Naturally, networks of high 
degree become very difficult to manufacture, even though high degree net-
works can be constructed to increase the efficiency of large data movement. 
From a practical point of view, with current technology, it is desirable to use 
networks of low degree whenever possible. In fact, if we are concerned with 
scaling the network to extremely large numbers of processors, then a small 
fixed degree is highly desirable.

 2. Communication diameter: The communication diameter of a network is 
defined to be the maximum of the minimum distance between any pair of pro-
cessors. That is, the communication diameter represents the longest path 
between any two processors, assuming that a shortest path between processors 
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Interconnection Networks 87

is always chosen. Therefore, a distributed-memory machine with a low com-
munication diameter is highly desirable, in that it allows for efficient commu-
nication between arbitrary pairs of processors.

 3. Bisection width: The bisection width of a network is defined to be the mini-
mum number of wires that have to be removed in order to disconnect the 
 network into two approximately equal size subnetworks. In general, machines 
with a high bisection width are more costly to build, but they provide the 
 possibility of moving large amounts of data efficiently.

 4. I/O bandwidth: The input/output bandwidth is not a primary concern in 
terms of the algorithms we consider in this book, as we typically assume that 
the data is already in the machine before our algorithms are initiated.  However, 
when considering the construction of a real machine, I/O bandwidth is cer-
tainly important.

 5. Running time: When comparing models of computation, it is often enlight-
ening to consider the time required to perform fundamental operations. Such 
operations include the following.

• Semigroup computations, such as min, max, sum, and so forth.
• Prefix computations, which will be defined later.
• Fundamental data movement operations, such as broadcast and sort.

  In fact, as we introduce some of the network models below, we will consider 
the efficiency of such routines.

To summarize, we want to design the interconnection network, i.e., network of 
processors, of a distributed-memory machine with certain characteristics. In order 
to reduce the cost of building a processor, we would like to minimize the degree of 
the network. In order to minimize the time necessary for individual messages to be 
sent long distances, we want to minimize the communication diameter. Finally, in 
order to reduce the probability of contention between multiple messages in the 
system, we want to maximize the bisection width. Unfortunately, it is often diffi-
cult to balance these design criteria, which may be in conflict. For example, a 
small network degree tends to result in a small bisection width and a large com-
munication diameter. In fact, we also would prefer to use a simple design, as sim-
plicity reduces the hardware and software design costs. Further, we would like the 
network embedded in the machine to be scalable, so that machines of various sizes 
can be manufactured in an economically feasible fashion.

Note that for the majority of parallel models of computation, it is assumed that 
all processors in a given model are identical. That is, all processors in a given par-
allel model have the identical register/cache/memory structure, internal bus, speed 
of computation, and so forth. It is also assumed that all processors have the same 
number of interconnection ports, even if they are not all used for some processors. 
In addition, it is assumed that the time it takes for data to travel across all commu-
nication links is identical.

C8208_ch04.indd   87C8208_ch04.indd   87 11/16/12   12:25 PM11/16/12   12:25 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
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Processor Organizations

In this section, we introduce a variety of distributed-memory network models. A 
network model consists of a set of processing elements and a well-defined set of 
links that connect the processors so that there are no isolated processors. These 
network models are characterized by i) the interconnection scheme between the 
processors, and ii) the fact that the memory is distributed among the processors. 
Again, it is very important to recognize that these network models are distributed-
memory systems and do not have any shared memory. In particular, it is the inter-
connection pattern that distinguishes these distributed-memory architectures from 
one another.

As we introduce several such network models, we will consider some of the 
measures discussed in the previous section. Notice, for example, that the commu-
nication diameter often serves as a limiting factor in the running time of an 
 algorithm. This measure serves as an upper bound on the time required for an arbi-
trary pair of processors to exchange information, and therefore as a lower bound on 
the running time of any algorithm that requires global exchanges of information.

Terminology: We say that two processors in a network are neighbors if and only if 
they are directly connected by a communication link. We assume these communica-
tion links are bidirectional. That is, if processor A and processor B are connected by 
a communication link, we assume that using this link, processor A can send data to 
processor B and, simultaneously, processor B can send data to processor A. Since 
sorting is a critical operation in network-based parallel machines, we need to define 
what it means to sort on such architectures. Suppose we have a list, X = [x1, x2, . . . , xn], 
with entries stored in the processors of a distributed-memory machine. In order for 
the members of X to be considered ordered, there must be a meaningful ordering not 
only of those entries that are stored in the same processor, but also of entries in dif-
ferent processors. We assume that there is an ordering of the processors. The nota-
tion R(i) is used to denote the ranking function for the processor labeled i. We say 
the list X is in ascending order if i < j implies

 1. xi ≤ xj, and

 2. if xi is stored in Pr and xj is stored in Ps, then either r = s or R(r) < R(s).

Similar statements can be made for data stored in descending order.

Linear Array

A linear array of size n consists of a string of n processors, P1, P2, . . . , Pn, where 
every generic processor is connected to its one or two neighbors (see Figure 4-8). 
Specifically, processor Pi is connected to its two neighbors, processors Pi−1 and 
Pi+1, for all 2 ≤ i ≤ n − 1. However, the two end processors, P1 and Pn, are each 
only connected to one neighbor. Given a linear array of size n, let’s consider some 
of the basic measures.
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P1 P2 P3 . . . Pn�1 Pn 

FIGURE 4-8 A linear array of size n.

Since n − 2 processors have degree 2 and two processors have degree 1, the 
degree of the network is 2.

Now consider the communication diameter, i.e., the maximum over the mini-
mum distances between any two processors. Consider the minimum number of 
communication links that need to be traversed in order for processors P1 and Pn to 
exchange information. The only way that a piece of data originating in P1 can 
reach processor Pn is by traversing through the other n − 2 processors. Therefore, 
the communication diameter is Θ(n). This is important in that it tells us that time 
linear in the number of processors is required to compute any function for which 
all processors may need to know the final answer. Now consider the minimum 
time required for a computation to be performed on two arbitrary pieces of data. 
Notice that information from processors P1 and Pn could meet in processor P⎡n/2⎤. 
However, this still requires ⎡n/2⎤ − 1 communication steps. Therefore, time linear 
in the number of processors is required, even in the best case, to solve a problem 
that requires arbitrary pairs of data to be combined.

Finally, we consider the bisection width of a linear array of size n. The bisec-
tion width of a linear array of size n is 1, as the communication link between 
 processors Pn/2 and P(n/2)+1 can be severed, and the result would be two linear arrays, 
each of size n/2. This is important when one considers an operation, such as sort-
ing, that might require data to move from one side of the linear array to the other. 
The bisection width tells us that there is only one line to carry data between each 
half of the linear array. This is similar to thinking about moving everyone as effi-
ciently as possible from exotic island A to exotic island B and everyone from exotic 
island B to exotic island A if there exists only a one lane bridge between A and B. 
So, if there are n/2 people on island A and n/2 people on island B, then regardless 
of the algorithm, it must take at least time proportional to n to accomplish this task.

It is important to note that some of the terminology introduced in the last sec-
tion can be used to determine lower bounds on time required to solve a problem. 
The distinction between a lower bound on the time to solve a problem and the 
lower bound on the running time of an algorithm is critical.

A lower bound on the time to solve a particular problem requires one to prove 
that a solution to the problem requires a minimum amount of time. When attempt-
ing to prove a lower bound on the time to solve a problem, one should not consider 
particular algorithms for solving the problem. One should consider properties of 
the problem, including input, output, required computations, number of proces-
sors, interconnection network, and so forth.

A lower bound on the running time of an algorithm requires a proof that the 
algorithm requires a certain amount of time.
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90 Chapter 4  Models of Computation

Understanding this distinction is important when one is considering efficient 
solutions to a problem. So, if we are able to construct an algorithm with a running 
time that matches the lower bound on the time to solve a problem, then we know 
that this algorithm is asymptotically optimal. That is, no other algorithm could 
possibly be asymptotically faster. Conversely, if the best algorithm we can con-
struct to solve a problem does not match the lower bound for the running time to 
solve the problem, then we cannot state that the algorithm is asymptotically opti-
mal. It may be that we are just not bright enough to provide an asymptotically 
superior algorithm. Then again, it may be that we are not bright enough to prove a 
higher lower bound on the running time to solve the problem.

Now let’s consider some basic operations on a linear array of size n. Assume 
that a set of data, X = [x1, x2, . . . , xn], is distributed so that data element xi is stored 
in processor Pi. First, we consider the problem of determining the minimum ele-
ment of array X. This can be done in several ways.

Our first approach is one in which all the data march left in lockstep fashion, and 
as each data item reaches processor P1, this leftmost processor updates the running 
minimum, as shown in Figure 4-9. That is, during the first step of the algorithm, 

Initial
Configuration

3 4 2 6 1 5

P1 P2 P3 P4 P5 P6

Step 1 4 2 6 1 5

Step 2 2 6 1 5

Step 3 6 1 5

Step 4 1 5

Step 5 5
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= 3
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r
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FIGURE 4-9 Computing the minimum of n items initially 
distributed one per processor on a linear array of size n. 
Notice that the data is passed in lockstep fashion to the 
left during every time step. The leftmost processor, P1, 
keeps the running minimum.
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Processor Organizations 91

processor P1, viewed as the leftmost processor in the linear array, sets a register that 
we call running_min to x1. During the second step of the  algorithm, simultaneously 
and in lockstep fashion, processors P2, . . . , Pn each send their data elements to the 
left. Now processor P1 sets running_min =  min {running_min, x2}. The procedure 
continues so that after i steps, processor P1 has the value of min {x1, . . . , xi}. 
Therefore, after n steps, the minimum of X is stored in processor P1.

Now, let’s assume that every processor needs to know this minimum value, 
which is currently stored in processor P1. Initially, processor P1, viewed as the left-
most processor in the linear array, can send this value to processor P2, its right neigh-
bor. If this value continues to move to the right during each step, then after a total of 
n − 1 such steps, all n processors will know the minimum of X. Therefore, the mini-
mum can be determined and distributed to all processors in Θ(n) time on a linear 
array of size n. Note that this result holds true, in fact, for any semigroup operation.

Notice that computing and distributing the result of a semigroup operation on 
a linear array of size n runs in Θ(n) time, which results in a cost of n × Θ(n) = Θ(n2). 
This is not very appealing, considering that such problems can be easily solved in 
Θ(n) time on a RAM. Therefore, we should consider whether or not it is possible 
to do better on a linear array of size n. Notice that we simply cannot do better, due 
to the Θ(n) communication diameter.

Next, consider whether or not we can reduce the communication diameter by 
reducing the number of processors and arrive at a cost-optimal algorithm. We have 
seen that if we use only one processor, given that all n data items are stored in the 
processor, then computing the minimum of n items can be performed in Θ(n) time, 
which would yield an optimal cost of Θ(n). However, this is not desirable if we 
wish to use a parallel computer, since the running time has not been reduced over 
that of the RAM. So, while we have considered the two extremes in terms of num-
bers of processors, i.e., both 1 and n, let’s now consider some intermediate value.

What value should we consider? We would like to balance the amount of work 
performed by each processor with the work performed by the network. That is, we 
would like to balance the number of data elements per processor, since the local 
minimum algorithm runs in time linear in the number of elements, with the num-
ber of processors, since the communication diameter is linear in the number of 
processors. Therefore, we consider a linear array of size n1/2, where each processor 
is responsible for n1/2 items, as shown in Figures 4-10 and 4-11.

FIGURE 4-10 Partitioning the data in preparation for computing the 
minimum of n items initially distributed on a linear array of size n1/2 
in such a fashion that each of the n1/2 processors stores n1/2 items.

Processors:

Data:

. . .

. . . . . . . . . . . . . .

P1

x1 x2 xnxn1/2+1xn1/2 x2n1/2 xn–n1/2+1

P2 Pn1/2
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92 Chapter 4  Models of Computation

An algorithm to compute the minimum of n data items, evenly distributed on 
a linear array of size n1/2, can be constructed with two major steps. First, each pro-
cessor runs the standard sequential semigroup algorithm on its own set of data. 
This step runs in time linear in the number of data elements stored in the proces-
sor. Next, the previous linear array semigroup algorithm is run on these n1/2 partial 
results. At the end of the parallel algorithm, the final global result will be known. 
Note that the final result is the minimum of the n1/2 local minima. Therefore, the 
running time of this hybrid algorithm is dominated by the Θ(n1/2) time to perform 
the RAM algorithm simultaneously on all processors, followed by the Θ(n1/2) time 
to determine the minimum of these n1/2 local minima, distributed one per proces-
sor on a linear array of size n1/2. Hence, the running time of the algorithm is Θ(n1/2), 
which results in an optimal cost of Θ(n).

Note that utilizing more processors does not always result in a faster algo-
rithm. This medium-grained algorithm that processes n data items with n1/2 pro-
cessors is actually faster than the earlier, fine-grained algorithm that processes n 
data items with n processors for computing the minimum on a linear array.

Suppose we have a linear array of size n, but that the data does not initially 
reside in the processors. That is, suppose we have to input the data as part of the 
problem. For lack of a better term, we will call this model an input-based linear 
array. Assume that the data is input to the leftmost processor, i.e., processor P1, 
and only one piece of data can be input per unit time. Assume that the data is 
input in reverse order and that at the end of the operation, every processor Pi 

P1
P2

x1 xn 1/2. . . . . .

. . .

. . . t1“local” min: t2

t2 t3

rmin = t1

. . .

P1 P2
. . . Pn 1/2

Pn 1/2

tn 1/2

FIGURE 4-11 Computing the minimum of n items initially 
 distributed on a linear array of size n1/2 in such a fashion that 
each of the n1/2 processors stores n1/2 items. In the first step, 
every processor sequentially computes the minimum of the n1/2 
items that it is responsible for. In the second step, the minimum 
of these n1/2 minima is  computed on the linear array of size 
n1/2 by the typical lockstep algorithm.
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Processor Organizations 93

must know both xi and the minimum of X. This can be accomplished by the fol-
lowing algorithm.

In the first step, processor P1 takes as input xn and initializes running_min to xn. 
In the next step, processor P1 sends xn to processor P2, inputs xn−1, and assigns 
running_min =  min{running_min, xn−1}. In general, during each step of the algo-
rithm, the data continues to march in lockstep fashion to the right, and the leftmost 
processor continues to store the running minimum, as shown in Figure 4-12. After 
n steps, all processors have their data element, and the leftmost processor stores 
the minimum of all n elements of X. As before, processor P1 can then broadcast 

FIGURE 4-12 Computing the minimum on an input-based 
linear array of size 6. During Step 1, processor P1 takes as 
input x6 = 5 and initializes running_min to 5. During Step 2, 
processor P1 sends x6 to processor P2, inputs xn−1 = 1, and 
assigns running_min =  min(running_min,xn−1) which is the 
minimum of 5 and 1. The algorithm continues in this fashion 
as shown, sending data to the right in lockstep fashion while 
the first processor keeps track of the  minimum value of the 
input data.
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94 Chapter 4  Models of Computation

the minimum to all other processors in n − 1 additional steps. Therefore, we have 
an optimal Θ(n) time algorithm for the input-based linear array to take in all input 
and have every processor Pi store both xi and the minimum of X.

We introduced this input-based variant of the linear array so that we could 
extrapolate an algorithmic strategy. Suppose we wanted to emulate this input-
based linear array algorithm on a traditional linear array of size n, in which the 
data is initially stored in the array.

This could be done with a tractor-tread algorithm, where the data moves as one 
might observe on the tractor-tread of many large construction vehicles or tanks. In 
the initial phase, view the data as marching to the right, i.e., riding the top of the 
tractor tread, so that when a data element hits the right wall, it turns around and 
begins its march along the bottom of the tractor tread to the left (see Figure 4-13). 

FIGURE 4-13 A tractor-tread algorithm. Data in the linear 
array moves to the right until it hits the right wall, where it 
reverses itself and starts to march to the left. Once the data 
hits the left wall, it again reverses itself. A revolution of the 
tractor-tread algorithm is complete once the initial data 
resides in its original set of processors. Given a linear 
array of size n, this algorithm allows every processor to 
view all n data items in Θ(n) time.
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Processor Organizations 95

That is, every processor initially starts by sending its data to the right, with the 
exception of the rightmost processor. When the rightmost processor receives data, 
during the next step, the rightmost processor will send the data to the left so that the 
data item can begin its journey to the left. When a data element hits the left wall, 
i.e., a data element is taken into the leftmost processor, it will again reverse direc-
tion and begin its journey to the right.

In general, every processor will continue to pass all the data that it receives in 
the direction it is going, with the exception of the first and last processors, which 
emulate the walls in a goalless game of air hockey, and serve to reverse the direc-
tion of data. So, after the initial n − 1 steps, notice that processor P1 will store a 
copy of xn, processor P2 will store a copy of xn−1, and so forth. That is, the data is 
now positioned so that processor P1 is prepared to accept as “input” xn, as in the 
input-based linear array algorithm. In fact, the input-based linear array algorithm 
can now be emulated with a loss in running time of these initial n − 1 steps. 
Therefore, the asymptotic running time of the algorithm remains as Θ(n).

Notice that this tractor-tread algorithm is quite powerful. It can be used, for 
example, to rotate all of the data through all of the processors of the linear array. 
This gives every processor an opportunity to view all of the data. Therefore, such 
an approach can be used to allow every processor to compute the result of a semi-
group operation in parallel. Notice that we have traded off an initial setup phase 
for the postprocessing broadcast phase. However, as we shall soon see, this 
approach is even more powerful than it might initially appear.

We now consider the very important problem of sorting data. The communica-
tion diameter of a linear array of size n tells us that Ω(n) time is necessary to sort 
n pieces of data distributed in an arbitrary fashion one item per processor. 
Alternately, by considering the bisection width, we know that in the worst case, if 
the n/2 items on the left side of the linear array belong on the right side of the 
array, and vice versa, then in order for n items to cross the single middle wire, 
Ω(n/1) = Ω(n) time is required.

We will now construct such a time-optimal sorting algorithm for this model. We 
first consider a simple algorithm for the input-based linear array of size n. Notice 
that the leftmost processor P1 will view all n data items as they come in. If that pro-
cessor retains the smallest data item and never passes it to the right, then at the end of 
the algorithm, processor P1 will store the minimum data item. Further, if processor 
P2 performs the same minimum-keeping algorithm, then at the end of the algorithm, 
processor P2 will store the minimum data item of all n − 1 items that it viewed (see 
Figure 4-14). That is, processor P2 would store the minimum of all items with the 
exception of the smallest item, which processor P1 never passed along. Therefore, at 
the end of the algorithm, processor P2 would store the second smallest data item.2

2 This algorithm can be illustrated quite nicely in the classroom. Each row of students can simulate 
this algorithm running on such a machine, where the input comes from the instructor standing in the 
aisle.
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FIGURE 4-14 Sorting data on an input-based linear 
array. Every processor simply retains the item that 
represents the minimum value it has seen to date. All 
other data continues to pass in lockstep fashion to the 
right. Notice that this is a minor generalization of the 
minimum algorithm illustrated in Figure 4-12.
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We now have an optimal Θ(n) time algorithm for the input-based linear array 
of size n. By using the tractor-tread method, we can emulate this algorithm to pro-
duce a time-optimal Θ(n) time algorithm for a linear array of size n. As an aside, 
we should mention that this sorting algorithm can be viewed as a parallel version 
of Selection Sort. That is, the first processor views all of the data and selects the 
minimum. The next processor views all of the remaining data and selects the mini-
mum, and so forth.

The final algorithm we consider for the linear array is that of computing the 
parallel prefix of X = [x1, x2, . . . , xn]. Assume that initially, every processor Pi 
stores data element xi. When the algorithm terminates, Pi must store the ith prefix, 
x1 ⊗ . . . ⊗ xi, where ⊗ is a binary associative operator. The algorithm follows.

First, we note that processor P1 initially stores x1, which is its final value. 
During the first step, processor P1 sends a copy of x1 to processor P2, which com-
putes and stores the second prefix, x1 ⊗ x2. During the second step, processor P2 
sends a copy of its prefix value to processor P3, which computes and stores the 
third prefix value, x1 ⊗ x2 ⊗ x3. The algorithm continues in this fashion for n − 1 
steps, after which every processor Pi stores the ith prefix, as required. It is impor-
tant to note that during step i, the ith prefix is passed from processor Pi to processor 
Pi+1. That is, processor Pi passes a single value, which is the result of x1 ⊗ . . . ⊗ xi, 
to processor Pi+1. If processor Pi passed all of the components of this result, 
x1, . . . , xi, to processor Pi+1, the running time for the ith step would be Θ(i), and 
the total running time for the algorithm would therefore be Θ1a n−1

i=1  i2 = Θ(n2). 
However, since only one data item is passed during every step, the running time of 
this algorithm is Θ(n). Notice that this is optimal for a linear array of size n since 
the data entries stored at maximum distance must be combined. In this case, no 
argument can be made with respect to the bisection width, since this problem does 
not require large data movement.

Ring

A ring is a linear array of processors in which the two end processors are con-
nected to each other, as shown in Figure 4-15. That is, a ring of size n consists of a 
linear array of n processors, P1, . . . , Pn, where processors P1 and Pn are connected. 
Specifically, processor Pi is connected to its two neighbors, Pi−1 and Pi+1, for 
2 ≤ i ≤ n − 1, and processors P1 and Pn are connected to each other.

Let’s examine some of our measures to see what advantages the ring pro-
vides over the linear array. The degree of both networks is 2. The communica-
tion diameter of a ring of size n is approximately n/2, which compares favorably 
with the n − 1 of the linear array. However, notice that this factor of approxi-
mately 1/2 is only a multiplicative constant. Thus, both architectures have the 
same asymptotic communication diameter of Θ(n). Although the bisection 
width does not really make sense in this model, if one assumes that the ring 
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98 Chapter 4  Models of Computation

FIGURE 4-15 A ring of size 8. All 
processors in a ring are connected 
to 2 neighbors.
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could be broken and then each subring sealed back up, this would require 
 severing/patching Θ(1) communication links, which is the same as the linear 
array. In fact, when we consider the ring compared to the linear array, the best 
we could hope for is a multiplicative factor of two improvement in the running 
time of algorithms.

In practice, being able to perform a task twice as fast is often a most welcome 
improvement. However, since this book is concerned primarily with the design and 
asymptotic analysis of algorithms, i.e., growth rate of the running time of algo-
rithms, the ring presents an uninteresting variant of the linear array, and will not be 
discussed further.

Mesh

In this book, we will use the term mesh to refer to a 2-dimensional, checkerboard-type, 
mesh-based computer, except where stated otherwise. A variety of 2-dimensional 
meshes have been proposed in the literature. In a traditional mesh, each generic 
processor has four neighbors, namely, the closest processor to its north, south, 
east, and west. The mesh itself is constructed either as a rectangular or square 
array of processors, as shown in Figure 4-16.

A simple variant of the four-connected mesh is an eight-connected mesh in 
which each generic processor is connected to its north, south, east, and west 
neighbors, as well as to its northeast, northwest, southwest, and southeast 
 neighbors. Meshes have also been proposed in which each processor has six 
 neighbors, i.e., a hexagonal mesh. Again, in this text, we use the term mesh to 
refer to a  traditional 4-connected square array of processors. Generally, the 
6-connected and 8-connected variants do not have asymptotically different run-
ning times for algorithms to solve fundamental problems than are exhibited by 
the 4-connected mesh.
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Processor Organizations 99

In particular, we restrict our attention to a traditional 2-dimensional square 
mesh, which will be referred to as a mesh of size n, where n = 4k, for k a positive 
integer. Throughout the text, we will show how to utilize effectively a divide-and-
conquer solution strategy on the mesh. This will be done by showing how to divide 
a problem into either two or four independent subproblems, map each of these 
subproblems to a submesh, recursively solve the smaller subproblems on each 
submesh, and then stitch the results together.

Now, let’s consider several of the measures that we have discussed. Given a 
mesh of size n, the interior processors have degree 4, the four corner processors 
have degree 2, and the remaining edge processors have degree 3. Therefore, the 
degree of a mesh of size n is 4. That is, the mesh is a fixed degree network.

Consider the communication diameter, i.e., the maximum distance over every 
pair of shortest paths in the network. Notice that on a mesh of size n, there are n1/2 
rows and n1/2 columns. So, transporting a piece of data from the northwest  processor 
to the southeast processor requires traversing n1/2 − 1 rows and n1/2 − 1 columns. 
That is, a message originating in one corner of the mesh and traveling to the oppo-
site corner of the mesh requires traversing a minimum of 2n1/2 − 2 communication 
links. Therefore, the communication diameter of a mesh of size n is Θ(n1/2).

P1,1 P1,2 P1,3 P1,4

P2,1 P2,2 P2,3 P2,4

P3,1 P3,2 P3,3 P3,4

P4,1 P4,2 P4,3 P4,4

FIGURE 4-16 A mesh of size 16. Each generic processor in 
a traditional mesh is connected to its four nearest neighbors. 
Notice that there are no wraparound connections and that 
the processors located along the edges of the mesh have 
fewer than four neighbors. Processors are labeled by row 
and column, as shown.
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100 Chapter 4  Models of Computation

Notice that if we are interested in combining information from two processors 
at opposite corners of a mesh of size n, such information could be sent to one of 
the middle processors in less than 2n1/2 − 2 steps. While the time to combine dis-
tant data may be an improvement over the time to transmit such data, notice that 
the improvement is only by a constant factor.

Determining the bisection width of a mesh of size n is straightforward. If 
we cut the links between the middle two columns, then we are left with two rect-
angular meshes of size n/2. If this is not intellectually satisfying, then we 
could sever the links between the middle two rows and the middle two columns 
and be left with four square meshes, each of size n/4. In any event, the bisection 
width of a mesh of size n is Θ(n1/2). Before considering some fundamental oper-
ations, we should note that the bisection width can be used to provide a lower 
bound on the worst-case time to sort a set of data distributed one piece 
per processor.

For example, suppose all data elements initially stored in the leftmost n/2 col-
umns need to move to the rightmost n/2 columns and vice versa. Moving n pieces 
of data between the middle two columns, which are joined by n1/2 communication 
links, requires Θ(n/n1/2) = Θ(n1/2) time.

We now turn our attention to some fundamental mesh operations. Since the 
mesh can be viewed as a collection of linear arrays stacked one on top of 
the other and interconnected in a natural fashion, we start by observing that the 
mesh can implement linear array algorithms independently in every row and/or 
column of the mesh. Of immediate interest is the fact that the mesh can perform 
a row (column) rotation simultaneously in every row (column), so that every 
processor will have the opportunity to view all information stored in its 
row (column).

Recall that a row rotation consists of sending data from every processor in lock-
step fashion to the right. When data reaches the rightmost processor, that rightmost 
processor will reverse the direction of travel of the data so that it marches to the left. 
When the data reaches the leftmost processor, that processor again reverses the 
direction of movement of the data so that it moves to the right until it reaches the 
processor where it originated, at which point the row rotation terminates.

Notice that at any point during the rotation algorithm, a processor is respon-
sible for at most two pieces of data that are involved in the rotation, one that is 
moving from left to right, which is viewed as the top of the tractor tread, and the 
other that is moving from right to left, which is viewed as the bottom of the tractor 
tread. A careful analysis will show that exactly 2n1/2 − 2 steps are required to per-
form a complete rotation. Recall that this operation is asymptotically optimal for 
the linear array.

Since a rotation allows every processor in a row (column) to view all other 
pieces of information in its row (column), this operation can be used to solve a 
variety of problems. For example, if it is required that all processors determine 
the result of applying some semigroup operation to a set of values distributed 
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Processor Organizations 101

over all the processors in its row/column, a rotation can be used to provide a time-
optimal solution.

In the following, it is useful to refer to a processor of a mesh by the notation 
Pi, j. The first subscript i represents the ith row of processors, 1 ≤ i ≤ n1/2, where the 
rows are numbered from top to bottom. Similarly, the second subscript j represents 
the jth column of processors, 1 ≤ j ≤ n1/2, where the columns are numbered from 
left to right. See Figure 4-16.

We now provide an algorithm for performing a semigroup operation over a set 
X = [x1,. . . ,xn], initially distributed one item per processor on a mesh of size n. 
This operation consists of performing a sequence of rotations. First, a row rotation 
is performed in every row so that every processor knows the result of applying the 
operation to the data elements in its row. Next, a column rotation is performed so 
that every processor can determine the final result, which is a combination of 
every row-restricted result. Notice that if the operation ⊗ is commutative, i.e., 
u ⊗ v = v ⊗ u for all operands u,v, then we need not worry about which data value 
is in which processor. However, if the operation is not commutative, then we 
assume the data is distributed in row-major fashion, where we mean that the first 
n1/2 items are distributed from left to right by index, one per processor, in the first 
row, while the next n1/2 items are distributed from left to right by index, one per 
processor, in the second row, and so on.

Mesh Semigroup Algorithm
Input: An input set X , consisting of n elements, such that every processor 
Pi, j initially stores data value xi, j.
Output: Every processor stores the result of applying the semigroup 
operation ⊗ to all of the input values.

Action:

a.  Simultaneously, every row i performs a row rotation 
so that every processor in row i knows the product 
ri = ⊗ j=1

n1/2xi,j.

b.  Simultaneously, every column j performs a column 
rotation so that every processor in column j knows 
the product p = ⊗ i=1

n1/2ri. Notice that this is the 

    desired product of ⊗i=1
n1/2 ⊗j=1

n1/2 xi,j.

End Semigroup Algorithm

This algorithm runs in Θ(n1/2) time, which is optimal for a mesh of size n. 
However, on a RAM, a simple scan through the data will solve the problem in Θ(n) 
time. Since our Θ(n1/2) time algorithm on a mesh of size n has a cost of 
Θ(n × n1/2) = Θ(n3/2) , it is not cost-optimal.
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102 Chapter 4  Models of Computation

So, let’s try to construct a cost-optimal semigroup algorithm for a mesh. In 
order to balance the local computation time with communication time based on the 
communication diameter, consider an n1/3 × n1/3 mesh, in which each processor 
stores n1/3 of the data items. Initially, every processor can perform a sequential 
semigroup operation on its set of n1/3 data items. Next, the n2/3 partial results, one 
per processor on an n1/3 × n1/3 mesh, can be used as input to the fine-grained mesh 
algorithm just presented. Notice that the sequential component of the algorithm, 
which operates on n1/3 data items, can be performed in Θ(n1/3) time. The parallel 
semigroup component also runs in Θ(n1/3) time. Therefore, the algorithm is com-
plete in Θ(n1/3) time on a mesh of size n2/3, which results in an optimal cost of 
Θ(n2/3 × n1/3) = Θ(n).

Row and column rotations are also important components of a broadcast oper-
ation for the mesh. Suppose a data item x is stored in an arbitrary processor Pi, j of 
a mesh of size n, and we need to broadcast x to all of the other n − 1 processors. 
Then a single row rotation, followed by n1/2 simultaneous column rotations, can be 
used to solve this problem, as follows. (See Figure 4-17.)

x x x x

x x x x

x x x x

x x x x

x x x x x

FIGURE 4-17 Broadcasting a piece of data on a mesh. First, a row rotation is performed in 
order to broadcast the critical data item to all processors in its row. Next, column rotations 
are performed simultaneously in every column in order to broadcast the critical data item to 
all remaining processors.

Mesh Broadcast Algorithm
Procedure: Broadcast the data value x, initially stored in processor Pi, j, the 
processor in row i and column j, to all processors of the mesh.

Action:

1.  Use a row rotation in row i to broadcast x to all 
processors in row i.
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Processor Organizations 103

2.  Simultaneously, for all columns j ∈ {1,2,...,n1/2}, 
use a column rotation to broadcast x to every 
 processor in column j.

End Broadcast

An analysis of the running time of the broadcast operation is straightforward. 
It consists of two Θ(n1/2) time rotations. Based on the communication diameter of 
a mesh of size n, we know that the running time for the algorithm is optimal for 
this architecture.

Tree

A tree of base size n is constructed as a full binary tree with n processors at the 
base level. In graph terms, this is a tree with n leaves. Therefore, a tree of base size 
n has 2n − 1 total processors (see Figure 4-18). The root processor is connected to 
its two children. Each of the n leaf processors is connected only to its parent. All 
other processors are connected to three other processors, namely, one parent and 
two children. Therefore, the degree of a tree network is 3. Notice that a tree with n 
leaves contains nodes at 1 + log2 n levels. Thus, any processor in the tree can send 
a piece of information to any other processor in the tree by traversing O(log n) 
communication links. This is done by moving the piece of information along the 
unique path between the two processors involving their least common ancestor. 
That is, information flows from one processor up the tree to their least common 
ancestor and then down the tree to the other processor. Therefore, the O(log n) 
communication diameter of a tree of base size n is far superior to the other network 
models that we have considered.

FIGURE 4-18 A tree of base size 8. Notice that base processors have 
only a single neighbor, i.e., their parent processors, the root only has 
two neighbors, i.e., its children processors, and the remaining 
 processors have three neighbors, namely, one parent and two children 
processors.
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104 Chapter 4  Models of Computation

Now, let’s consider the bisection width of a tree of base size n. The bisection 
width of a tree of base size n is Θ(1), since if the two links are cut between the root 
and its children, a tree of base size n will be partitioned into two trees, each of 
base size n/2.

A tree yields a nice (low) communication diameter, but a less than desirable 
(low) bisection width. So, the good news is that fundamental semigroup opera-
tions can be performed in Θ(log n) time, but the bad news is that Θ(n) data items 
cannot be moved efficiently between both halves of the tree.

Consider a semigroup operation on a tree of base size n. Assume that n pieces 
of data are initially distributed one per base processor. Then in order to compute a 
semigroup operation over this set of data, the semigroup operator can be applied to 
disjoint pairs of partial results in parallel as data moves up the tree level by level. 
Notice that after Θ(log n) steps, the final result will be known in the root proces-
sor. Naturally, if all processors need to know the final result, it can be broadcast 
from the root to all processors in a straightforward top-down fashion in Θ(log n) 
time. So, semigroup, broadcast, and combine-type operations can be performed in 
Θ(log n) time and with Θ(n log n) cost on a tree of base size n. Notice that the run-
ning time of Θ(log n) is optimal for a tree of base size n, and that the cost of 
Θ(n log n), while not optimal, is only a factor of Θ(log n) from optimal since a 
RAM can perform these operations in Θ(n) time.

Now, consider the problem of sorting or any routing operation that requires 
moving data from the leftmost n/2 base processors to the rightmost n/2 processors 
and vice versa. Unfortunately, the root serves as a bottleneck, since it can only 
process a constant amount of traffic during each clock cycle. Therefore, we need 
Ω(n) time in order to move n pieces of data from one side of the tree to the other.

Hence, the tree provides a major benefit over the linear array and mesh in 
terms of combining information, but is not well equipped to deal with situations 
that require extensive data movement.

Based on the advantages of a tree over a mesh in terms of communication diam-
eter, and the advantages of a mesh over a tree in terms of bisection width, we will 
consider architectures that combine the best features of these two architectures.

Pyramid

A pyramid of base size n combines the advantages of both the tree and the mesh 
architectures (see Figure 4-19). It can be viewed as a set of processors connected 
as a 4-ary tree. That is, a pyramid of base size n can be viewed as a tree in which 
every generic node has one parent and four children, where at each level, the pro-
cessors are connected as a 2-dimensional mesh. Alternately, the pyramid can be 
viewed as a tapering array of meshes, in which each mesh level is connected to 
the preceding and succeeding levels with 4-ary tree-type connections. Thus, the 
base level of the pyramid of base size n is a mesh of size n, the next level up is 
a mesh of size n/4, and so on until we reach the single processor at the root. 
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Processor Organizations 105

A careful count of the number of processors reveals that a pyramid of base size n 
contains (4n − 1)/3 processors. (An exercise at the end of this chapter asks the 
reader to prove the latter claim.)

The root of a pyramid only has links to its four children. Each base processor 
has links to its four base-level mesh neighbors and an additional link to a parent. A 
generic processor in the middle of a pyramid has nine connections, namely, one 
parent, four children, and four mesh-connected neighbors. Therefore, the degree of 

FIGURE 4-19 A pyramid of base size n can be viewed as a set of 
 processors  connected as a 4-ary tree, where at each level in the  pyramid, 
the processors at that level are connected as a 2-dimensional mesh. 
Alternately, it can be viewed as a tapering array of meshes. The root of 
a pyramid only has links to its four  children. Each base processor has 
links to its four base-level mesh neighbors and an additional link to 
a parent. In general, a generic processor somewhere in the middle of a 
pyramid is connected to one parent, four children, and has four 
 mesh-connected neighbors.

Apex Level 2

Level 1

Level 0Base
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106 Chapter 4  Models of Computation

the pyramid network is nine. The communication diameter of a pyramid of base 
size n is Θ(log n), since a message can be sent from the northwest base processor to 
the southeast base processor by traversing 2 log4 n links, which represents a worst-
case scenario. This data movement can be performed by sending a piece of data 
upwards from the base to the root and then downwards from the root to the base.

Consider the bisection width of a pyramid of base size n. The reader might 
picture a plane, i.e., a flat geometric object, passing through the pyramid, posi-
tioned so that it passes just next to the root and winds up severing connections 
between the middle two columns of the base. We now need to count the number of 
links that have been broken. There are n1/2 at the base, n1/2/2 at the next level, and 
so on up the pyramid, for a total of Θ(n1/2) such links. Consider passing two planes 
through the root, one that passes between the middle two rows of the base and the 
other that passes through the middle two columns of the base. This will result in 
four pyramids, each of base size n/4, with roots that were originally the children of 
the root processor. Therefore, as with the mesh of size n, the bisection width of a 
pyramid of base size n is Θ(n1/2).

Now consider fundamental semigroup and combination-type operations. Such 
operations can be performed on a pyramid of base size n in Θ(log n) time by using 
tree-type algorithms, as previously described. However, for algorithms that require 
extensive data movement, such as moving Θ(n) data between halves of the pyra-
mid, the mesh lower bound of Ω(n1/2) applies. So, the pyramid combines the 
advantages of both the tree and mesh architectures without a net asymptotic 
increase in the number of processors. Note that one of the reasons that the pyramid 
has not been more popular in the commercial marketplace is that laying out a scal-
able pyramid in hardware is a difficult process.

Mesh-of-Trees

We now consider another interconnection network that combines advantages of 
tree and mesh connections. The mesh-of-trees is a standard mesh computer with a 
tree above every row and a tree above every column, as shown in Figure 4-20. 
Specifically, a mesh-of-trees of base size n consists of a mesh of size n at the base 
with a tree above each of the n1/2 base columns and a tree above each of the n1/2 
base rows. Notice that these 2n1/2 trees are completely disjoint except at the base. 
That is, row tree i and column tree j only have base processor Pi, j in common. So, 
the mesh-of-trees of base size n has n processors in the base mesh, 2n1/2 − 1 pro-
cessors in each of the n1/2 row trees, and 2n1/2 − 1 processors in each of the n1/2 
column trees. Since the n base processors appear both in the row trees and the col-
umn trees, the mesh-of-trees has a total of 2n1/2(2n1/2 − 1) − n = 3n − 2n1/2 proces-
sors. Therefore, as with the pyramid, the number of processors in the entire 
machine is linear in the number of base processors.

Consider the degree of a mesh of trees of base size n. A generic base proces-
sor is connected to four mesh neighbors, one parent in a row tree, and one parent 
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Processor Organizations 107

in a column tree. Notice that processors along the edge of the mesh have fewer 
mesh connections. The root processor of every tree is connected to two children, 
and interior tree nodes are connected to one parent and two children. Note that 
leaf processors are mesh processors, which have already been discussed. 
Therefore, the degree of the mesh-of-trees of base size n is six as defined by a 
generic base processor. Such a processor has four mesh connections and serves as 
a leaf processor in each of two distinct trees, namely, one column tree and one 
row tree.

Next, consider the communication diameter of a mesh-of-trees of base size n. 
Without loss of generality, assume that base processor Pa,b needs to send a piece of 
information x to base processor Pc,d. Notice that processor Pa,b can use the tree 
over row a to send x to base processor Pa,d in O(log n1/2) = O(log n) time. Now, 

FIGURE 4-20 A mesh-of-trees of base size n consists 
of a mesh of size n at the base, with a tree above each 
of the n1/2 base columns, and a tree above each of the 
n1/2 base rows. Notice that the trees are completely 
disjoint except at the base. The mesh-of-trees of base 
size n has n processors in the base mesh, 2n1/2 − 1 
processors in each of the n1/2 row trees, and 2n1/2 − 1 
processors in each of the n1/2 column trees.

Processing Element in the base

Processing Element in a tree over the base

Communication Link (solid and dashed lines)
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108 Chapter 4  Models of Computation

processor Pa,d can use the tree over column d to send x to base processor Pc,d in 
O(log n1/2) = O(log n) time. Therefore, any two base processors can communicate 
by exploiting one row tree and one column tree in O(log n) time.

The bisection width of a mesh-of-trees can be determined by passing a plane 
through the middle two rows or columns, or both, of the base mesh. The analysis is 
similar to the pyramid, where the total number of links severed is Θ(n1/2).

Therefore, some of the objective measures of the pyramid and mesh-of-trees 
are similar. A difference between the two is that in a pyramid, the root of the pyra-
mid serves as a bottleneck, while for the mesh-of-trees, there is no such bottle-
neck. In fact, the mesh-of-trees offers more paths between processors. So, one 
might hope that more efficient algorithms can be designed for the mesh-of-trees 
than for the pyramid. However, the bisection width tells us that this is not possible 
for problems that require significant data movement. For example, for problems 
such as sorting, in which all data on the left half of the base mesh might need to 
move to the right half, and vice versa, a lower bound of Ω(n/n1/2) = Ω(n1/2) still 
holds. One can only hope that problems which require a moderate amount of data 
movement can be solved faster than on the pyramid.

Let’s first consider the problem of computing a semigroup operation on a set 
X = [x1, x2, . . . , xn], initially distributed one item per base processor in some rea-
sonable fashion. Within each row simultaneously, use the row tree to compute 
the operation over the set of data that resides in the row. Once the result is known 
in the root of a tree, it can be passed down to all base processors in the row. 
So, in Θ(log n) time, every base processor will know the result of applying the 
semigroup operation to the elements of X that are stored in its row. Next, per-
form a semigroup operation on this data simultaneously within each column by 
using the tree above each column. Notice that when the root processors of the 
column trees have their respective results, they all in fact have the identical final 
result, which they can again pass back down to the base processors. Therefore, 
after two Θ(log n) time tree-based semigroup operations, all processors know 
the final answer. As with the tree and pyramid, this is a time-optimal algorithm. 
However, the cost of the algorithm is again Θ(n log n), which is a factor of 
Θ(log n) from optimal.

Next, we consider a very interesting problem of sorting a reduced amount of data. 
This problem surfaces at times in the middle of a solution strategy. Formally, we 
are given a unique set of data, D = [d1, d2, . . . , dn1/2], distributed one per processor 
along the first row of the base mesh in a mesh-of-trees such that processor P1,i 
stores di. We wish to sort the data so that the ith largest element in D will be stored 
in processor P1,i.

The method we use will be that of Counting Sort. That is, for each element 
d ∈ D, we will count the number of elements smaller than d in order to determine the 
final position of d. In order to use Counting Sort, we first create a cross-product of 
the data so that each pair (di, dj) is stored in some processor, as shown in Figure 4-21. 
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Processor Organizations 109

FIGURE 4-21 Creating a cross-product of 
items <d1, d2, d3, d4>. Notice that processor 
Pi, j will store a copy of di and dj. That is, 
every processor in row i will store a copy 
of d i and every  processor in column j will 
store a copy of dj.

(d1,d1)  (d1,d2)  (d1,d3)  (d1,d4)  

(d2,d1)  (d2,d2)  (d2,d3)  (d2,d4)  

(d3,d1)  (d3,d2)  (d3,d3)  (d3,d4)  

(d4,d1)  (d4,d2)  (d4,d3)  (d4,d4)  

Notice that since the number of elements in D is n1/2, we have room in the base mesh 
to store all n1/2 × n1/2 = n such pairs. This cross-product is created as follows 
(see Figure 4-22). First, use the column trees in parallel to broadcast dj in column j. 
At the conclusion of this Θ(log n) time step, every base processor Pi, j will store a 
copy of dj. Now, using the row trees in parallel, in every row i, broadcast item di from 
processor Pi,i to all processors in row i. This operation also runs in Θ(log n) time. 
Therefore, after a row and column broadcast, every processor Pi, j will store a copy 
of dj, which was obtained from the column broadcast, and a copy of di, which 
was obtained from the row broadcast. At this point, the creation of the cross-product 
is complete.

Let row i be responsible for determining the rank of element di. Simultaneously 
for every processor Pi, j, set register count to 1 if dj < di, and to 0 otherwise. 
Now use the row trees to sum the count registers in every row. Notice that in every 
row i, this sum, which we call r(i), corresponds to the rank of di, the number of 
elements of D that precede di. Finally, a column broadcast is used within every 
column to broadcast di from processor Pi,r (i)+1 to processor P1,r (i)+1, completing 
the procedure.

The time to create the cross-product is Θ(log n), as is the time to determine the 
rank of every entry and the time to broadcast each entry to its final position. 
Therefore, the running time of the algorithm is Θ(log n), which is worst-case opti-
mal for the mesh-of-trees, due to the Θ(log n) communication diameter and the 
fact that d1 and dn1/2 might need to change places, i.e., processors P1,1 and P1, n1/2 
might need to exchange information. The cost of the algorithm is Θ(n log n). 
Notice that the cost is not optimal since Θ(n1/2) items can be sorted in Θ(n1/2 log n) 
time on a RAM.
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110 Chapter 4  Models of Computation

FIGURE 4-22 Sorting a reduced set of data on a mesh-of-trees (only the base 
mesh is shown). (a) The initial distribution of data consists of a single row of 
 elements. (b) The data after using the column trees to broadcast the data element 
in every column. (c) The result after using the row trees to broadcast the diagonal 
elements along every row. At this point, a cross-product of the initial data exists 
in the base mesh of the mesh-of-trees. (d) The result of performing row-rankings 
of the diagonal element in each row. This step is accomplished by performing a 
comparison in the base mesh followed by a semigroup operation in every row 
tree. (e) The result after performing the final routing step of the diagonal ele-
ments to their proper positions according to the rankings.
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Processor Organizations 111

Hypercube

The final network model we consider is the hypercube, as shown in Figure 4-23. 
The hypercube presents a topology that provides a desirable combination of a low 
communication diameter and a high bisection width. The communication diameter 
is logarithmic in the number of processors, which allows for fast semigroup and 
combination-based algorithms. This is the same as for the tree, pyramid, and mesh-
of-trees. However, the bisection width of the hypercube is linear in the number of 
processors, which is a significant improvement over the bisection width for the 
mesh, pyramid, and mesh-of-trees. Therefore, there is the possibility of moving 
large amounts of data quite efficiently.

1000 

0110 
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0000 

0100 

0101 

0001 

0011 1001 1011 

1111

1101 

1010 

1100 

1110 

0111 

FIGURE 4-23 A hypercube of size 16 with the processors indexed by the 
integers {0,1, . . . ,15}. Pairs of processors are connected if and only if their 
unique log2 16 = 4 bit strings differ in exactly 1 position.

Formally, a hypercube of size n consists of n processors indexed by the inte-
gers {0,1, . . . , n − 1}, where n > 0 is an integral power of 2. Processors A and B are 
connected if and only if their unique log2 n-bit strings differ in exactly one posi-
tion. For example, suppose that n = 8. Then the processor with binary index 011 is 
connected to three other processors, namely those with binary indices 111, 001, 
and 010.

It is often useful to think of constructing a hypercube in a recursive fashion, as 
shown in Figure 4-24. A hypercube of size n can be constructed from two hyper-
cubes of size n/2, which we refer to as H0 and H1, as follows. Place H0 and H1 side 
by side, with every processor labeled according to its log2(n/2)-bit string. Notice 
that there are now two copies of every index, one associated with H0 and one asso-
ciated with H1. We need to resolve these conflicts and also to connect H0 and H1 in 
order to form a hypercube of size n. So, that we may distinguish the labels of H0 
from those of H1, we will add a leading zero to every index of H0 and add a leading 
1 to every index of H1. Finally, we need to connect the corresponding nodes of H0 
and H1. That is, we need to connect those nodes that differ only in their (new) lead-
ing bit. This completes our construction of a hypercube of size n.
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FIGURE 4-24 Constructing a hypercube of size n from two 
subcubes each of size n/2. First, attach elements of subcube 
A to elements of subcube B with the same index. Then pre-
pend, i.e., add to the beginning, a 0 to the indices of subcube 
A and prepend a 1 to all indices of subcube B. Subcube A is 
shaded in each diagram for ease of presentation.

Based on this construction scheme, the reader should note that the number of 
communication links affiliated with every processor must increase as the size 
of the network increases. In particular, unlike the mesh, tree, pyramid, and mesh-
of-trees, the hypercube is not a fixed degree network. Specifically, notice that a 
processor in a hypercube of size n is labeled with a unique index of log2 n bits and 
is therefore connected to exactly log2 n other processors. So, the degree of a hyper-
cube of size n is log2 n. This value is also called the dimension of the hypercube. 
Further, in contrast to the mesh, pyramid, tree, and mesh-of-trees, all nodes of a 
hypercube are identical with respect to the number of attached neighboring nodes.

Next, we consider the communication diameter of a hypercube of size n. 
Notice that if processor 011 needs to send a piece of information to processor 100, 
then one option is for the piece of information to move systematically along the 
path of processors with the labels 011 → 111 → 101 → 100. Note that the piece 
of information could just as easily move along the path 011 → 010 → 000 → 100. 
Such traversal schemes work by “correcting,” if necessary, each bit in the proces-
sor labels between the source processor to the destination processor, specifically 
from the leftmost bit to the rightmost bit, in the first case, and from the rightmost 
bit to the leftmost bit, in the second case. Indeed, one could “correct,” if necessary, 
the logarithmic number of bits in any order and this would represent a valid path 
between neighboring processors. 

The important point is that one can send a  message from any processor to any 
other by visiting a sequence of nodes that must be connected, by definition of a hyper-
cube, since they differ in exactly one bit position. Therefore, the communication 
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Processor Organizations 113

diameter of a hypercube of size n is log2 n. However, unlike the tree and pyramid, 
multiple minimal-length paths traverse O(log n) communication links between many 
pairs of processors. This is an appealing property in that the hypercube shows prom-
ise of avoiding some of the bottlenecks that occurred in the previously defined net-
work architectures.

Now consider the bisection width of a hypercube of size n. From the construc-
tion procedure described near the beginning of this section, it is clear that any two 
disjoint subcubes of size n/2 are connected by exactly n/2 communication links. 
That is, the bisection width of a hypercube of size n is Θ(n). Therefore, we now 
have the possibility of being able to sort n pieces of data in Θ(log n) time, which 
would be cost-optimal. In fact, in Chapter 5, “Combinational Circuits,” we present 
a Bitonic Sort algorithm that demonstrates that n pieces of data, initially distrib-
uted one piece per processor on a hypercube of size n, can be sorted in Θ(log2 n) 
time. This result represents a significant improvement over the mesh, tree, pyra-
mid, and mesh-of-trees.

Of course, a major drawback to the hypercube is that it does not maintain a 
fixed interconnection network. Therefore, one cannot design and produce a generic 
scalable hypercube processor.

We should note that the hypercube is both node- and edge-symmetric in that 
nodes can be relabeled so that we can map one index scheme to a new index 
scheme and preserve connectivity. This is a very nice property and also means that 
unlike some of the other architectures, there are no special nodes. That is, there are 
no special root nodes, edge nodes, or leaf nodes, and so forth. And yet, we can 
often use algorithms designed for other architectures such as meshes or trees, 
since if we merely ignore the existence of some of a hypercube’s interprocessor 
connections, we may find the remaining connections form a mesh, tree, or other 
parallel architecture, or in some cases, an “approximation” of another interesting 
architecture.

In terms of fundamental operations, we will consider an efficient algorithm to 
perform a semigroup computation, which will also serve to illustrate a variety of 
algorithmic techniques for the hypercube. We will use the term k-dimensional 
edge to refer to a set of communication links in the hypercube that connect 
 processors that differ in the kth bit position of their indices. Without loss of gener-
ality, suppose we want to compute the minimum of X = [x0, x1, . . . , xn−1], where xi is 
initially stored in processor Pi.

Consider the simple case of a hypercube of size 16, as shown in Figure 4-25. 
In the first step, we send entries from all processors with a 1 in the most signifi-
cant bit to their neighbors that have a 0 in the most significant bit. That is, we use 
the 1-dimensional edges to pass information. The processors that receive infor-
mation, compute the minimum of the received value and their element, and store 
this result as a running minimum. In the next step, we send running minima from 
all processors with a 1 in their next most significant bit and that received data dur-
ing the previous step, to their neighbors with a 0 in that bit position, using the 
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(a) Initial  distribution of data. 
Data values are presented inside 
the processors. Processor labels 
are given as binary  numbers that 
are  positioned beside the 
 processors.
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(b) Step 1: Transmit-and-
compare along 1-dimensional 
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in the most significant bit).
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(e) Step 4: Transmit-and-
compare along 4-dimen-
sional edges. The result is 
the global  minimum stored 
in processor 0000.

FIGURE 4-25 An example of computing a semigroup operation on a hypercube of size n. For 
this example, we use minimum as the semigroup operation. In the first step, we send entries 
from all processors with a 1 in the most significant bit to their neighbors that have a 0 in the 
most significant bit. That is, elements from the right subcube of size 8 are sent to their 
 neighboring nodes in the left subcube of size 8. The receiving processors compare the two 
values and keep the minimum. The algorithm continues within the left subcube of size 8. 
After log2 16 = 4 transmission-and-compare operations, the minimum value (1) is known in 
processor 0000.

2-dimensional edges. The receiving processors again compute the minimum of 
the value received and the value stored. The third step consists of sending data 
along the 3-dimensional edges and determining the minima. That is, in the third 
step, data is sent from processor 0011 to processor 0001 and simultaneously from 
processor 0010 to processor 0000, where processors 0001 and 0000 each deter-
mine their running minimum. The final step consists of sending the running mini-
mum along the 4-dimensional edge from processor 0001 to processor 0000, which 
computes the final global minimum. Therefore, after log2 n = log2 16 = 4 steps, 
the final result is known in processor P0 (see Figure 4-26).

If we now wish to distribute the final result to all processors, we can simply 
reverse the process and in the ith step, send the final result along (log2 n − i + 1)-
dimensional edges from processors with a 0 in the ith bit to those with a 1 in the ith 
bit. Again, this takes log2 n = log2 16 = 4 steps. Clearly, a generalization of this 
algorithm simply requires combining data by cycling through the bits of the indi-
ces and sending data appropriately in order to determine the final result. If desired, 
this result can be distributed to all processors by reversing the communication 
mechanism just described. Therefore, semigroup, reporting, broadcasting, and 
general combination-based algorithms can be performed on a hypercube of size n 
in Θ(log n) time.
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116 Chapter 4  Models of Computation

Coarse-Grained Multiprocessors

In much of the discussion above, we have made the theoretically pleasant, but 
often unrealistic, assumption that we can scale the number of processors in a fine-
grained parallel computer, much as we assume we can scale the size of the  memory 
in a RAM. For example, in many problems, we assumed n data items were 
 processed by n processors. For several decades, this was simply not practical with 
the technology of the day. However, as of the writing of this text, General Purpose 
Graphic Processing Units (GPGPUs) are providing critical value to the high-
performance computing market. As such, the fine-grained paradigms and algo-
rithms that are discussed in this text are extremely important in terms of utilizing 
such machines to their fullest potential.

Current technology also provides for relatively small, yet cost-effective, com-
putational systems configured as coarse-grained parallel computers, where the 
number of processors q is much smaller than the number of data items n. Small or 
moderately sized coarse-grained multiprocessors are frequently used to solve 
medium-scale problems in computational science and engineering. In fact, such 
architectures are typically found on desktop workstations or in racks of multicore 
nodes, where a processor/node might contain 32 or more “cores,” i.e., compute 
elements. One can utilize coarse-grained algorithms that combine efficient sequen-
tial pre-processing steps with an overall fine-grained algorithmic approach, assum-
ing a large collection of such multi-core systems that can be programmed as a 
single system.

A common strategy for the development of efficient coarse-grained algorithms 
follows cost-effective strategies we have discussed earlier in this chapter, namely, 

FIGURE 4-26 Data movement in a semigroup operation on a 
 hypercube. The links of the hypercube of size 16 are labeled based 
on the step in which they are used to move data in the semigroup 
 operation shown in Figure 4-25.
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Coarse-Grained Multiprocessors 117

that of reducing the number of processors, where there is a significant amount of 
data per processor, and combining efficient sequential algorithms intertwined with 
parallel communication strategies. Recall that for a problem where the solution 
consists of Θ(1) data, the following strategy may be efficient.

 1. Each processor runs an efficient sequential algorithm on its share of the data to 
obtain a partial solution.

 2. The processors combine their partial solutions to obtain the problem’s  solution.

 3. If desired, broadcast the problem’s solution to all processors. 

For problems in which the first step’s partial solutions consist of Θ(1) data per  
processor, the second step can use a fine-grained algorithm to combine the partial 
solutions.

The Coarse-Grained Multicomputer CGM(n, q) is a model for coarse-grained 
parallel computing, for processing n data items on q processors. Thus, each pro-
cessor must have Ω(n/q) memory locations, sufficient to store the data for the 
problem at hand. It is customary to take q ≤ n/q (equivalently, q2 ≤ n). This assump-
tion facilitates many operations. For example, a gather operation, in which one 
data item from each processor is gathered into a designated processor Pi, requires 
that the number of items gathered, q, not exceed the storage capacity Ω(n/q) of Pi. 
Note that the description we give of a gather operation in Appendix 3 is more gen-
eral than the above.

The processors of a CGM make up a connected graph. That is, any processor 
can communicate with any other processor, although exchanging data between pro-
cessors may take more than one communication step. This graph could be in the 
form of a linear array, mesh, hypercube, pyramid, and so forth. The CGM model 
can also be realized on a PRAM, in which case we assume that each processor is 
directly connected, by means of the shared memory, to every other processor.

Suppose for a given problem, the best sequential solution runs in Tseq(n) time. 
In light of our discussion of speedup in the next section, the reader should con-
clude that an optimal solution to this problem on a CGM(n, q) runs in time

Tpar(n) =  
Tseq(n)

q
.

For many fundamental problems, CGM solutions make use of gather and scat-
ter operations. As discussed in Appendix 3, a gather operation collects a set S of 
data items that are distributed among the processors of the CGM into one proces-
sor Pj. That is, for each x ∈ S, we bring a copy of x to Pj. A scatter operation may 
be used to reverse a gather by returning each x ∈ S from Pj to the Pi that originally 
contained x. This is useful, for example, when x is a record with components that 
have been written into by Pj.
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118 Chapter 4  Models of Computation

Results of Appendix 3 imply that gather and scatter operations on sets of size 
q can be performed on a CGM(n, q) in O(q) time. In the following discussion, 
we make use of this fact. Consider the following algorithm for a minimum (or, 
more generally, semigroup) computation on a CGM(n, q).

CGM(n, q) Minimum Algorithm
Input: Array X, stored with the subarray 5xi6jn

q

i=(j−1)n
q +1 in Pj, j ∈ {1, . . . q}

Output: Minimum entry of X, known to each processor.

Action:

1.  In parallel, each processor Pj computes mj = 

     min5xi6jnqi=(j−1)nq+1, using the sequential algorithm 

   discussed above. This step runs in Θ(n/q) time. 
2.  Gather5mj6j=1

q
 into P1. This step runs in O(q) time.

3.  P1 computes the desired minimum value, M = 
min5mj6j=1

q
, using the sequential algorithm  

discussed above, in Θ(q) time.
4.  If desired, broadcast M to all processors. This can 

be done by a “standard” broadcast operation in O(q) 
time (see Exercises) or by attaching the value of M 
to each mj record in Θ(q) time and scattering the 
mj records to the processors from which they came, 
in O(q) time.

End Minimum

Since q ≤ n/q, the algorithm runs in Θ(n/q) time. This is optimal, since an opti-
mal sequential solution runs in Θ(n) time.

Notice that if we assume a particular architecture, such as a PRAM, mesh, 
hypercube, or other traditional models, for our CGM(n, q), the last three steps of 
the algorithm above can be replaced by faster fine-grained computations of the 
minimum that do not use gather/scatter operations. For example, on a mesh, the 
last three steps of the algorithm can be replaced by fine-grained mesh semigroup 
and broadcast operations that run in Θ(q1/2) time. Doing so, however, is likely to 
yield little improvement in the performance of the algorithm, which would still run 
in Θ(n/q) time. An advantage of our presentation above is that it covers all parallel 
architectures that might be used for a CGM.

Network of Workstations (NOW)

Beginning in the 1970s and 1980s, commodity workstations were deployed with some 
regularity. Some of these systems were relatively high-end Unix workstations, which 
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Coarse-Grained Multiprocessors 119

were typically used to solve scientific and engineering problems. In addition, per-
sonal computers were deployed in order to improve the efficiency of daily office-
type activities like word processing, maintaining spreadsheets, creating overheads 
for presentations, and so forth. During this time, labs of workstations started to 
emerge as a way for students or scientists to have shared access to such systems.

Scientists who relied on computation to perform leading-edge research, started 
to consider ways in which the aggregate compute power of a collection of worksta-
tions found in such a laboratory could be harnessed in order to provide a cost-
effective system for solving computationally intensive problems. At the time, the 
only real alternative for scientists to access high-end computational systems was to 
expend a significant effort to gain access to supercomputers, which were typically 
located at national labs and eventually at public government supported sites. This 
required either knowing the right people and/or submitting a proposal to be 
reviewed by a peer-reviewed committee. Once access was granted, these machines 
were typically very difficult to program.

By contrast, in order to use a laboratory of SunTM workstations, for example, 
one could write computer programs in traditional programming languages and use 
a vendor-supplied system software package called Remote Procedure Call (RPC) 
in order to allow the workstations to communicate with one another. Typically, 
RPC was used to create a master/worker system where one workstation would be 
designated as the master and would distribute jobs to available worker systems. 
Each worker would report back to the master when its job was complete. Such a 
configuration of workstations was ideal for computations that required many indi-
vidual jobs to be processed.

For example, in the late 1980s, the Shake-and-Bake algorithm for molecular 
structure determination was deployed in a graduate student laboratory of Sun 
workstations at the State University of New York at Buffalo. This procedure 
required starting with a representation of a random set of atoms, applying con-
straints to update the set of atoms continually, and then produce a potential solu-
tion to the molecular structure in question. Shake-and-Bake belongs to a family of 
multi-trial algorithms, where a large number of random starts is used and the 
aggregate final results are evaluated in order to determine if a solution to the prob-
lem was produced by any of the random starts. Additional Monte Carlo-type cal-
culations were also deployed in such a fashion.

One concern was that sometimes a worker node would fail or that a user 
would reboot such a machine. Therefore, such networks of workstations were 
best used when the solution strategy could tolerate failures in some of the jobs 
that were deployed.

For some problems where the specific random starting set of data was critical, 
the master would keep track of the jobs and if a job did not complete after a certain 
amount of time, it would simply re-deploy it. In other cases, such as Shake-and-Bake, 
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120 Chapter 4  Models of Computation

the master would just continue to deploy jobs with random starts until the requisite 
number of jobs was complete.

Simultaneously and independently, a group in the Computer Science Department 
at the University of Wisconsin, led by Miron Livny, recognized that such a comput-
ing methodology could be more generally applied to a wide variety of computa-
tional requirements. The result of the work by one group in distributed resource 
management and another in remote Unix systems led to the development of a proj-
ect called Condor.

According to the current Condor Web site, Condor is a specialized workload 
management system for compute-intensive jobs. Like other full-featured batch 
systems, Condor provides a job queueing mechanism, scheduling policy, priority 
scheme, resource monitoring, and resource management. Users submit their jobs 
to Condor, Condor places them into a queue, chooses when and where to run the 
jobs based upon a policy, carefully monitors their progress, and ultimately informs 
the user upon completion. It is important to note that in a traditional implementa-
tion of Condor on a NOW, it is perfectly acceptable for a program to fail on a 
worker node and that the system was typically used as a compute farm where indi-
vidual jobs would be farmed out to available nodes that had cycles available. 
Finally, Condor has been successfully implemented on a network consisting of 
many thousands of workstations to serve as a compute farm in order to solve a 
wide variety of problems.

Cluster

A compute cluster, also called a cluster for short, typically consists of a set of 
compute nodes that are capable of working together in a highly integrated fashion. 
The form factor of the nodes in a cluster can be standard desktop PCs, but they are 
more often than not a set of nodes designed to be placed in a rack. At this writing, 
a relatively standard rack is 42U high (~80 inches high), 19 internal inches wide 
(~24 inches in terms of the external width), and ~40 inches deep. Note that 1U 
(i.e., one rack unit) is 1.75 inches high and nodes typically range in size from 
1U-6U, with 1U and 2U units being the most common. Larger units (3U-6U) are 
currently more common for storage units, power distribution units, UPS units, or 
fairly specialized compute units. See Figures 4-27 and 4-28.

A cluster is typically viewed as a single system that consists of the following.

 1. A head node, which typically is the single-point-of-contact to the outside world 
and is used for debugging, maintains access to the external storage system, and 
manages the batch queuing system.

 2. A set of heterogeneous worker nodes, which may differ in the number of pro-
cessors per node, the number of cores per processor, the amount of memory 
per node/processor, the existence or lack thereof of an attached device, like a 
GPGPU unit, and so forth.
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Coarse-Grained Multiprocessors 121

 3. A storage system, which in its simplest form is connected solely to the head 
node, but in a highly data intensive environment, might be connected as a par-
allel I/O system to a subset of the worker nodes.

 4. A very high speed interconnection network.

In fact, a cluster may be composed of subclusters with different processor 
architectures, different interconnection networks, different versions of the operat-
ing system, and so forth, but is still managed by the same head node(s).

Compute clusters emerged as a result of convergence of trends, including the 
availability of the following.

 1. Low-cost microprocessors, which are often referred to as commodity off-the-
shelf systems, or COTS.

 2. Affordable very high speed networks, which currently include Gigabit 
 Ethernet, InfiniBand, Myrinet, and others.

 3. Software for high-performance distributed computing, including MPI (Mes-
sage Passing Interface), which is currently the most common means of 
 programming clusters consisting of tens or hundreds of thousands of nodes. 
MPI is an Application Programming Interface (API), that consists of a set of 

FIGURE 4-27 One of the authors, R. Miller, 
standing next to several racks of a 
 computational cluster. Notice the racks 
on the right side of the image consist of a 
large number of 2U computational units. 
The three racks on the left and behind R. 
Miller consist primarily of networking 
equipment and cables that provide 
 connectivity within the cluster.

FIGURE 4-28 One aisle showing a number 
of racks of a very large computational  cluster. 
Notice that the floor consists of  perforated 
tiles, which provide cooling from beneath the 
raised floor. Note that the nodes in the rack 
take cooling in from the front and export 
warm air out of the back. Therefore, in most 
computer rooms, you will notice alternating 
cool and hot aisles, where each aisle consists 
of either fronts (cool aisle; perforated tiles) 
of two sets of racks, or backs (warm aisle; 
no perforated tiles) of two sets of racks.
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122 Chapter 4  Models of Computation

subroutines or procedures that are easily invoked within standard program-
ming languages. For example, MPI contains a set of routines for sending and 
receiving data between nodes, as well as a set of routines for performing fun-
damental communications within a multiprocessor system.

Clusters are usually deployed in an effort to provide significant compute power 
in a cost-effective fashion to solve very large leading-edge problems. More often 
than not, however, they are actually used as high-throughput devices that provide a 
compute farm to a large community that runs large numbers of sequential codes. 
The compute farm model is obviously quite similar to how a NOW is typically used.

In order to visualize the difference between a NOW and a cluster, consider the 
following.

 1. A NOW may consist of a set of workstations situated throughout an entire 
 campus. These workstations include those on faculty desks, in laboratories, in 
student dorms, and so forth. In fact, some of the larger CONDOR systems 
 contain thousands of such workstations.

 2. A cluster might consist of between one and one thousand racks of very thin 
horizontal nodes stacked one on top of the other in each rack with a dedicated 
interconnection, a set of cables, behind the racks. The large cables typically 
use a large router to connect racks together, where each rack typically has a 
smaller router that connects the nodes within the rack.

Finally, the reader should note that for the past couple of decades, the vast 
majority of the world’s most powerful systems have been clusters. More recently, 
the fastest systems contain GPGPU systems attached to the compute nodes. The 
reader might find a look at the top500 list, along with some of the analysis and 
associated data, to be quite interesting and insightful. The top500 list and related 
materials, which is updated twice a year, may be found at www.top500.org.

Grid

A grid, as shown in Figure 4-29, allows a heterogeneous set of geographically dis-
tributed and independently operated resources to be linked together in a transpar-
ent fashion. Such resources include clusters, NOWs, data storage, sensors, 
visualization devices, and a wide variety of Internet-ready instruments, to name a 
few. The power of the grid lies in its ability to bring a variety of resources to bear 
on a particular problem while hiding details of utilization and location of resources 
from the user. For example, a user should be able to connect to a grid from any 
Internet-ready device, e.g., a cell phone, and through a simple interface, initiate a 
scientific experiment that requires applying an algorithm to a data set that is being 
constructed from a set of sensors, the result of which will be rendered and then 
returned to the user as an easy-to-evaluate image without knowledge of where 
the computation is performed, where the data is stored, or where the image/video 
is rendered.
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Coarse-Grained Multiprocessors 123

FIGURE 4-29 A schematic representation of a grid. A grid provides a user 
with seamless access to sensors, visualization devices, imaging systems, 
computational resources, databases, applications, and a wide variety of 
Internet-ready devices. A user need not know or care where all of these 
components are physically located.

Data  Acquisition Advanced  Visualization Analysis

Imaging Instruments Large Scale
Databases

Internet Ready
Devices (Large

Hadron Collider)
Computational Resources

The term “grid” comes from an analogy to the electric grid, where a user can 
simply plug a device into an outlet and get power without knowledge of where or 
how the power is supplied from some source to the outlet. Grids are now a viable 
solution to certain computationally- and data-intensive computing problems for 
reasons that include the following.

 1. The Internet is reasonably mature and able to serve as fundamental infrastruc-
ture for network-based computing.

 2. Network bandwidth, which recently has been doubling approximately every 
12 months, has increased to the point of being able to provide efficient and 
reliable services.

 3. Storage devices have reached commodity levels, where one can purchase a 
terabyte of disk for roughly the same price as a commodity PC.

 4. Many instruments are Internet-aware.

 5. Clusters, NOW, storage, and visualization devices are mainstream.

 6. Major applications, including critical scientific community codes, have been 
parallelized.

Limited and controlled grids have moved out of the research laboratories and 
are used as production systems. However, the focus of grid deployment continues 
to be on the difficult issue of developing high quality middleware in order to 
develop a general-purpose grid that coordinates resource sharing and problem 
solving in a dynamic, multi-institutional scenario using standard, open, general-
purpose protocols and interfaces that deliver a high quality of service.
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124 Chapter 4  Models of Computation

Many types of computational tasks are naturally suited to grid environments, 
including data-intensive applications. Grid-based research and development activities 
have generally focused on applications where data is stored in files. However, in many 
scientific and commercial domains, database management systems play a central role 
in data storage, access, organization, and authorization for numerous applications.

As grid computing initiatives move forward, issues of interoperability, secu-
rity, performance, management, and privacy must be carefully considered. In fact, 
security is concerned with various issues relating to authentication in order to 
insure application and data integrity. Grid initiatives are also generating best prac-
tice scheduling and resource management documents, protocols, and API specifi-
cations to enable interoperability.

Cloud

The standard joke is that what some companies call a “cloud” is what the rest of us 
call the “Internet.” On a serious note, while a cloud (c.f., Figure 4-30) has similarities 
to clusters and grids, one distinguishing definition of a cloud is that it is used to 
deliver computing as a service rather than as a product.

FIGURE 4-30 Software as a service includes application 
software including popular media applications and 
proprietary software, which sits on top of traditional 
software platforms (communication protocols, security, 
queueing systems, communication systems, operating 
systems), which sit on top of hardware platforms 
 (storage, compute systems, networking). One accesses 
a cloud through cell phones, workstations, tablets, 
 laptops, and servers, to name a few.

Softwareas a Service

Platforms

Infrastructure
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Cloud computing is often a term that refers to systems that provide computa-
tion, applications, storage, access to data, visualization, and so forth, to users 
without providing knowledge of the physical location and configuration of the 
system that delivers the services to the user. That is, one of the standard defini-
tions of a cloud is the Internet while another definition of a cloud is that it is a 
grid. Finally, many so-called clouds offered to the public are essentially special 
purpose clusters. This includes cloud services for data backups, cloud services to 
store your media, e.g., photos, videos, movies, and music, cloud services that pro-
vide access to computer programs and associated data, cloud services that provide 
access to software, hardware, and data for performing computational experiments, 
and so forth.

In an academic/research environment, one critical distinguishing feature of a 
cloud is that it is a system, ranging from a simple processor to a small cluster to a 
large grid, which typically involves provisioning of dynamically scalable and 
 virtualized resources. Like a grid, a cloud must provide ease of access to users, 
typically through a browser.

In the case of a physically small compute system, a cloud requires virtualiza-
tion in order to move systems and application software in and out of the compute 
system easily in order to satisfy a wide variety of user demands.

In fact, the tremendous impact of cloud computing on business has resulted 
in the reorganization of the IT infrastructure at organizations in order to decrease 
IT budgets.

Since NOW, clusters, grids, and clouds are not generally restricted to using a 
particular architecture or processors with uniform performance characteristics, it 
is not possible to give a “one-size-fits-all” analysis of an algorithm executed on 
such an environment. Tools developed in this book may help a user develop analy-
sis of an algorithm on a particular NOW, cluster, grid, or cloud.

Additional Terminology

In this chapter, we present an introduction to models of computation that will be 
used throughout the book. We also present fundamental algorithms for these mod-
els so that the reader can appreciate some of the similarities and differences among 
the models. We have intentionally avoided using too much terminology throughout 
this chapter and will continue that practice throughout the book. However, we feel 
it would be a disservice not to define some commonly used terminology, defini-
tions, and conjectures that are found in the scientific literature.

Flynn’s Taxonomy: In 1966, M.J. Flynn defined a taxonomy of computer archi-
tectures based on the concepts of both instruction stream and data stream. Briefly, 
an instruction stream is defined to be a sequence of instructions performed by the 
computer, while a data stream is defined to be the sequence of data items that are 
operated on by the instructions. Flynn defines the instruction stream as being either 
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126 Chapter 4  Models of Computation

single or multiple, and also defines the data stream as being either single or 
 multiple. In particular, he defines the following.

A single instruction stream, single data stream (SISD) machine consists of a 
single set of instructions executed one per cycle on a single set of data. The RAM 
model is an SISD model, where most individual cores fall into this category. This is 
the “von Neumann” model of computing.

A single instruction stream, multiple data stream (SIMD) machine consists of 
a set of processors with local memory, a control unit, and an interconnection net-
work. The control unit stores the program and broadcasts the instructions, one per 
clock cycle, to all processors simultaneously. All processors execute the same 
instruction at the same time, but on the contents of their own local memory. 
However, through the use of a mask, processors can be in either an active or inac-
tive state at any time during the execution of a program. Further, these masks can 
be determined dynamically. Networks of processors, such as the mesh, pyramid, 
and hypercube, can be built as SIMD machines. In fact, the algorithms that we 
have described so far for these network models have been described in an SIMD 
fashion. When one thinks about SIMD systems, one typically thinks of fine-
grained synchronous systems.

A multiple instruction stream, single data stream (MISD) machine is a 
model that doesn’t make much sense. One might argue that systolic arrays fall 
into that category, but such a discussion is not productive within the context of 
this book.

A multiple instruction stream, multiple data stream (MIMD) machine typi-
cally consists of a set of processors with local memory and an interconnection 
network. In contrast to the SIMD model, the MIMD model allows each processor 
to store and execute its own program. However, in reality, in order for multiple 
processors to cooperate to solve a given problem, these programs must at least 
occasionally synchronize and cooperate. In fact, it is quite common for an algo-
rithm to be implemented in such a fashion that all processors execute the same 
program. This is referred to as the single-program multiple-data (SPMD) program-
ming style. Notice that this style is popular since it is typically infeasible to write a 
large number of different programs that will be executed simultaneously on differ-
ent processors. Most commercially available multiprocessor machines fall into the 
MIMD category, including clusters, NOW, departmental servers, and so on. These 
systems contain multiple processors and either a physically or virtually “shared 
memory.” Further, most large codes implemented on such systems fall into the 
SPMD category.

Granularity: Machines can also be classified according to their granularity. 
That is, machines can be classified according to the number and/or complexity of 
their processors. For example, a commercial machine with a dozen or so very fast 
and complex processors would be classified as a coarse-grained machine, while a 
machine with hundreds of thousands of very simple processors would be 
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classified as a fine-grained machine. Most commercially available multiprocessor 
machines fall into the coarse-grained MIMD category. Of course, such terminol-
ogy is quite subjective and may change with time.

This terminology is also used to characterize the relationship between the 
amount of data being processed, n, and the number of processors, q. When 
n/q = Θ(1), we consider the machine to be fine-grained. When the ratio n/q is 
larger, we speak of medium-grained or coarse-grained parallel computers. We 
 usually call a computer medium-grained if n/q = ω (1) and q > n/q, and we call a 
computer coarse-grained if q ≤ n/q.

We now define some general performance measures. These are  common terms 
that the user is likely to come across while reading the scientific literature.

Throughput: The term throughput refers to the number of results produced per 
unit time. This is a critical measure of the effectiveness of our problem-solving 
environment, which includes not only algorithms used to solve problems, the com-
puting system, i.e., processors, interconnection network, memory, disk, access to 
disk, and so forth, but also the quality of any queueing system and other operating 
system features.

Cost/Work: Let Tpar(n, q) represent the length of time that an algorithm oper-
ating on n data items with q processors takes to solve a problem. Then the 
cost of such a parallel algorithm, as previously discussed, can be defined as 
C(n, q) = q × Tpar(n, q). That is, the cost of an algorithm is defined as the number 
of potential instructions that could be executed during the running time of the 
algorithm, which is clearly the product of the running time and the number of pro-
cessors. A term that is related to cost is work, which is typically defined to be the 
actual number of instructions performed regardless of the wall-clock time it takes 
to perform these operations.

Speedup: We define speedup as the ratio between the time taken for the most 
efficient sequential algorithm to perform a task and the time taken for the most 
efficient parallel algorithm to perform the same task on a machine with n 
 processors, which we denote as Sn,q = Tseq(n)/Tpar(n, q). The term linear speedup 
refers to a speedup of Sn,q = q. In general, linear speedup cannot be achieved since 
the coordination and cooperation of processors to solve a given problem must take 
some time. However, we have seen that it is often possible to achieve a speedup 
within a constant factor of linear, i.e., Sn,q = Θ(q). An interesting debate concerns 
the concept of superlinear speedup, or the situation where Sn, q > q.

For example, if we consider asymptotic analysis, then it would seem that a 
sequential algorithm could always be written to emulate the parallel algorithm with 
O(q) slowdown, which implies that superlinear speedup is not possible. However, 
assume that the algorithms are chosen in advance. Then several situations could 
occur. First, in a nondeterministic search-type algorithm, a multiprocessor search 
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128 Chapter 4  Models of Computation

might simply get lucky and discover the solution before such an emulation of the 
algorithm might. That is, the parallel algorithm has an increased probability of get-
ting lucky in certain situations. Second, effects of memory hierarchy might come 
into play. For example, a set of very lucky or unlucky cache hits could have a dras-
tic effect on running time.

Efficiency: The efficiency of an algorithm is a measure of how well utilized the 
processors are. That is, efficiency is the ratio of sequential running time and the 
cost on a q-processor machine, which is equivalent to the ratio between the q-pro-
cessor speedup and q. So, efficiency is given as En,q = Tseq(n)/C(n, q) = Sn,q /q.

Amdahl’s Law: While discussing speedup, we should define Amdahl’s Law, 
which states that the maximum speedup achievable by an n-processor machine is 
given by Sn ≤ 1/3 f + (1 − f )/n4 , where f is the fraction of operations in the compu-
tation that must be performed sequentially. So, for example, if five  percent of the 
operations in a given computation must be performed sequentially, then the 
speedup can never be greater than 20, regardless of how many processors are used. 
That is, a small number of sequential operations can significantly limit the speedup 
of an algorithm on a parallel machine.

Fortunately, what Amdahl’s Law overlooks is the fact that for many algorithms, 
the percentage of required sequential operations decreases as the size of the prob-
lem increases. Further, it is often the case that as one scales up a parallel machine, 
scientists often want to solve larger and larger problems, and not just the same 
problems more efficiently. That is, it is common enough to find that for a given 
machine, scientists will want to solve the largest problem that fits on that machine, 
and complain that the machine isn’t just a bit bigger so that they could solve the 
larger problem they really want to consider.

Scalability: We say that an algorithm is scalable if the level of parallelism 
increases at least linearly with the problem size. We say that an architecture is scal-
able if the machine continues to yield the same performance per processor as the 
number of processors increases. In general, scalability is important in that it allows 
users to solve larger problems in the same amount of time by purchasing a machine 
with more processors.

Summary

In this chapter, we discuss a variety of models of computation. These include the 
classical RAM model for single-processor computers, as well as several models of 
parallel computation, including the PRAM, linear array, mesh, tree, pyramid, 
hypercube, and others. For each model of computation, we discuss solutions to 
fundamental problems and give analysis of our solutions’ running times. We also 
discuss, for parallel models, factors that can limit the efficiency of the model, such 
as the communication diameter and the bisection width. Finally, we discuss 
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current coarse-grained systems, including Network of Workstations (NOW), clus-
ters, grids, and clouds, as well as some standard terminology and definitions.

Chapter Notes

The emphasis of this chapter is on introducing the reader to a variety of parallel 
models of computation. A nice, relatively concise presentation is given in 
“Algorithmic Techniques for Networks of Processors,” by R. Miller and Q.F. 
Stout in the Handbook of Algorithms and Theory of Computation, M. Atallah, ed., 
CRC Press, Boca Raton, FL, 1994–1998. A general text targeted at undergradu-
ates that covers algorithms, models, real machines, and some applications, is 
Parallel Computing Theory and Practice by M.J. Quinn (McGraw-Hill, Inc., New 
York, 1994). For a book that covers PRAM algorithms at a graduate level, the 
reader is referred to An Introduction to Parallel Algorithms by J. Já Já (Addison-
Wesley, Reading, MA., 1992), while advanced undergraduate students or gradu-
ate students interested primarily in mesh and pyramid algorithms might refer to 
Parallel Algorithms for Regular Architectures: Meshes and Pyramids by R. Miller 
and Q.F. Stout (The MIT Press, Cambridge, MA., 1996). For the reader interested 
in a text devoted to hypercube algorithms, see Hypercube Algorithms for Image 
Processing and Pattern Recognition by S. Ranka and S. Sahni (Springer-Verlag, 
1990). A parallel algorithms book that focuses on models related to those pre-
sented in this chapter is Introduction to Parallel Algorithms and Architectures: 
Arrays, Trees, Hypercubes by F.T. Leighton (Morgan Kaufmann Publishers, San 
Mateo, CA., 1992).

While Amdahl’s law is discussed or mentioned in most texts on parallel algo-
rithms, it is worth mentioning the original paper, “Validity of the single processor 
approach to achieving large scale computing capabilities” by G. Amdahl, AFIPS 
Conference Proceedings, vol. 30, Thompson Books, pp. 483–485, 1967. Similarly, 
Flynn’s taxonomy is a standard in texts devoted to parallel computing. The original 
articles by Flynn are “Very high-speed computing systems” by M.J. Flynn, 
Proceedings of the IEEE, 54 (12), pp. 1901–1909, 1966, and “Some computer 
organizations and their effectiveness” by M.J. Flynn, IEEE Transactions on 
Computers, C-21, pp. 948–960, 1972.

The coarse-grained multicomputer, CGM(n, q), was introduced in F. Dehne, 
A. Fabri, and A. Rau-Chaplin, “Scalable parallel geometric algorithms for multi-
computers,” Proceedings 9th ACM Symposium on Computational Geometry (1993), 
pp. 298–307, and has been used in many subsequent papers (see, e.g., F. Dehne, 
ed., special edition of Algorithmica 24, no. 3–4, 1999, devoted to coarse grained 
parallel algorithms). The proof that we give in Appendix 3 that gather and scatter 
algorithms can be performed on a CGM(n, q) in time approximately proportional 
to the amount of data being gathered or scattered appears in L. Boxer and R. Miller, 
“Coarse grained gather and scatter operations with applications,” Journal of 
Parallel and Distributed Computing 64 (2004), 1297–1320.
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For more about multiprocessor systems, see http://www.cloudbus.org/, a Web 
site for the IEEE/ACM International Symposium on Cluster, Cloud and Grid 
Computing (CCGrid), and also the book edited by P. Kacsuk, T. Fahringer and Z. 
Nemeth, entitled Distributed and Parallel Systems: From Cluster to Grid 
Computing, Springer Science+Business Media, New York, 2007.

The reader interested in additional information about a Network of Work-
stations (NOW) is referred to the Condor Web site, which is maintained at http://
research.cs.wisc.edu/condor/.

Two good references for additional information about clusters include the Web 
site for IEEE Cluster, which is http://www.ieeecluster.org/, as well as the Web site for 
an annual IEEE conference on cluster computing, at http://www.clustercomp.org/.

The reader interested in additional information about a grid might consider the 
book Introduction to Grid Computing, by F. Magoules, J. Pan, K.-A. Tan and A. 
Kumar, CRC Press, London, England, 2009, as well as the book by B. Wilkinson, 
entitled Grid Computing: Techniques and Applications, Chapman & Hall/CRC, 
Boca Raton, FL, 2010.

For more about cloud computing, see the following.

• IEEE Cloud: International Conference on Cloud Computing. http://www
.thecloudcomputing.org/

• G. Reese, Cloud Application Architectures: Building Applications and Infra-
structure in the Cloud, O’Reilly Media, Sebastopol, CA, 2009.

• B. Sosinsky, Cloud Computing Bible, Wiley Publishing, Inc., Indianapolis, 
IN, 2011.

The reader interested in additional information about programming GPGPU 
systems might consider Programming Massively Parallel Processors: A Hands-on 
Approach (Applications of GPU Computing Series), by D. B. Kirk and W.-m. W. 
Hwu, Morgan-Kaufmann Publishers, Burlington, Massachusetts, 2010. The reader 
interested in programming NVIDIA GPGPUs should consider the book CUDA by 
Example: An Introduction to General-Purpose GPU Programming, by J. Sanders 
and E. Kandrot, Addison-Wesley, Reading, Massachusetts, 2011.

For more general books focused on multicore systems, the reader is referred to 
the following.

• J. Kurzak, D.A. Bader, and J. Dongarra, Scientific Computing with Multicore 
and Accelerators, CRC Press, Boca Raton, FL, 2010.

• T. Rauber and G. Rünger, Parallel Programming for Multicore and Cluster 
Systems, Springer-Verlag Berlin Heidelberg, New York, 2010.

Exercises

 1. Consider the “star-shaped” architecture shown in Figure 4-31, which consists 
of n processors, labeled from 0 to n − 1, where processor P0 is directly con-
nected to all other processors, but for i, j > 0, i ≠ j, processors Pi and Pj are not 
directly connected.
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Exercises 131

FIGURE 4-31 A star-shaped computer of size 6.

0 

1 

3 

2 5 

4 

  a. Explain why this architecture has a “serial bottleneck” at processor P0 .
  b.  How much time is required to compute a semigroup operation ⊗ i=0

n−1xi on 
this architecture, where xi is stored in processor Pi?

  c.  Does the star-shaped configuration seem to be a useful arrangement of 
 processors for parallel computation?

 2. Consider an architecture consisting of n processors partitioned into two disjoint 
subsets, A and B, each with n/2 processors. Further, assume that each processor 
in A is joined to each processor in B, but no pair of processors having both mem-
bers in A or both members in B are joined. See Figure 4-32 for an example.

FIGURE 4-32 An architecture in which n processors 
are partitioned into two disjoint subsets of n/2 
 processors each.

A B

  a.  Design and analyze an efficient parallel algorithm for computing a 
 semigroup operation on this architecture that is faster than that possible for 
a star-shaped architecture. Assume the semigroup operation is given as 
⊗ i=0

n−1xi, where xi is stored in processor Pi.

  b.  What is the bisection width of this architecture? What does this imply about 
the practicality of this architecture?
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132 Chapter 4  Models of Computation

 3. Define an X-tree to be a tree machine in which neighboring processors on a 
level are connected. That is, each interior processor has two additional links, 
one to each of its left and right neighbors. Processors on the outer edge of the 
tree, with the exception of the root, have one additional link, to its neighboring 
node in its level.

  a. What is the communication diameter of an X-tree? Explain.
  b. What is the bisection width of an X-tree? Explain.
  c. Give a lower bound on sorting for the X-tree. Explain.

 4. Suppose that we have constructed a CRCW PRAM algorithm to solve prob-
lem A in O(t(n)) time. When we begin to consider solutions to problem A on a 
CREW PRAM, what information will help us bound the running time to solve 
this problem on a CREW PRAM? Justify your answer.

 5. Suppose that problem A can be solved on a CREW PRAM in Θ(t(n)) time. If 
we now consider a solution to the same problem A on an EREW PRAM, how 
does the CREW PRAM algorithm help us in determining a lower bound on the 
running time to solve this problem on an EREW PRAM?

 6. Give an asymptotically optimal algorithm to sum n values on a 3-dimensional 
mesh. Discuss the running time and cost of your algorithm. Give a precise 
definition of your model.

 7. Give an efficient algorithm to sum n values on a hypercube.

 8. Define a linear array of size n with a bus to be a 1-dimensional mesh of size n 
augmented with a single global bus. Every processor is connected to the bus, 
and in each unit of time, one processor can write to the bus and all processors 
can read from the bus. That is, the bus may be thought of as a CREW bus.

  a.  Give an efficient algorithm to sum n values, initially distributed one per 
processor. Discuss the time and cost of your algorithm.

  b.  Give an efficient algorithm to compute the parallel prefix of n values,  initially 
distributed one per processor. Discuss the time and cost of your algorithm.

 9. Show that a pyramid computer with base size n contains (4n − 1)/3 processors. 
Hint: Let n = 4k for integer k ≥ 0, and use mathematical induction on k.

 10. Why is it unrealistic to expect to solve an NP-complete problem on the PRAM 
in polylogarithmic time using a polynomial number of processors?

 11. a.  Show that a gather operation, in which one data item is collected from each 
processor of a linear array of q processors, runs in Ω(q) time in the worst case.

  b.  Devise an algorithm to gather one data item from each processor of a linear 
array of q processors into any one of the processors. Analyze the running 
time of your algorithm. Hint: an efficient algorithm will run in Θ(q) time. 
Note this shows that Θ(q) is optimal for such an operation, and the O(q) 
time we have claimed for a gather of q data items on a CGM(n, q) is opti-
mal in the worst case, i.e., with respect to the worst case architecture.
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Exercises 133

 12. Given a set of q data items, assume that algorithms for gather and scatter oper-
ations are available to apply to a set of q data items that run in Θ(q) time on a 
CGM(n, q). State and analyze the running time of an efficient algorithm to 
broadcast a value from one processor of a CGM(n, q) to all processors.

 13. The model of computation for this problem is a fine-grained SIMD parallel 
computer configured as a master set of n1/4 × n1/4 mesh of n1/4 × n1/4 base 
meshes, as illustrated in Figure 4-33. That is, each processor of the master 
n1/4 × n1/4 mesh serves as a communications processor for its n1/4 × n1/4 base 
mesh. Each communications processor is connected to every processor of its 
base mesh. For the sake of simplicity, assume all processors, master or base, 
run at identical speed, and all communications links between any two proces-
sors carry a unit of data in the same constant amount of time.

  a.  Give an efficient algorithm to broadcast a unit of data from a processor in a 
base mesh to all processors in this architecture in optimal time.

  b.  Suppose a list of numbers is distributed one member per base processor of 
this architecture. Give an efficient algorithm to compute the total of these 
numbers, and show its running time is optimal for this architecture. You 
may make use of the fact that addition is commutative.

  c.  Suppose a list of data records is distributed one member per base processor 
of this architecture. Give a lower bound for the running time of any algo-
rithm to sort this list.

FIGURE 4-33 A cluster made up of a 2 × 2 mesh 
of  2 × 2 meshes. The processors labeled a, b, c, 
and d, are communications processors for each 
of the processors in a base mesh.

a
b

c
d
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In this chapter, we present efficient algorithms to sort data on a PRAM and on a 
hypercube. In addition, the methodology presented in this chapter is used later in the 

book to provide sorting algorithms for mesh-based architectures.
A significant portion of the computing cycles in the 1960s and 1970s was devoted 

to sorting/ordering data. As a result, a substantial effort has been put into developing 
efficient sorting techniques.

The focus of this chapter is on a then-revolutionary Bitonic Sort algorithm intro-
duced in 1968 by Ken Batcher. The algorithm was proposed for a simple hardware 
model, which we will present. We will also discuss implementations of Bitonic Sort on 
several models of computation that we introduced in Chapter 4.

It is important to note that using hardware to sort data also provides an efficient 
way to route data on circuit boards, which was one of Batcher’s motivations. In fact, in 
his seminal 1968 paper, Batcher actually proposed two hardware-based sorting algo-
rithms, namely, Bitonic Sort and Odd-Even Merge Sort. Both of these algorithms are 
based on a Merge Sort framework. Both algorithms are also presented for a simple 
hardware model. Further, in the case of Bitonic Sort, Batcher makes the insightful 
observation that such an algorithm would be very efficient on a parallel computer with 
the interconnection properties of a hypercube.
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136 Chapter 5  Combinational Circuits

Combinational Circuits and Sorting Networks

We begin this chapter with a presentation of combinational circuits. A combina-
tional circuit is a hardware model that consists of a unidirectional flow of data 
from input to output through a series of basic functional units. We present illustra-
tions of combinational circuits that show the flow of information. The input data 
flows along communication lines, through functional units that perform basic 
operations, and the results are finally presented as output. The functional units are 
represented by boxes. It is understood that, in these diagrams, the information 
flows from left to right.

After this introduction, we discuss Batcher’s Bitonic Merge Unit, as applied to 
combinational circuits. We then present an in-depth analysis of the running time of 
the Bitonic Merge routine on this model. Finally, we conclude with a combina-
tional circuit implementation and analysis of Bitonic Sort, which takes advantage 
of this very interesting Bitonic Merge Unit.

Combinational circuits were among the earliest models developed in terms of 
providing a systematic study of parallel algorithms. They have the advantage of 
being simple, and many algorithms that are developed for combinational circuits 
serve as the basis for algorithms presented elsewhere in this book for other models 
of parallel computing.

A combinational circuit can be thought of as taking input from the left, allow-
ing data to flow through a series of functional units in a systematic fashion, and 
producing output at the right. The functional units in the circuit are quite simple. 
Each such unit performs a single operation in Θ(1) time. These operations include 
logical operations such as and, or, and not, comparisons such as < , > , and = , and 
fundamental arithmetic operations such as addition, subtraction, minimum, and 
maximum.

These functional units are connected to each other by unidirectional links, 
which serve to transport the data. These units are assumed to have constant fan-in 
and constant fan-out. That is, the number of links entering a functional unit and the 
number of links exiting a functional unit are both bounded by a constant.

In this chapter, we restrict our attention to comparison-based combinational 
networks in which each functional unit simply takes two values as input and pres-
ents these values ordered on its output lines. Finally, it should be noted that there 
are no cycles in these circuits.

Sorting Networks

We consider a comparison-based combinational circuit that can be used as a 
 general-purpose sorting network. Such sorting networks are said to be oblivious to 
their inputs since this model fixes the sequence of comparisons in advance. That 
is, the sequence of comparisons is not a function of the input values. Notice that 
some traditional sorting routines, such as Quicksort or Heapsort, are not oblivious 
in that they perform comparisons that are dependent on the input data.
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Combinational Circuits and Sorting Networks 137

While Bitonic Sort was originally defined in terms of sorting networks, it was 
intended to be used not only as a sorting network, but as a simple switching net-
work for routing multiple inputs to multiple outputs. The basic element of a sorting 
network is the comparison element, which receives two inputs, say, A and B, and 
produces both the minimum of A and B and the maximum of A and B as output, as 
shown in Figure 5-1.

FIGURE 5-1 An illustration of a comparison 
element. This is the fundamental element of a 
sorting network. The comparison element 
receives inputs A and B and produces outputs 
min(A,B) and max(A,B).

A min(A,B)

B max(A,B)

The reader should notice that by including the third case in the Definition, the 
first two cases become equivalent, and thus redundant. The third case can be inter-
preted as stating that a circular rotation of the members of the sequence yields 
an example of one of the first two cases. For example, the sequence 83, 2, 1, 6, 8, 24, 15, 109  is bitonic, since there is a circular rotation of the 
sequence that yields 86, 8, 24, 15, 10, 3, 2, 19 , which satisfies case 1.

A bitonic sequence can therefore be thought of as a circular list that obeys the 
following.

• Start a traversal at the entry in the list of minimal value, which we will refer 
to as x.

• Traverse the list in either direction. During a traversal, we will encounter elements 
in nondecreasing order until we reach a maximum element in the list, after which 
we will encounter elements in nonincreasing order until we return to x. Notice 
that if there are duplicate elements in the sequence, then there will be plateaus in 
the traversal where multiple items of the same value appear contiguously.

Definition: A sequence a = 8a1, a2, . . ., ap9  of p numbers is said to be 
bitonic if and only if

 1. a1 ≤ a2 ≤ . . . ≤ ak ≥ . . . ≥ ap, for some k, 1 < k < p, or

 2. a1 ≥ a2 ≥ . . . ≥ ak ≤ . . . ≤ ap, for some k, 1 < k < p, or

 3. a can be split into two parts that can be interchanged to give either of the 
first two cases.
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138 Chapter 5  Combinational Circuits

Before introducing a critical theorem about bitonic sequences, we make an 
important observation about two monotonic sequences. Given one ascending 
sequence and one descending sequence, they can be concatenated to form a bitonic 
sequence. Therefore, a network that sorts a bitonic sequence into monotonic order 
can be used as a merging network. That is, such a network will take as input a 
bitonic sequence and produce as output a sorted sequence. In particular, given any 
of i) the concatenation of ordered list A and the reverse of ordered list B, ii) the 
ordered list B concatenated to the reverse of ordered list A, iii) the reverse of ordered 
list A concatenated to ordered list B, or iv) the reverse of ordered list B concatenated 
to ordered list A, a bitonic merge network will produce a sorted list of A

∩

B.
The proof of the theorem that follows is critical to an understanding of bitonic 

sequences and bitonic merge units. More importantly, the proof is constructive in 
that it can be used to devise a combinational circuit of a bitonic merge unit or an 
algorithm for performing Bitonic Merge. We urge the reader to comprehend fully 
the intricacies of the proof in order to understand and appreciate the construction 
of a wide variety of parallel sorting methods that will be presented in this text.

Theorem: Given a bitonic sequence a = 8a1, a2, . . ., a2n9 , the following hold.

a. d = 8min{ai, an+i}9 i=1
n = 8min{a1, an+1}, min{a2, an+2}, . . . , min{an, a2n}9  is 

bitonic.

b. e = 8max{ai, an+i}9 i=1
n = 8max{a1, an+1}, max{a2, an+2}, . . . , max{an, a2n}9  is 

bitonic.

c. max(d) ≤ min(e).

Proof: Let di = min{ai, an+i} and ei = max{ai, an+i}, 1 ≤ i ≤ n. We must prove that 
i) d is bitonic, ii) e is bitonic, and iii) max(d ) ≤ min(e). Without loss of generality, 
we can assume that a1 ≤ a2 ≤ . . . ≤ aj−1 ≤ aj ≥ aj+1 ≥ . . . ≥ a2n, for some j such that 
n ≤ j ≤ 2n.

• Suppose an ≤ a2n. For 1 ≤ i ≤ n, if n + i < j then the choice of j implies ai ≤ an+i, 
while if n + i ≥ j then ai ≤ an ≤ a2n ≤ an+i. (See Figure 5-2.) Therefore, if 
an ≤ a2n, we have di = ai and ei = an+i. Further, since max (d) = an and 
min(e) = min(an+1, a2n), we also have max(d) ≤ min(e). This completes the 
proof for the case where an ≤ a2n.

• Now consider the case where an > a2n. Since a is nondecreasing for i ≤ j and 
nonincreasing for i ≥ j, and since aj−n ≤ aj, then there is an index k, j ≤ k < 2n, 
for which ak−n ≤ ak and ak−n+1 > ak+1. This is illustrated in Figure 5-3.

First, consider the sequence d. For 1 ≤ i ≤ k − n, we have either

• i + n ≤ j, which implies ai ≤ ai+n, or

• i + n > j, in which case ai ≤ ak−n ≤ ak ≤ ai+n, the last inequality in the chain 
following from

(i ≤ k − n) ⇒ ( j < i + n ≤ k).
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Combinational Circuits and Sorting Networks 139

Thus, for 1 ≤ i ≤ k − n, we have di = ai. Further, this subsequence of d is non-
decreasing. Next, notice that di = an+i for k − n < i ≤ n, since for such i,

ai ≥ ak−n+1 (since k − n + 1 ≤ i ≤ n ≤ j)

≥  ak+1 (by choice of k)

≥  ai+n (since j < k + 1 ≤ i + n).

Further, this subsequence of d is nonincreasing. Therefore, d is made of a non-
decreasing subsequence followed by a nonincreasing subsequence. By the first 
part of the bitonic sequence definition, we know that d is bitonic.

Now consider the sequence e. Notice that ei = an+i for 1 ≤ i ≤ j − n. Further, this 
subsequence of e is nondecreasing. Next, notice that ei = an+i for j − n ≤ i ≤ k − n. 
Further, this subsequence is easily seen to be nonincreasing. Finally, notice that 
ei = ai for k − n < i ≤ n. This final subsequence of e is nondecreasing. Therefore, e is 
bitonic by case three from the definition since we also have that en = an ≤ an+1 = e1. 
See Figure 5-3.

Now, consider the relationship between bitonic sequences d and e. Notice that 
max(d ) = max{ak−n, ak+1} and min(e) = min{ak, ak−n+1}. It follows easily that 
max(d ) ≤ min(e), completing the proof for the case of an > a2n.

FIGURE 5-2 An illustration of a bitonic 
sequence <a>  in which an ≤ a2n and aj is a 
maximal element of <a> , where n ≤ j ≤ 2n.

1 i  n   j   n�i   2n 

FIGURE 5-3 An illustration of a bitonic 
sequence <a>  in which an > a2n, aj is a 
maximal element of <a> , where n ≤ j ≤ 2n, 
and there exists a pivot element k such that 
ak−n ≤ ak and ak−n+1 > ak+1.

1 k�n 

<d> 

<e> 

<d> 

k�n�1 
n   j   k k�1 2n 
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140 Chapter 5  Combinational Circuits

Bitonic Merge

The theorem above gives the iterative rule for constructing a bitonic merge unit. 
That is, a unit that will take a bitonic sequence as input and produce a monotonic 
sequence as output. (See Figure 5-4.) It is important to note that this is only a 
merge step, and that this merge step works only on bitonic sequences. After we 
finish our discussion and analysis of the merge unit, we will show how to utilize 
this merge unit to sort data in the Bitonic Sort algorithm.

We now present the Bitonic Merge algorithm. The input to the routine is a 
bitonic sequence A and direction, i.e., ascending or descending, into which A will 
be sorted. Notice this is unlike the merge algorithm used in Merge Sort, for which 
two lists are input. The routine will produce a monotonic sequence Z, ordered as 
requested.

Subprogram BitonicMerge(A, Z, direction)
Procedure: Merge bitonic list A, assumed at top level of recursion to be of 
size 2n, to produce list Z, where Z is ordered according to the function 
direction, which can be viewed as a Θ(1)-time function with values “<” or “>”.
Local variables: i: list index
Zd, Z 'd, Ze, Z 'e: lists, initially empty

Action:

 If 0A 0 < 2 then return Z = A {This is a base case 
 of  recursion}
 Else
  For i = 1 to n, do
   If direction(Ai,An+i), then
    append Ai to Zd and append An+i to Ze
   Else append An+i to Zd and append Ai to Ze
  End For

FIGURE 5-4 Input and output for a bitonic merge unit.

Input:

a bitonic
sequence

Output:

Bitonic Merge Unit

a monotonic
(ordered)
sequence
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Bitonic Merge 141

  BitonicMerge(Zd,Z'd direction)
  BitonicMerge(Ze,Z'e, direction)
  Concatenate(Z'd,Z'e,Z)
 End Else 0A 0 ≥ 2
End BitonicMerge

Notice the strong resemblance in algorithmic structure between Bitonic Merge 
and both Merge Sort and Quicksort, c.f., Chapter 9.

• Bitonic Merge is similar to Merge Sort in that it requires a list of elements to 
be split into two even sublists, recursively sorted, and then concatenated. Be 
aware, though, that Merge Sort takes as input an unordered list, which is sorted 
to produce an ordered list, while Bitonic Merge takes as input a bitonically 
ordered list and produces an ordered list.

• Bitonic Merge is similar to Quicksort in that it splits a list into sublists, 
recursively solves the problem on the sublists, and then concatenates the sub-
lists into the final list. In fact, notice that for each of Bitonic Merge and 
Quicksort, the two intermediate sublists that are produced both have the 
property that every element in one of the lists is greater than or equal to 
every element in the other list. As above, we observe that Quicksort is less 
restrictive than Bitonic Merge, in that the input to Quicksort is a list that 
need not have any order, while the input to Bitonic Merge must be a bitoni-
cally ordered list.

As described, a Bitonic Merge unit for 2n numbers is constructed from n com-
paritors and two n-item Bitonic Merge units. Two items can be merged with a sin-
gle comparison unit. In fact, n pairs of items can be simultaneously merged using 
one level of merge units. That is, if L(x) is the number of levels of comparitors 
required to merge simultaneously x/2 pairs of items, we know that the base case is 
L(2) = 1. In general, to merge two bitonic sequences, each of size n, requires 
L(2n) = L(n) + 1 =  log2 2n levels.

In terms of our analysis of running time, we assume that a comparison unit 
performs its operation in Θ(1) time. So, each level of a sorting network contributes 
Θ(1) time to the total running time. Therefore, a bitonic merge unit for 2n numbers 
performs a Bitonic Merge in Θ(log n) time.

Now consider implementing Bitonic Merge on a sequential machine. The 
algorithm employs Θ(log n) iterations of a procedure that makes n com parisons. 
Therefore, the total running time for this merge routine on a sequential machine is 
Θ(n log n). As a means of comparison, recall that i) the time for Merge Sort to 
merge two lists with a total of n items is Θ(n), and ii) the time for Quicksort to 
partition a set of n items is, as we show later in the book, Θ(n).

In Figure 5-5, we present a 2n-item bitonic merge unit. It is important to note 
that the input sequence, a, is bitonic and that the output sequence, c, is sorted. The 
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142 Chapter 5  Combinational Circuits
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FIGURE 5-5 The iterative rule for constructing a bitonic merge unit. The input 
sequence <a>  consists of 2n items and is bitonic. The 2n item output sequence 
<c>  is sorted.

boxes represent the comparitors that accept two inputs and produce two outputs, 
namely, L, which represents the minimum of the two input values, and H, which 
represents the maximum of the two input values. The reader might think of L as 
being the “lower” value of the pair of inputs and H as being the “higher” value of 
the pair.

Figures 5-6 and 5-7 present examples of a four-element bitonic merge unit and 
an eight-element bitonic merge unit, respectively. The input sequence <a>  in both 
figures is assumed to be bitonic. Further, as in Figure 5-5, we let L denote the 
minimum result of the comparison, and we let H represent the maximum result. As 
mentioned in the text, the reader might think of L as being the “lower” value of the 
pair of inputs and H as being the “higher” value of the pair.

Bitonic Sort

Bitonic Sort is a sorting routine based on Merge Sort. Given a list of n elements, 
Merge Sort can be viewed in a bottom-up fashion as first merging n single ele-
ments into n/2 pairs of ordered elements. The next step consists of pair-wise merg-
ing these n/2 ordered pairs of elements into n/4 ordered quadruples. This process 
continues until the last stage, which consists of merging 2 ordered groups of 
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An 8-item bitonic merge unit performs a comparison-interchange
on items 4 apart (comparing a1 and a5, a2 and a6, a3 and a7, and
simultaneously a4 and a8) and then sends the minima into a 4-item
bitonic merge unit and the maxima into a 4-item bitonic merge unit.

Comparison-
Interchange
Level

A pair of 4-item
bitonic merge
units

FIGURE 5-7 An 8-item bitonic merge unit. Note that the input sequence 8a1, . . ., a89  is bitonic and the output sequence 8c1, . . ., c89  is sorted. 
The number of levels L(2n) can be determined as
L(2n) = L(2 × 4) = 1 + L(4) = 1 + 2 = 3 =  log2 8 =  log2 (2n).

FIGURE 5-6 A four-item bitonic merge unit. Note that 8a1, a2, a3, a49  
is the bitonic input sequence and 8c1, c2, c3, c49  is the sorted output 
sequence. The  number of levels L(2n) can be determined as
L(2n) = L(2 × 2) = 1 + L(n) = 1 + L(2) = 2 =  log2 (2n).
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A 4-item bitonic merge unit performs a
comparison-interchange on items 2 apart
(comparing a1 and a3 and simultaneously
a2 and a4) and then sends the minima into
a 2-item bitonic merge unit and the maxima
into a 2-item bitonic merge unit.
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144 Chapter 5  Combinational Circuits

elements, each of size n/2, into a single ordered list of size n. Bitonic Sort works in 
much the same way.

Given an initial input list of random elements, notice that every pair of ele-
ments is bitonic. Therefore, in the first stage of Bitonic Sort, bitonic sequences of 
size 2 are merged to create ordered lists of size 2. Notice that if these lists alternate 
between being ordered into increasing and decreasing order, then at the end of this 
first stage of merging, we actually have n/4 bitonic sequences of size 4. In the next 
stage, bitonic sequences of size 4 are merged into sorted sequences of size 4, alter-
nately into increasing and decreasing order, so as to form n/8 bitonic sequences of 
size 8. Given an unordered sequence of size 2n, notice that exactly  log2 2n stages 
of merging are required to produce a completely ordered list. Note that we have 
assumed, for the sake of simplicity, that 2n = 2k, for some positive integer k. See 
Figure 5-8.

FIGURE 5-8 An example of Bitonic Sort on 8 data items. Note that the input 
sequence <a>  is initially unordered, and the output sequence <c>  is sorted 
into nondecreasing order. The symbol “I” means that the comparison is done 
so that the items appear in increasing order. That is, the top output item is less 
than or equal to the bottom output item. The symbol “D”  represents that the 
comparison is done so that the items appear in decreasing order. That is, the 
top output item is greater than or equal to the bottom output item.
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Now consider the merging stages. Each of the  log2 2n stages of Bitonic Sort 
utilizes a different number of comparitors. In fact, notice that in stage 1, each 
bitonic list of size 2 is merged with one comparitor. In stage 2, each bitonic 
sequence of size 4 is merged with two levels of comparitors, as per our previous 
example. In fact, at stage i, the Bitonic Merge requires i levels of comparitors.
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Bitonic Sort 145

We now consider the total number of levels of comparitors required to sort an 
arbitrary set of 2n input items with Bitonic Sort. Again, there are  log2 2n stages of 
merging, and each stage i requires i levels of comparisons. Therefore, the number 
of levels of comparitors is given by

a

log2 2n

i=1

i =
1log2 2n21log2 2n + 12

2
=

log2
2 (2n)

2
+

log2 (2n)

2
.

So, Θ(log2 n) levels of comparitors are required to sort completely an initially 
unordered list of size 2n. That is, an input list of 2n values can be sorted under this 
combinational circuit model with Θ(log2 n) delay.

Now, consider how this algorithm compares to traditional sorting algorithms 
operating on a RAM. Notice that for 2n input values, each of the Θ(log2 n) levels 
of comparitors actually uses n comparitors. That is, a total of Θ(n log2 n) compari-
tors is required to sort 2n input items with Bitonic Sort. Therefore, this algorithm 
runs in Θ(n log2 n) time on a sequential machine.

Subprogram BitonicSort(X )
Procedure: Sort the list X [1, . . . , 2n], using the Bitonic Sort algorithm.
Local variables: integers segmentLength, i

Action:

 segmentLength = 2
 Do
  For i = 1 to n/segmentLength, do in parallel
   BitonicMerge(
      X[(2i − 2) × segmentLength + 1,...,2i ×

segmentLength],
     X[(2i − 2) × segmentLength + 1,...,2i ×
     segmentLength],
     ascending = odd(i))
  End For
  segmentLength = 2 × segmentLength
 While segmentLength < 2n {End Do}
End BitonicSort

There is an alternative view of sorting networks that some find easier to 
grasp. We present such a view in Figure 5-9 for Bitonic Sort, as applied to an 
eight-element unordered sequence. The input elements are given on the left of the 
diagram. Each line is labeled with a unique three-bit binary number. Please do 
not confuse these labels with the values that are contained on the lines, which are 
not shown in this figure. Horizontal lines are used to represent the flow of data 
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146 Chapter 5  Combinational Circuits

from left to right. A vertical line is used to illustrate a comparison between the 
elements on the endpoints of its line. In particular, the vertical line will compare 
the two elements and either leave them on their current lines or swap them so as 
to place them in the required order. This is called a comparison-exchange opera-
tion. The letters next to the vertical lines indicate whether the comparison being 
performed is ≤ , represented as I, giving the intuition of increasing, or ≥ , repre-
sented as D, giving the intuition of decreasing. Note that dashed vertical lines are 
used to separate the 3 = log2 8 merge stages of the algorithm. The reader might 
want to draw a diagram of an eight-element bitonic sorting network using the 
lines and comparitors that have been used previously in this chapter and verify 
that such a diagram is consistent with this one.

FIGURE 5-9 An alternative view of Bitonic Sort for 
8 elements. The horizontal lines represent wires and 
the vertical lines represent comparison-exchange 
elements. That is, the vertical lines represent points 
in time at which two items are compared and 
ordered according to the label I or D. Notice that 
the log2 8 = 3 bitonic merge stages are separated by 
dotted vertical lines.
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Bitonic Sort on Parallel Computers

Finally, Batcher made a very interesting observation in his seminal 1968 paper that 
included Bitonic Sort and Odd-Even Merge Sort. Consider the alternative view of 
Bitonic Sort just presented. Batcher noticed that at each stage of the algorithm, the 
only elements ever compared are those on lines that differ in exactly one bit of 
their line labels. Suppose that we are given a parallel machine consisting of a set of 
2n processors and we have one item per processor that we wish to sort. Batcher 
noted that if every processor were connected to all other processors that differ in 
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Summary 147

exactly one bit position, the sorting would be performed in Θ(log2 n) time. In fact, 
such a model corresponds to the interconnection of a hypercube, which was intro-
duced in Chapter 4.

Processor Entry Neighbor processors

000 a0 001, 010, and 100
001 a1 000, 011, and 101
010 a2 011, 000, and 110
011 a3 010, 001, and 111
100 a4 101, 110, and 000
101 a5 100, 111, and 001
110 a6 111, 100, and 010

111 a7 110, 101, and 011

Naturally, in addition to being able to sort efficiently on a hypercube, the 
Bitonic Sort algorithm can be applied to a PRAM, where “neighboring” proces-
sors can communicate directly through the shared memory. As we discuss later in 
the text, the communication pattern and general algorithmic strategy of Bitonic 
Sort can be applied to medium- and coarse-grained machines, including hyper-
cubes, meshes, clusters, and networks of workstations, to name a few. In such 
cases, each processor has a packet of m fundamental data items. After an initial 
sort of the m data items in O(m log m) time, exchanges of packets between proces-
sors run in a total of Θ(m) time instead of Θ(1) time, and a merge, for example, of 
2 data packets is performed in asymptotically optimal Θ(m) time by using a stan-
dard merge.

Concluding Remarks. We have shown the following.

• Bitonic Sort will sort n items in Θ(log2 n) time using a sorting network.

• Bitonic Sort will sort n items in Θ(log2 n) time on a hypercube of size n.

• Bitonic Sort will sort n items in Θ(log2 n) time on a parallel machine with n 
processors that allows any two processors to communicate in constant time. 
That is, Bitonic Sort will sort n items on a PRAM of size n.

• Bitonic Sort will sort n items in Θ(n log2 n) time on a sequential machine 
(RAM).

Summary

In this chapter, we present one of Batcher’s sorting networks for combinational 
circuits and their natural extension to parallel machines with certain well-defined 
interconnection networks. These are pioneering ideas in the history of parallel com-
puting, illustrating the time efficiencies that are possible by using an appropriate 
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148 Chapter 5  Combinational Circuits

combination of architectures and algorithms. We illustrate Batcher’s Bitonic Merge 
and Bitonic Sort algorithms and analyze their running times on hardware networks, 
as well as sequential and parallel architectures. We also observe that Batcher’s algo-
rithms are easily modified to other parallel architectures, as will be discussed later 
in the book.

Chapter Notes

In 1968, Ken Batcher presented a short paper that introduced Bitonic Sort and 
Odd-Even Merge Sort, and made the insightful observation that both sorting net-
works would operate efficiently on a hypercube network of processors. The work 
from this paper, “Sorting networks and their applications,” (K.E. Batcher, 
Proceedings of the AFIPS Spring Joint Computer Conference 32, 1968, 307–314) 
has been covered in traditional courses on data structures and algorithms by many 
instructors in recent decades. The material has become more integral for such 
courses as parallel computing has reached the mainstream. This material has 
recently been incorporated into textbooks. A nice presentation of this material can 
be found in Introduction to Algorithms, by T.H. Cormen, C.E. Leiserson, R.L. 
Rivest, and C. Stein (3rd ed.: MIT Press, Cambridge, MA, 2009).

Exercises

 1. Define a transposition network to be a comparison network in which com-
parisons are only made between elements on adjacent lines. Prove that sorting 
n input elements on a transposition network requires Ω(n2) comparison units.

 2. What is the smallest number of elements for which you can construct a 
sequence that is not bitonic? Prove your result.

 3. Consider a comparison network C that takes a sequence of elements 
X = {x1, x2, . . . , xn} as input. Further, suppose that the output of C is the same 
set of n elements, but in some predetermined order. Let the output sequence be 
denoted as {y1, y2, . . . , yn}.

  a.  Given a monotonically increasing function F, prove that if C is given 
the sequence {F(x1), F(x2), . . . , F(xn)} as input, it will produce {F( y1), 

    F( y2), . . . , F( yn)} as output.

  b.  Suppose that input set X consists only of 0’s and 1’s. That is, the input is a 
set of n bits. Further, suppose that the output produced by C consists of all 
the 0’s followed by all the 1’s. That is, C can be used to sort any permutation 
of 0’s and 1’s. Prove that such a circuit (one that can sort an arbitrary 
sequence of n bits) can correctly sort any sequence of arbitrary numbers 
(not necessarily 0’s and 1’s). This result is known as the 0–1 sorting 
principle.
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Exercises 149

 4. Use the 0–1 sorting principle to prove that the following odd-even merging 
network correctly merges sorted sequences {x1, x2, . . . , xn} and {y1, y2, . . . , yn}.

   •  The odd-indexed elements of the input sequences, that is {x1, x3, . . . , xn−1} 
and {y1, y3, . . . , yn−1}, are merged to produce a sorted sequence 
{u1, u2, . . . , un}.

   •  Simultaneously, the even-indexed elements of the input sequences, 
{x2, x4, . . . , xn} and {y2, y4, . . . , yn}, are merged to produce a sorted 
sequence {v1, v2, . . . , vn}.

   •  Finally, the output sequence {z1, z2, . . . , z2n} is obtained from z1 = u1, 
z2n = vn, z2i = min(ui+1, vi), z2i+1 = max(ui+1, vi), for all 1 ≤ i ≤ n − 1.
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Computational science and engineering (CS&E) is a discipline that utilizes high-end 
computing and mathematics to solve problems in science and engineering. 

Computational science and engineering is the third scientific paradigm, complementing 
theoretical science and laboratory science. Academic programs in computational 
 science and engineering are widespread at universities, colleges, and even in the kinder-
garten through high-school (i.e., K–12) curriculum.

The thrust of computational science and engineering is on simulation and model-
ing, which has led to breakthroughs in a wide variety of scientific and engineering 
disciplines. In fact, numerical simulation has been used to study complex systems that 
would be too expensive, time-consuming, or dangerous to study by direct, physical, 
experimentation. The importance of simulation can be found in “grand challenge” 
problems in areas such as structural biology, materials science, high-energy physics, 
economics, fluid dynamics, and global climate change, to name a few. For example, 
designers of automobiles and airplanes rely heavily on simulation in an effort to reduce 
the costs of prototypes, to test models, and as an alternative to expensive wind 
tunnels.

Computational science and engineering is an interdisciplinary subject, uniting 
computing, which includes hardware, software, algorithms, and a wide variety of com-
putational tools, with mathematics and disciplinary efforts in biology, chemistry, phys-
ics, and other applied scientific and engineering fields. Computationally intensive 
operations such as matrix multiplication and solving systems of linear or differential 
equations are at the heart of many problems in computational science and engineering. 
In this chapter, we consider the problems of matrix multiplication and Gaussian elimi-
nation on a variety of models of computation.
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152 Chapter 6  Matrix Operations

Matrix Multiplication

Suppose matrix A has p rows and q columns. We will alternately denote this matrix 
as Ap,q or Ap×q. Given matrices Ap,q and Bq,r, the matrix product of A and B is writ-
ten informally as C = A × B and more formally as Cp,r = Ap,q × Bq,r. The element 
ci, j, which represents the element of C in the ith row and jth column, for 1 ≤ i ≤ p 
and 1 ≤ j ≤ r, is defined as the dot product of the ith row of A and the jth column 
of B. That is,

ci, j = a
q

k=1

ai,kbk, j.

Notice that the number of columns of A must be the same as the number of 
rows of B, since each entry of the product corresponds to the dot product of one 
row of A and one column of B. In fact, in order to determine the product of A and 
B, the dot product of every row of A with every column of B is typically computed. 
See Figure 6-1.

FIGURE 6-1 An example of matrix multiplication. For example, c2,3 is 
the dot product of the second row of A, (5, 6, 7, 8), and the third 
 column of B, (2, 0, 2, 0), which is computed as
c2,3 = 5 × 2 + 6 × 0 + 7 × 2 + 8 × 0 = 24.

A3 � 4 
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B4 � 5 
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12 14 24 28 

20 22 40 44 

16 

48 

80 

A traditional, sequential dot product of two vectors, each of length q, requires 
q multiplications and q − 1 additions. Therefore, such a sequential operation can 
be performed in Θ(q) time. Hence, the p × r dot products, each of length q, used to 
perform a traditional matrix multiplication can be computed in a straightforward 
fashion in Θ(prq) time on a RAM. So, the total number of operations performed in 
a brute-force matrix multiplication on a RAM, as described, is Θ(prq). Such an 
algorithm follows.
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Matrix Multiplication 153

Input: A p × q matrix A and a q × r matrix B.
Output: The matrix product Cp,r = Ap,q × Bq,r.

Action:

 For i = 1 to p, do {Loop through rows of A}
  For j = 1 to r, do {Loop through columns of B}

{Perform the dot product of a row of A and 
a column of B}

   C[i,j] = 0
   For k = 1 to q, do
     C[i,j] = C[i,j] + A[i,k] × B[k,j]
   End For k
  End For j
 End For i

We now consider matrix multiplication on a variety of models of computation. 
For simplicity, we will assume that all matrices are of size n × n.

RAM: A traditional sequential algorithm, as given above, will multiply 
An×n × Bn×n to produce Cn×n in Θ(n3) time. The importance of matrix multiplica-
tion and its relatively large running time led to Strassen’s 1968 breakthrough of a 
divide-and-conquer algorithm to perform matrix multiplication in O(n2.81) time. 
Subsequently, algorithms have been developed that run in o(n2.81) time. We give a 
reference to Strassen’s algorithm at the end of this chapter as the details of this 
highly advanced algorithm are beyond the scope of this book.

PRAM: Consider the design of an efficient matrix multiplication algorithm for 
a CR PRAM. Suppose we are given a PRAM with n3 processors, where each 
processor has a unique label, (i, j, k), where 1 ≤ i, j, k ≤ n are integers. That is, we 
assume that the n processors are given as P1,1,1, . . . , Pn,n,n.

We associate processor Pi,k, j with ai,kbk, j, the kth product between the ith row of 
A and the jth column of B. Notice that this product is one of the terms that  contributes 
to ci, j. So, suppose that initially every processor Pi,k, j computes the result of ai,kbk, j. 
After this Θ(1) time parallel step, notice that all Θ(n3) multiplications have been 
performed.

Now we must compute the summation of each dot product’s Θ(n) terms. This 
can be done in Θ(log n) time by performing Θ(n2) independent and simultaneous 
semigroup operations, where the operator is addition. So, in Θ(log n) time, proces-
sors Pi,k, j, k ∈ {1, 2, . . . , n}, can perform a semigroup operation to determine 
the value of ci, j. Therefore, the running time of the algorithm is Θ(log n) and the 
total cost is Θ(n3 log n).

Unfortunately, while efficient, this algorithm is not cost-optimal. Therefore, 
we can consider trying to reduce the running time by a factor of Θ(log n) or the 
number of processors by a factor of Θ(log n). Since reducing the running time is a 
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154 Chapter 6  Matrix Operations

difficult challenge, let’s consider a CR PRAM with n3/log2 n processors. First, let 
each processor be responsible for a unique set of Θ(log n) multiplications. 
For example, processor P1 can perform the multiplication operations that proces-
sors P1, . . . , Plog2 n performed in the previous algorithm, processor P2 can perform 
the multiplication operations that processors P1+log2 n, . . . , P2 log2 n performed in the 
previous algorithm, and so on. Next, each processor can sum the products it com-
puted above in Θ(log n) time. Finally, in Θ(log n) time, each of the n2 values ci, j 
can be computed by parallel semigroup operations (addition), with each semi-
group operation performed by a group of Θ(n/log n) of the Θ(n3/log n) processors 
associated with ci, j. The algorithm follows.

PRAM Matrix Product Algorithm using Θ(n3/log n) processors
Input: A p × q matrix A and a q × r matrix B.
Output: The matrix product Cp,r = Ap,q × Bq,r.

Action:

To simplify our analysis, we assume p = q = r = n.

1.  For each processor, determine the logarithmic  number 
of products for which it is responsible. That is, 
logically determine a partition of the triples 
(i,k,j), 1 ≤ i ≤ n, 1 ≤ j ≤ n, 1 ≤ k ≤ n, so each  processor 
knows the subset of Θ(log n)  products for which it 
is responsible. This  determination can be done by a 
programmer in  advance, and therefore does not utilize 
any  computing time.

2.  In parallel, each processor computes its Θ(log n) 
products pi,j,k = ai,j × bj,k. This computation can be 
 performed in Θ(log n) time.

3.  Compute each of the n2 values ci,j = a
n

k=1 pi,k,j by 
     parallel semigroup operations, as described above. 

This computation can be performed in Θ(log n) time.

Therefore, the running time of the algorithm is Θ(log n) and the cost of the 
algorithm is Θ(n3), which is optimal when compared to the traditional matrix mul-
tiplication algorithm.

Finally, we consider a CR PRAM with n2 processors. The algorithm is straight-
forward. Every processor simultaneously computes the result of a distinct entry in 
matrix C. Notice that every processor implements a traditional sequential algorithm 
for multiplying a row of A by a column of B. This is performed in Θ(n) time, simul-
taneously for every row and column. Therefore, the n2 entries of C are determined 
in Θ(n) time with n2 processors, which results in a cost-optimal Θ(n3) operations 
algorithm, with respect to the traditional matrix multiplication algorithm.
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Matrix Multiplication 155

Mesh: Consider the problem of determining C = A × B on a mesh computer, where 
A, B, and C are n × n matrices. Initially, we will consider a 2n × 2n mesh, where 
matrix A is stored in the lower-left quadrant of the mesh, matrix B is stored in the 
upper-right quadrant, and matrix C will be produced in the mesh’s lower-right 
quadrant, as shown in Figure 6-2. Let’s consider the operations necessary to com-
pute the entries of C in place. That is, let’s design an algorithm so that the entries 
of A and B flow through the lower-right quadrant of the 2n × 2n mesh and arrive in 
processors where they can be of use at an appropriate time.

Consider the first step of the algorithm. Notice that if all processors containing 
an element of the first row of A send their entries to the right and all processors 
containing an entry of the first column of B simultaneously send their entries down, 
the processor responsible for c1,1 will have entries a1,n and bn,1 (see Figures 6-3a 
and 6-3b). Since a1,n × bn,1 is one of the terms necessary to compute c1,1, this partial 
result can be used to initialize the running sum for c1,1 in the northwest processor 
of the lower-right quadrant. Notice that initially, a1,n and bn,1 represent the only pair 
of elements that could meet during the first step and produce a useful result.

FIGURE 6-2 Matrix multiplication on a 2n × 2n mesh. 
Matrix An×n initially resides in the lower-left quadrant and 
matrix Bn×n initially resides in the upper-right quadrant of 
the mesh. The matrix product Cn×n = An×n × Bn×n is stored 
in the lower-right quadrant of the mesh.
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bn,1 bn,2 bn,3 bn,n . . .  
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a2,1 . 
. 
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a2,2 a2,3 
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a2,n . . .  
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c1,1 c1,2 c1,3 c1,n . . .  

c2,1 . 
. 
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c2,2 c2,3 

C

c2,n . . .  

cn,1 cn,2 cn,3 cn,n . . .  

Now, consider the second step of such an algorithm. Notice that if the elements in 
row 1 of A move to the right again, and that if the elements of column 1 of B move 
down again, then a1,n−1 and bn−1,1 will meet in the processor responsible for c1,1, 
which can add a1,n−1 × bn−1,1 to its running sum. In addition, notice that if the second 
row of A and the second column of B begin to move to the right and down, respec-
tively, during this second time step, then the processors responsible for entries c2,1 and 
c1,2 can begin to initialize their running sums with a partial result (see Figure 6-3c).

In general, notice that we can extrapolate this process so that at time i, the ith 
row of A and the ith column of B initiate their journeys to the right and down, 
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156 Chapter 6  Matrix Operations

respectively. Further, at time i, rows 1. . . i − 1 and columns 1. . . i − 1 will continue 
on their respective journeys. Eventually, all of the elements of C will be computed.

Now, let’s consider the running time of the algorithm. Notice that at time n, the 
last row of A and the last column of B begin their journeys. During every subsequent 
time step, the last row of A will continue to move one position to the right, and the 
last column of B will continue to move one position down. At time 3n − 2, elements 
an,1 and b1,n will finally meet in the processor responsible for computing cn,n, the last 
element to be computed. Therefore, the running time for this algorithm is Θ(n). Is 
this good? Consider that in the sequential matrix multiplication algorithm that is the 
basis of our current algorithm, every pair of elements (ai,k,bk, j) must be combined. 
Therefore, it is easy to see that this algorithm is asymptotically optimal in terms of 
running time on a mesh of size 4n2. This is due to the Θ(n) communication diameter 
of a mesh of size 4n2. Now, consider the total cost of the algorithm. Since this algo-
rithm runs in Θ(n) time on a machine with Θ(n2) processors, the total cost of the 

b1,2 b1,1 

b2,2 b2,1 

a1,2 a1,1 

a2,2 a2,1 

b1,2 

b2,2 b1,1 

a1,1 a1,2 
b2,1 

a2,2 a2,1 

a2,1
b1,2

a2,1
b1,1

a2,2
b2,2

a1,1
b1,2

b1,2

a1,2
b2,2

a1,1
b1,1

a2,1 a2,2
b2,1

(a) Initial distribution
of data.

(b)  Step 1. First column
of B moves down and
first row of A moves right.

(c)  Step 2. First and second 
column of B move down and
first and second row of A
move to the right.

(d)  Step 3. Both columns of B 
continue to move down while
both rows of A continue to
move right.

(e)  Step 4. Both columns of B 
continue to move down while
both rows of A continue to
move right.

FIGURE 6-3 Data flow for matrix multiplication on a 2n × 2n mesh. 
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Matrix Multiplication 157

algorithm is Θ(n3). Therefore, this algorithm is cost-optimal with respect to the 
tradi tional sequential algorithm.

While the previous algorithm is time- and cost-optimal on a 2n × 2n mesh 
computer, let’s consider a matrix multiplication algorithm targeted at an n × n 
mesh. Assume that processor Pi, j initially stores element ai, j of matrix A and 
 element bi, j of matrix B. When the algorithm terminates, processor Pi, j will store 
element ci, j of the product matrix C. Since we already have an optimal algorithm 
for a slightly expanded mesh, we consider adapting the algorithm just presented to 
an n × n mesh. To do this, we simply use row and column rotations, as we did when 
we adapted the Selection Sort algorithm from the input-based linear array to run 
on the traditional linear array. Specifically, in order to prepare to simulate the pre-
vious algorithm, start by performing a row rotation so that processor Pi, j contains 
element ai,n−j+1 of matrix A, followed by a column rotation so that processor Pi, j 
contains element bn−i+1, j of matrix B (see Figure 6-4).

FIGURE 6-4 Row and column rotations, which are used as preprocessing 
steps for matrix multiplication on an n × n matrix. 
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(c) Result of column
rotation of B.

At this point, the strategy described in the previous algorithm can be followed 
while we make the natural adjustments to accommodate the rotations that are nec-
essary to continue moving the data properly, as well as the fact that data is starting 
in the first row and the first column. Notice that the additional rotations, which can 
be thought of as serving as a “preprocessing” step, run in Θ(n) time. Therefore, the 
asymptotic analysis of this algorithm results in the same time- and cost-optimal 
results as previously discussed.

CGM(n2, q): Notice that we need Ω(n2) memory to store n × n factor and 
product matrices, so we use a CGM(n2, q) rather than a CGM(n, q). The basic strat-
egy of the algorithm we present is to imitate the RAM algorithm given above. 
Notice, however, that the lower bound for each processor’s memory is Ω(n2/q), so 
a processor may not be able to store the factor matrices An×n and Bn×n. Therefore, 
to achieve our target running time of Θ(n3/q), we must be able to move data among 
the processors efficiently. In particular, we need to rotate blocks of, say, rows of A 
among the processors. We will show this can be done efficiently by a permutation 
exchange operation.
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158 Chapter 6  Matrix Operations

In a parallel computer of q processors, suppose there is an array list[1, . . . , n] 
whose members are evenly distributed among the processors, i.e., each processor 
has Θ(n/q) members of list. For convenience, we will abbreviate by assuming each 
processor has n/q members of list. In a permutation exchange operation, for some 
permutation f : S → S, we have each processor Pi send copies of its members of 
list to Pf (i). We have the following algorithm for a permutation exchange.

Input: An array, list[1, . . . , n], distributed such that processor Pi has 

list cin
q

+ 1, . . . , 
(i + 1)n

q
d , and a permutation f : S = {0,1, . . . , q − 1} → S.

Output: copies of list elements are redistributed among the processors in 
realization of a permutation exchange.

A permutation is a one-to-one and onto function from a finite set of inte-
gers to itself. We say a function f : X → Y  is one-to-one if for every x0, x1 ∈ X , 
x0 ≠ x1 implies f (x0) ≠ f (x1). A function f : X → Y  is onto if for every y ∈ Y  
there exists x ∈ X  such that f (x) = y. For example, let X = {−1, 0, 1}, and 
 consider the functions F : X → X and G : X → X defined by F(x) = x and 
G(x) = 0 x 0 . It is easy to show that F(x) is both one-to-one and onto. G(x) is not 
one-to-one, since G(−1) = G(1). Also, G(x) is not onto, since there is no x ∈X  
such that G(x) = −1.

If we use the set of indices of the processors S = {0, 1, . . . , q − 1} as the 
domain of concern, a permutation of S is a one-to-one, onto function f : S → S. 
Let’s define the n-fold composition of such a function inductively, as follows. 
For each s ∈ S,

f (n)(s) = e s for  n = 0;

f 1f (n−1)(s)2 for  n > 0.

A circular permutation is a permutation f such that for each s ∈ S,

5 f (n)(s)6 n=0

q−1
= S.

For example, the function defined by f (s) = (s + 1) mod q is a circular per-
mutation. The function g : {0,1,2,3} → {0,1,2,3} defined by

g(0) = 1, g(1) = 0, g(2) = 3, g(3) = 2

is a permutation, but is not circular.
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Matrix Multiplication 159

Action:

 For i = 0 to q − 1, processor Pf(i) gathers 

 list c in
q

+ 1,. . . ,
(i + 1)n

q
d from processor Pi.

End algorithm

It follows from our discussion of the gather operation in Appendix 3 that this 
algorithm runs in Θ(n) time.

Another tool useful in our calculation of a matrix product on a coarse-grained 
parallel computer is an algorithm for computing the transpose BT of a matrix B. BT 
is the matrix obtained from B by interchanging the roles of rows and columns. For 
example,

C1 2 3

4 5 6

7 8 9

S T

= C1 4 7

2 5 8

3 6 9

S .

This operation is important for computing a matrix product, for the follow-
ing reason. We might initially have both n × n matrices A and B stored in a 

CGM(n2, q) such that processor Pi holds the rows indexed 
in
q

+ 1, . . . , 
(i + 1)n

q
 of 

both A and B. However, we want the columns of B, i.e., the rows of BT, with 

 indices 
in
q

+ 1, . . . , 
(i + 1)n

q
, in Pi to compute entries of the matrix product A × B.  

An algorithm for CGM(n2, q) computation of BT is given below.

CGM(n2,q) algorithm for computing BT

Input: n × n matrix B such that processor Pi holds the rows indexed 
in
q

+ 1, . . . , 
(i + 1)n

q
 of B.

Output: matrix BT such that processor Pi holds the rows indexed 
in
q

+ 1, . . . ,
(i + 1)n

q
 of BT.

Action:

 For i = 0 to q − 1
  Processor Pi gathers the columns of B indexed 
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160 Chapter 6  Matrix Operations

  
in

q
+ 1,. . . ,

(i + 1)n
q

, i.e., the rows of BT indexed 

  
in

q
+ 1,. . . , 

(i + 1)n
q

.

 End For
End algorithm

Each gather operation in the loop body gathers n/q columns of n items apiece, 
for a total of n2/q matrix entries. It follows from our discussion of gather opera-
tions in Appendix 3 that the algorithm runs in Θ(n2) time.

We can now give our CGM(n2, q) algorithm for computing the product A × B 
of two n × n matrices. Assume each of A and B is initially distributed so that 

 processor Pi holds the rows of both A and B indexed 
in
q

+ 1, . . . , 
(i + 1)n

q
. Assume 

f : S → S is any circular permutation of the processor indices. Let Ri be the set of 

rows of A indexed 
in
q

+ 1, . . . , 
(i + 1)n

q
. Do the following.

Begin matrix product algorithm for CGM(n2, q)

Let f : {0,1, . . . , q − 1} → {0,1, . . . , q − 1} be a circular permutation.

1.  Compute BT. As described above, this takes Θ(n2) 
time. Now, each processor Pi holds the columns of B 

indexed 
in

q
+ 1,. . . ,

(i + 1)n
q

.

2.  For blockNum = 1 to q
a.  In parallel, each processor Pj does the  following.

Let Ri be the set of rows of A currently in Pj. 
Then Ri was originally in Pi, so we know the 
 indices of its rows, and can proceed as follows.

 For a =
in

q
+ 1 to 

(i + 1)n
q

  For b =
jn

q
+ 1 to 

(j + 1)n
q

    Compute ca,b as the dot product of row a of A 
and column b of B. This operation can be 
 performed in Θ(n) time.

  End For b. This loop runs in Θ(n2/q) time.
 End For a. This loop runs in Θ(n3/q2) time.
End parallel. This step runs in Θ(n3/q 2) time.
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Gaussian Elimination 161

b.  If blockNum < q, perform a permutation exchange so 
that for each processor Pj, the set of rows Ri 
 currently in Pj is sent to Pf(j). Since this means 
the entire n × n matrix A is shuffled, the running 
time is Θ(n2).

    End For blockNum. Since f is a circular permutation, 
each set of rows Rj visits every processor, so all 
the necessary dot products are computed. Since, for a 
CGM(n2,q) we have q ≤ n, it follows that n2 ≤ n3/q. 
Hence, this loop runs in Θ(n3/q + n2q) time.

End algorithm

The running time for this algorithm is Θ(n3/q + n2q). In order to realize our 
target running time of Θ(n3/q), it suffices for n2q ≤ n3/q, or q ≤ n1/2. Thus, we 
achieve our target running time of Θ(n3/q) for 1 < q ≤ n1/2. Although this is not the 
full range of the number of processors for a CGM(n2, q), this is still a very useful 
result, as in practice, n will grow more rapidly than q.

We also observe that the algorithm discussed above is for an arbitrary 
CGM(n2, q). If a CGM(n2, q) is implemented by a PRAM, mesh, or hypercube, it is 
possible to obtain a Θ(n3/q) running time for a larger range of processors.

Gaussian Elimination

The technique of Gaussian elimination is widely used for applications such as 
finding the inverse of a matrix and solving a system of n linear equations in n 
unknowns. In this section, we focus on the problem of finding the inverse of an 
n × n matrix.

The n × n matrix In, called the identity matrix, is the matrix in which the entry 
in row i and column  j is

1 if i = j, and

0 otherwise.

Fundamentals from Linear Algebra include the following. Given an n × n 
matrix A, we know that A × In = A and In × A = A. We say an n × n matrix A is 
invertible if there is an n × n matrix B such that A × B = B × A = In. If such a 
matrix B exists, it is called the inverse of A, and we write B = A−1.

The following are called elementary row operations on an n × n matrix A.

• Interchange distinct rows of A (see Figure 6-5).

• Multiply a row of A by a nonzero constant. That is, for some c ≠ 0, replace 
each element ai, j of row i by cai, j (see Figure 6-6).

• Add a constant multiple of row i to row j for i ≠ j. That is, for some constant c, 
replace each element aj,k of row j by aj,k + cai,k (see Figure 6-7).
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162 Chapter 6  Matrix Operations

Again, from Linear Algebra, we know that if a sequence s of elementary row 
operations applied to an n × n matrix A transforms A into In, then the same 
sequence s of elementary row operations applied to In transforms In into A−1. 
Thus, we can implement an algorithm to find A−1 by finding a sequence s of ele-
mentary row operations that transforms the “augmented matrix” [A 0 In] to [In 0A−1].

Consider an example. Let

A = C 5 −3 2

−3 2 −1

−3 2 −2

S .

We can find A−1 as follows. Start with the augmented matrix

[A 0 I3] = C 5 −3 2

−3 2 −1

−3 2 −2

  3   1 0 0

0 1 0

0 0 1

S .

FIGURE 6-5 Interchange of row 1 
and row 3.

FIGURE 6-6 Replace row 1 by 
0.2 × row 1.

FIGURE 6-7 Replace row 2 by 
row 2 + 5 × row 1.
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Gaussian Elimination 163

The first phase of our procedure is the “Gaussian elimination” phase. One 
column at a time from left to right, we perform elementary row operations to cre-
ate entries of 1 along the diagonal, the set of entries for which the row and column 
indices have the same value, and 0s below the diagonal. In this example, we use 
row operations to transform column 1 so that a1,1 = 1 and a2,1 = a3,1 = 0. Next, we 
use row operations that do not change column 1 but result in a2,2 = 1 and a2,3 = 0. 
Finally, we use a row operation that does not change columns 1 or 2 but results in 
a3,3 = 1. More generally, after Gaussian elimination on An×n, all ai,i = 1, 1 ≤ i ≤ n, 
and all ai, j = 0, 1 ≤ j < i ≤ n. That is, there are 1’s along the diagonal and 0’s below 
the diagonal, as shown below.

 1. Divide row 1 by 5 to obtain

£
1 −0.6 0.4

−3 2   −1   

−3 2   −2   

 3  0.2 0 0

0   1 0

0   0 1

§ .

 2. Add 3 times row 1 to row 2, and 3 times row 1 to row 3, to obtain

£
1 −0.6 0.4

0 0.2 0.2

0 0.2 −0.8

 3  0.2 0 0

0.6 1 0

0.6 0 1

§ .

  Notice column 1 now has the desired form. We continue with Gaussian elimi-
nation steps on column 2.

 3. Divide row 2 by 0.2 to obtain

£
1 −0.6 0.4

0 1   1   

0 0.2 −0.8

 3  0.2 0 0

3   5 0

0.6 0 1

§ .

 4. Subtract 0.2 times row 2 from row 3 to obtain

£
1 −0.6 0.4

0 1   1   

0 0   −1   

 3  0.2 0 0

3   5 0

0   −1 1

§ .

  Note column 2 now has the desired form.
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164 Chapter 6  Matrix Operations

 5. Divide row 3 by −1 to obtain

£
1 −0.6 0.4

0 1   1   

0 0   1   

 3  0.2 0 0

3   5 0

0   1 −1

§ .

  This completes the Gaussian elimination phase of the procedure.

Now we proceed with the “back substitution” phase, in which, for one column 
at a time from right to left, we use elementary row operations to eliminate nonzero 
entries above the diagonal. In a sense, this is more Gaussian elimination, as we use 
similar techniques, now creating 0’s above the diagonal. We proceed as follows.

 1. Subtract 0.4 times row 3 from row 1, and 1 times row 3 from row 2, to obtain

£
1 −0.6 0

0 1   0

0 0   1

 3  0.2 −0.4 0.4

3   4   1   

0   1   −1   

§ .

 2. Add 0.6 times row 2 to row 1, to obtain

£
1 0 0

0 1 0

0 0 1

 3  2 2 1

3 4 1

0 1 −1

§ .

Since the left side of the augmented matrix is now I3, the right side is the desired 

inverse, namely, A−1 = C2 2 1

3 4 1

0 1 −1

S . This can be verified easily by showing 

that the products A × A−1 and A−1 × A both coincide with I3.
The example given above illustrates our general algorithm for finding the 

inverse of an n × n matrix A. In the algorithm presented below, we assume that 
array A[1. . . n,1. . . n] is used to represent the matrix we wish to invert, and the 
matrix I[1. . . n,1. . . n] is initialized to represent the n × n identity matrix. Here we 
state a procedure for either finding the inverse of A or determining that such an 
inverse does not exist.

 1. {Gaussian elimination phase: create in A an upper triangular matrix, a matrix 
with 1 on every diagonal entry and 0 on every entry below the diagonal.}
For i = 1 to n, do

a. If A[i,i] = 0 and A[m,i] = 0 for all m > i, conclude that A−1 does not exist 
and halt the algorithm.
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Gaussian Elimination 165

b. If A[i,i] = 0 and A[m, i] ≠ 0 for some smallest m > i, interchange rows i and 
m in the array A and in the array I.

c. Due to the previous step, we assume A[i, i] ≠ 0. Divide row i of A and row 
i of I by A[i, i]. That is, let scale = A[i, i] and then for j = 1 to n, replace 
A[i, j] by A[i, j]/scale. Note that it suffices to make these replacements for 
j = i to n, since the Gaussian elimination has caused A[i, j] = 0 for j < i. 
Similarly, for j = 1 to n, replace I[i, j] by I[i, j]/scale. Note we now have 
A[k, k] = 1 for k ≤ i, and A[m, j] = 0 if j < i, j < m (0 below the diagonal in 
columns indexed less than i).

d. Now we have A[i, i] = 1. If i < n, then for r > i, subtract A[r, i] times row i 
from row r in both the arrays A and I. This zeroes out the entries in A of 
column i below the diagonal without destroying the 0s below the diagonal 
in columns further to the left. That is,

If i < n, then
 For row = i + 1 to n
  factor ← A[row,i]
  For col = 1 to n
   A[row,col] ← A[row,col] − factor × A[i,col]
   I[row,col] ← I[row,col] − factor × I[i,col]
  End For col
 End For row
End If
{Note we now have A[k,k] = 1 for k ≤ i, and A[m,j] = 0 
if j ≤ i,j < m (0 below the diagonal in columns 
indexed ≤ i).}

End For i

 2. {Back substitution phase: eliminate the nonzero entries above the diagonal 
of A. We use zeroingCol as both a row and column index; it represents both the 
column we are “zeroing” off the diagonal, and the row combined with the cur-
rent row to create the desired matrix form.}

For zeroingCol = n downto 2
 For row = zeroingCol − 1 downto 1
  factor ← A[row,zeroingCol]
  For col = 1 to n
   A[row,col] ← A[row,col] − factor × A[zeroingCol,col]
   I[row,col] ← I[row,col] − factor × I[zeroingCol,col]
  End For col
 End For row
End For zeroingCol
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166 Chapter 6  Matrix Operations

We now discuss the analysis of Gaussian elimination on sequential and paral-
lel models of computation.

RAM: A straightforward implementation of the algorithm given above on a 
RAM runs in Θ(n3) time in the worst case, when the matrix inverse exists and is 
determined. The best case running time is Θ(n), when it is determined by exam-
ining the first column that an inverse does not exist.

Parallel models: We must be careful. For example, it is easy to see how some 
of our inner loops may be parallelized, but some of the outer loops appear to be 
inherently sequential. Thus, on a PRAM it is easy to see how to obtain signifi-
cant speedup over the RAM. However, it is not clear how to obtain optimal per-
formance. Further, on distributed memory models such as the mesh, some of the 
advantages of parallelism may seem negated by delays needed to broadcast key 
data values throughout rows or columns of the mesh. Below, we discuss how the 
basic algorithm we have presented can be implemented efficiently on various 
 parallel models.

PRAM of n2 processors: Let’s assume we are using a PRAM with the EW 
property. Then each decision on whether or not to halt, as described in the algo-
rithm, can be performed by a semigroup operation in Θ(log n) time. This is per-
formed by a semigroup AND operation across all entries of the current column 
to determine if the column has only 0 entries. Now, consider the situation when 
the algorithmic decision is to continue, which leads to the results that ai,i = 1 and 
ai, j = 0 for j < i. A row interchange can be performed in Θ(1) time. Scalar multi-
plication or division of a row can be performed on a CR PRAM in Θ(1) time. 
However, scalar multiplication or division of a row on an ER PRAM runs in 
Θ(log n) time, since a broadcast of the scalar to all processors associated with a 
row is required. Notice that the row subtraction of the last step of the Gaussian 
elimination phase may be done in parallel. That is, the outer For-row-loop can be 
parallelized as there is no sequential dependence between the rows in its opera-
tions. Further, the inner  For-col-loop parallelizes. As in the scalar multiplication 
step, the outer For-row-loop executes its operations in Θ(1) time on a CR PRAM 
and in Θ(log n) time on an ER PRAM. Thus, a straightforward implementation 
of the Gaussian elimination phase runs in O(n log n) time on a PRAM (CR 
or ER).

For the back substitution phase, we can similarly parallelize the inner and the 
intermediate-nested loop to conclude this phase, which runs in Θ(n) time on a CR 
PRAM and in Θ(n log n) time on an ER PRAM. Thus, a straightforward imple-
mentation of this algorithm runs in Θ(n log n) time on an EW PRAM of size n2. 
The total cost is Θ(n3 log n). Note that relative to the cost of our RAM 
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Gaussian Elimination 167

implementation, the PRAM implementation of Gaussian elimination to invert a 
matrix is not optimal.

Mesh of size n2: Assume that entries of the arrays A and I are distributed among 
the processors of the mesh so that the processor Pi, j in row i and column j of the 
mesh contains both A[i, j] and I[i, j].

Several of the steps of our general algorithm require communication of data 
across a row or column of the mesh. For example, scalar multiplication of a row 
requires communication of the scalar across the row. If every processor in the row 
waits for this communication to finish, the scalar multiplication step would run in 
Θ(n) time. This would yield a running time of Θ(n2), which is not optimal, since 
the total cost is then Θ(n2 × n2) = Θ(n4).

We obtain better mesh performance by pipelining and pivoting. The fol-
lowing is true of each of the steps of the inner loops of our algorithm. Once a 
processor has the data it needs to operate upon, its participation in the current 
step runs in Θ(1) additional time, after which the processor can proceed to its 
participation in the next step of the algorithm, regardless of whether other pro-
cessors have finished their work for the current step. Therefore, if we could be 
sure that every processor experiences a total of O(n) time waiting for data to 
reach it, it would follow that the algorithm runs in Θ(n) time, as each processor 
would run in O(n) time for waits and in Θ(n) time for the “active” execution of 
instructions.

However, there is one place where the algorithm as described above could 
have processors that experience ω (1) delays of O(n) time apiece to receive data. 
That is, the step that calls conditionally for exchanging a row of A having a 0 
diagonal entry with a row below it having a nonzero entry in the same column. In 
order to ensure this situation does not cost us too much time due to frequent 
occurrence, we modify our algorithm by the technique of pivoting, which we 
describe now. If processor Pi,i detects that A[i, i] = 0, then Pi,i sends a message 
down column i to search for the first nonzero A[ j, i] with j > i. If such a j is 
found, row j is called the pivot row, and plays the role similar to that otherwise 
played by row i. That is, in this situation, row j is used for Gaussian elimination in 
the rows below it, which creates 0 entries in the ith column of each such row. In 
rows between row i and row j, if there exist entries of 0 in column i, then no row 
combination is required at this stage. Finally, row j “bubbles up” to row i in a 
wave-like fashion, using both vertical and horizontal pipelining, while row i bub-
bles down to row j, executing the row interchange.

On the other hand, if no such j is found, then processor Pi,n broadcasts a mes-
sage to halt throughout the mesh.

In this fashion, we pipeline the row interchange step with the following steps 
of the algorithm in to order ensure that each processor spends O(n) time awaiting 
data. It follows, as described above, that we can compute the inverse of an n × n 
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168 Chapter 6  Matrix Operations

matrix or decide, when appropriate, that it is not invertible, through Gaussian elim-
ination on an n × n mesh in Θ(n) time, which is optimal relative to our RAM 
implementation.

Roundoff Error

It should be noted that the Gaussian elimination algorithm is sensitive to roundoff 
error. Roundoff error occurs whenever an exact calculation requires more decimal 
places, or, equivalently, binary bits, than are actually used for storage of the result. 
Occasionally, roundoff error can cause an incorrect conclusion with respect to 
whether or not the input matrix has an inverse, or with respect to which row should 
be the pivot row. Such a situation could be caused by an entry that should be 0, 
computed as having a small nonzero absolute value. Also, a roundoff error in a 
small nonzero entry could have a powerfully distorting effect if the entry becomes 
a pivot element, since the pivot row is divided by the pivot element and combined 
with other rows.

It is tempting to think such problems could be corrected by selecting a small 
positive number ε  and establishing a rule that whenever a step of the algorithm 
computes an entry with absolute value less than ε , the value of the entry is set to 0. 
However, such an approach can create other problems since a nonzero entry in the 
matrix with an absolute value less than ε  may be correct.

Measures used to prevent major errors due to roundoff errors in Gaussian 
elimination are beyond the scope of this book. However, a crude test of the accu-
racy of the matrix B computed as the inverse of A is to determine the matrix prod-
ucts A × B and B × A. If all entries of both products are sufficiently close to the 
respective entries of the identity matrix In to which they correspond, then B is 
likely a good approximation of A−1.

Summary

In this chapter, we study the implementation of the fundamental matrix operations, 
matrix multiplication and Gaussian elimination, the latter a popular technique for 
solving an n × n system of linear equations and for finding the inverse of an n × n 
matrix. We give algorithms to solve these problems and discuss their implementa-
tions on several models of computation.

Chapter Notes

A traditional sequential algorithm to multiply An×n × Bn×n runs in Θ(n3) time. This 
algorithm is suggested by the definition of matrix multiplication. However, in 
1968, the paper “Gaussian elimination is not optimal,” by V. Strassen, Numerische 
Mathematik 13(4), 1969, pp. 354–356, showed that a divide-and-conquer 
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algorithm could be exploited to perform matrix multiplication in O(n2.81) time. The 
mesh matrix algorithm presented in this chapter is derived from the one presented 
in Parallel Algorithms for Regular Architectures by R. Miller and Q.F. Stout (The 
MIT Press, Cambridge, Mass., 1996). The algorithm we present for matrix multi-
plication on a CGM(n2, q) comes from the paper “Efficient Coarse Grained 
Permutation Exchanges and Matrix Multiplication,” by L. Boxer, Parallel 
Processing Letters 19, 2009, 477–484.

The algorithm we present for Gaussian elimination is a traditional algorithm 
found in many introductory textbooks for the mathematical discipline of Linear 
Algebra. Its presentation is similar to that found in Parallel Algorithms for Regular 
Architectures.

Two additional books that concentrate on algorithms for problems in compu-
tational science are G.S. Almasi and A. Gottlieb’s Highly Parallel Computing 
(The Benjamin/Cummings Publishing Company, New York, 1994) and G.W. 
Stout’s High Performance Computing (Addison-Wesley Publishing Company, 
New York, 1995).

Exercises

 1. The PRAM algorithms presented in this chapter for matrix multiplication are 
simpler under the assumption of the CR property. Why? In other words, in 
what step or steps of the algorithms presented in this chapter is there a compu-
tational advantage in assuming the CR property as opposed to the ER 
property?

 2. Give an algorithm for a CR PRAM with n processors that solves the matrix 
multiplication problem in Θ(n2) time.

 3. In this chapter, we present a mesh algorithm for computing the product of 
two n × n matrices on an n × n mesh. A somewhat different algorithm for an 
n × n mesh can be given, in which we more closely simulate the algorithm 

  given above for a 2n × 2n mesh. If we compress matrices A and B into 
n

2
×

n

2
 

  submeshes, it becomes easy to simulate the 2n × 2n mesh algorithm given in 
this chapter.

  a.  Give an algorithm that runs in Θ(n) time to compress the matrix A, where A 
is initially stored so that ai, j is in processor Pi, j, 1 ≤ i ≤ n, 1 ≤ j ≤ n. At the 
end of the compression, A should be stored so that processor Pi, j, 
1 ≤ i ≤ n/2, 1 ≤ j ≤ n/2, stores ak,m, for k ∈ {2i − 1, 2i}, m ∈ {2j − 1, 2j}. 
Show that your algorithm is correct.

  b.  Give an algorithm that runs in Θ(n) time to inflate the matrix C, where the 

        initial storage of the matrix is such that processor Pi, j, 
n

2
< i ≤ n, 

n

2
< j ≤ n, 
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170 Chapter 6  Matrix Operations

        contains ck,m, for k ∈ {2i − n − 1,2i − n}, m ∈ {2j − n − 1,2 j − n}. At the 
end of the inflation, processor Pi, j should store ci, j for 1 ≤ i ≤ n, 1 ≤ j ≤ n. 
Show that your algorithm is correct.

 4. Show how our algorithm for Gaussian elimination to invert an n × n matrix 
can be implemented on a PRAM of n2/log n processors in Θ(n log n) time.

 5. Show how the array changes (as determined by pipelining, pivoting, and 
replacement computations) via our matrix inversion algorithm as implemented 
on a 3 × 3 mesh for the matrix

A = C 0 2 5

4 −1 1

−8 2 1

S .

   That is, you should show the appearance of A at each time step, in which a 
processor performs any of the following operations:

   •  Send a unit of data to an adjacent processor (if necessary, after a Θ(1) time 
decision).

   •  Receive a unit of data from an adjacent processor (if necessary, after a Θ(1) 
time decision).

   •  Calculate in Θ(1) time and store a new value of its entry of A (if necessary, 
after a Θ(1) time decision).

 6. Devise an efficient algorithm for computing the matrix multiplication 
Cn×n = An×n × Bn×n on a linear array of n processors, and analyze its running 
time. You should make the following assumptions.

   •  The processors P1, . . . , Pn of the linear array are numbered from left to 
right.

   •  For each j, 1 ≤ j ≤ n, the j th column of A and the j th column of B are ini-
tially stored in Pj.

   •  At the end of the algorithm, for each j, 1 ≤ j ≤ n, the j th column of C is 
stored in Pj.

   Your algorithm may take advantage of the fact that addition is commutative. 
For example, if n = 4, your algorithm may compute

c1,2 = a1,2b2,2 + a1,1b1,2 + a1,4b4,2 + a1,3b3,2

rather than using the “usual” order

c1,2 = a1,1b1,2 + a1,2b2,2 + a1,3b3,2 + a1,4b4,2.
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 7. In order to implement Gaussian elimination efficiently on a CGM(n2, q), we 
should be able to implement each of the three types of elementary row opera-
tions efficiently. Suppose A is an n × n matrix such that each processor has n/q 
columns (not rows) of A. Suppose also that 1 < q ≤ n1/2. Show that

  a.  Interchanging distinct rows of A can be done in Θ(n/q) time.

  b.  Multiplying a row of A by a non-zero constant can be done in Θ(n/q) time.

  c.  Adding a constant multiple of row u to row v can be done in Θ(n/q) time.
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Parallel prefix is a powerful operation that can be used to sum elements, find the 
minimum or maximum of a set of data, broadcast values, compress data, and per-

form numerous seemingly complex tasks. We will find many uses for the  parallel pre-
fix operation as we go through the remaining chapters of this book. In fact, parallel 
prefix is such an important operation that it has been implemented at the lowest levels 
on many machines and is typically available to the user as a library call. In this chapter 
we will i) develop efficient algorithms to perform the parallel prefix computation and 
ii) demonstrate the power of parallel prefix by using it in a variety of applications.
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174 Chapter 7  Parallel Prefix

Parallel Prefix

First, we review the definition of parallel prefix. Let X = {x1, x2, . . . , xn} be a set of 
elements contained in a set Y. Let ⊗ be a binary associative operator that is closed 
with respect to Y. Recall that the term binary means that the operator ⊗ takes two 
operands, say xi and xj, as input. The term associative means that the operator ⊗ 
obeys the relation

(xi ⊗ xj) ⊗ xk = xi ⊗ (xj ⊗ xk).

The term closed means that the result of xi ⊗ xj is a member of Y. Note there is 
no requirement for ⊗ to be commutative. That is, we do not require xi ⊗ xj to be 
equal to xj ⊗ xi.

The result of x1 ⊗ x2 ⊗  . . . ⊗ xk is referred to as the kth prefix. The computation 
of all n prefixes, x1, x1 ⊗ x2, x1 ⊗ x2 ⊗ x3, . . . , x1 ⊗ x2 ⊗ . . . ⊗ xn, is the result of the 
parallel prefix computation. Since parallel prefix can be performed by making a 
straightforward pass through the data, it is sometimes referred to as a scan or 
sweep operation. The operator ⊗ is typically a unit-time operator. That is, ⊗ is an 
operation that can be computed in Θ(1) time. Sample operators include addition, 
multiplication, minimum, maximum, and, or, and xor.

Lower Bound: The number of operations required to perform a complete 
parallel prefix computation is Ω(n), since the value of the nth prefix is based on 
all n values.

RAM Algorithm: Let’s consider a straightforward sequential algorithm for 
computing the n prefix values p1, p2, . . . , pn, where p1 = x1 and pi+1 = pi ⊗ xi+1, for 
i ∈ {1, 2, . . . , n − 1}. The algorithm follows.

p1 = x1 {A constant time assignment}
For i = 1 to n − 1, do {A linear time scan through 
                  the elements}
  pi+1 = pi ⊗ xi+1 {A constant time operation}
End For

Since the running time of the sequential parallel prefix algorithm is dominated 
by the work performed within the loop, it is easy to see that this algorithm runs in 
Θ(n) time. Further, this algorithm is asymptotically optimal since parallel prefix 
requires Ω(n) operations (see Figures 7-1 and 7-2).

Parallel Algorithms

For shared-memory models of computation, it is common for the input data to be 
stored in a contiguous set of memory locations. For distributed-memory models of 
computation, this is not necessarily the case.
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Parallel Prefix 175

Parallel Prefix on the CREW PRAM

The first parallel model of computation we consider is the CREW PRAM. In this 
section, we will use the term segment to refer to a nonempty subset of con secutively 
indexed entries of an array. We denote a segment covering entries i through j, i ≤ j, 
as si, j. Using this notation, the parallel prefix problem can be defined as comput-
ing the prefix of s1,k, for all k ∈ {1, 2, . . . , n}. We also use the notation Si, j to repre-
sent the final prefix value over the segment si, j. So, we have Si, j = xi ⊗ xi+1 ⊗ . . . ⊗ xj 
and pk = S1,k.

The algorithm we present is reminiscent of Merge Sort in terms of its overall 
flow of combining single items into pairs, then pairs into pairs of pairs, and so on. 
We initialize single prefix values <x1, x2, . . . , xn> . Next, we combine the single 
prefix values to determine prefix values of pairs, resulting in the determination 
of < S1,2, S3,4, . . . , Sn−1,n> . Then we combine pairs of prefix values in order to 
determine prefix values of pairs of pairs, which results in the determination of 
<S1,4, S5,8, . . . , Sn−3,n> , and so forth. The algorithm continues for ⎡log2 n⎤  itera-
tions, at which point all prefix values have been determined for segments that 
have lengths that are powers of 2 or that end at xn. See Figure 7-3 for an 
example.

In an additional Θ(log n) time, in parallel every processor Pi can build up the 
prefix pi by a process that mimics the construction of the value i as a string of 
binary bits, from the prefix values computed in previous steps. For example, 
 processor P7 computes p7 = S1,4 ⊗ S5,6 ⊗ S7,7 while processor P12 computes 
p12 = S1,4 ⊗ S5,8. These examples show the use of the Concurrent Read property of 
the CREW PRAM, as P7 and P12 will simultaneously read S1,4 for their 
calculations.

FIGURE 7-2 An example of parallel prefix on a 
set X of 6 items. The operation ⊗ is minimum. 
The resulting prefixes are given in array P.

X

P

4      3       6       2      1       5

4      3       3       2      1       1

X

P

4      3       6       2      1       5

4      7      13     15    16     21

FIGURE 7-1 An example of parallel prefix on 
a set X of 6 items. The operation ⊗ is addition. 
The resulting prefix sums are given in array P.
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176 Chapter 7  Parallel Prefix

Notice that the cost of this algorithm, which is a product of the running time 
and number of available processors, is Θ(n log n). Unfortunately, this is not cost-
optimal since we know from the running time of the RAM algorithm that this 
problem can be solved with Θ(n) operations.

Now, let’s consider options for developing a time- and cost-optimal CREW 
PRAM algorithm for computing a parallel prefix. With respect to the algorithm 
just introduced, we can either try to reduce the running time from Θ(log n) to Θ(1), 
which is unlikely, or reduce the number of processors from n to Θ(n/log n) while 
retaining the Θ(log n) running time. The latter approach is the one we will take. 
This is similar to the approach we took earlier in the book when we introduced a 
time- and cost-optimal PRAM algorithm for computing a semigroup operation.

That is, we let every processor assume responsibility for a logarithmic number 
of data items. Initially, every processor sequentially computes the parallel prefix 
over its set of Θ(log n) items. A global prefix is then computed over these 
Θ(n/log n) final, local prefix results. Finally, each processor uses the global prefix 
associated with the previous processor to update each of its Θ(log n) prefix values. 
The algorithm follows. (See the example shown in Figure 7-4.)

FIGURE 7-3 An example of computing parallel prefix by 
continually combining results of disjoint pairs of items. The 
operation ⊗ used in this example is  addition. Notice that the 
algorithm requires ⎡log2 11⎤ = 4 steps. At the  conclusion of 
Step 1, we have computed S1,2, S3,4, S5,6, S7,8, S9,10, and S11,11. 
At the end of Step 2, we have computed S1,4, S5,8, and S9,11. 
At the end of Step 3, we have computed S1,8 and S9,11. At the 
end of Step 4, we have computed p11 = S1,11.
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Parallel Prefix 177

Step 1:

For i = 1 to 
n

log2 n
, every processor Pi does in parallel

 p[(i−1)log2 n]+1 = x[(i−1)log2 n]+1

 For j = 2 to log2 n, do
  p[(i−1)log2 n]+j = p[(i−1)log2 n]+j−1 ⊗ x[(i−1)log2 n]+j

End For i

Comment: After Step 1, processor P1 has the correct final prefix values 
stored for the first log2 n prefix terms. Similarly, processor P2 now knows 
the local prefix values of the log2 n entries stored in processor P2, and so 
forth. In fact, every processor Pi stores p[(i−1)log2 n]+j, the prefix computed 
over the segment of the array X indexed by [(i − 1)log2 n + 1, . . . ,
(i − 1)log2 n + j], for all j ∈ {1, 2, . . . , log2 n}.

Step 2: Compute the global prefixes over the n/log2 n final prefix 
values, currently stored one per processor. Let

     r1 = plog2 n,

     ri = ri−1 ⊗ pi log2 n, i ∈ e 2, 3, . . . , 
n

log2 n
 f .

Comment: Note that ri is a prefix over the segment of the array X 
indexed by 1 . . . i log2 n. This prefix computation over n/log2 n terms is 
computed in Θ(log (n /log n)) = Θ(log n) time by the fine-grained CREW 
PRAM algorithm presented above, since the step uses one piece of data 
stored in each of the n/log2 n processors.

FIGURE 7-4 An example of computing the parallel prefix on a CREW 
PRAM with Θ(n/ log n) processors. In this example, we are given n = 16 
data items, the operation is addition, there are log2 n = 4  processors, 
and each processor is responsible for n/log2 n = 16/4 = 4 data items.
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178 Chapter 7  Parallel Prefix

The input to our parallel prefix problem consists of a data set X = {x1, x2, . . . , xn}, 
distributed one item per processor on an n1/2 × n1/2 mesh. That is, processor Pi, 
denoted by its row-major index, initially contains xi, 1 ≤ i ≤ n. When the algorithm 
terminates, processor Pi should contain the ith prefix x1 ⊗. . . ⊗ xi. We describe the 
algorithm in terms of mesh operations that we developed earlier in the book. Note 
that in this example, the data items need not be in adjacent processors. That is, 

Step 3: The final stage of the algorithm consists of distributing, within 
each processor, the final prefix value determined by the previous processor.

For i = 2 to 
n

log2 n
, processors Pi do in parallel

 For j = (i − 1)log2 n + 1 to i log2 n, do
  pj = ri−1 ⊗ pj
 End For i
End Parallel

Comment: Note that pj has the desired final value, as it is now calculated 
over the segment s1, j of X.

Mesh

In this section, we consider the problem of computing the parallel prefix on a mesh 
computer. As discussed earlier, when considering an operation that involves an 
ordering imposed on the data, we must first  consider an ordering of the processors. 
In this section, we will consider a simple row-major ordering of the processors. 
Formally, the row-major index of processor Pi, j, i, j ∈ {1, 2, . . . , n1/2}, is (i − 1)n1/2 + j 
(see Figure 7-5).

FIGURE 7-5 The row-major index scheme 
imposed on a mesh of size 16.

1 2 3 4 

5 6 7 8 

9 10 11 12 

13 14 15 16 
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Parallel Prefix 179

there are items xi and xi+1 that are not in adjacent processors, when xi is in the 
rightmost processor of its row in the mesh and xi+1 is in the leftmost processor of 
the next row.

First, perform a row rotation within every row. At the conclusion of this rota-
tion, the rightmost processor in every row knows the final prefix value of the 
contiguous subset of n1/2 elements of X in its row. Notice that this step is similar 
to Step 1 of the algorithm just described for a PRAM with a reduced number of 
processors, in which every processor computes the prefix of entries initially 
stored in its processor. Next, using only the processors in the rightmost column, 
perform a column rotation to determine the parallel prefix of these row-restricted 
final prefix values. Again, note that this step is similar to Step 2 of the PRAM 
algorithm, which computes the global parallel prefix of the partial results deter-
mined in Step 1.

At this point, notice that the rightmost processors in every row contain their 
correct final answers. Furthermore, the value stored in the rightmost processor of 
row i, denoted as ri, must be prepended to all of the partial prefix values deter-
mined by the processors in row i + 1 during Step 1. This can be done by first mov-
ing, in parallel, the appropriate prefix values ri determined at the end of Step 2 
down one processor, from the rightmost processor in row i, 1 ≤ i ≤ n1/2 − 1, to the 
rightmost processor in row i + 1. Once this is done, every row with index greater 
than 1 can perform a broadcast from the rightmost processor in its row to all other 
processors in its row. Finally, all processors in row i + 1 can prepend ri to their 
respective current prefix values.

Therefore, the algorithm consists of a row rotation, a column rotation, a com-
munication step between neighboring processors, and a final row broadcast. Each 
of these steps can be performed in O(n1/2) time on a mesh of size n. In fact, since 
the rotations run in Θ(n1/2) time, the running time of the algorithm is Θ(n1/2). Of 
course, we are now presented with what is becoming a routine question, namely, 
“How good is this algorithm?” Since the mesh of size n has a Θ(n1/2) communica-
tion diameter, and since every pair of data elements is required for the determina-
tion of the nth prefix, we can conclude that the running time is optimal for this 
architecture. Now, consider the cost. The algorithm has a running time of Θ(n1/2), 
using a set of Θ(n) processors, which results in a cost of Θ(n3/2). Since we know 
that only Θ(n) operations are required, we can conclude that this is not 
cost-optimal.

So, this brings us to one of our favorite questions. Can we design an algorithm 
that is more cost-effective than our current algorithm? The major limitation for the 
mesh, in this case, is the communication diameter. That is, there is no inherent 
problem with the bisection width. In order to reduce the communication diameter, 
we must reduce the size of the mesh. This will have the effect of increasing the 
number of data elements that each processor is responsible for, including the 
 number of input elements, the number of final results, and the number of interme-
diate results.
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180 Chapter 7  Parallel Prefix

Notice that at the extreme, we could consider a mesh of size 1, i.e., a RAM. 
The algorithm would run in a very slow Θ(n) time, but would also have an opti-
mal cost of Θ(n). However, this is not quite what we envisioned when we thought 
about reducing the size of a mesh. Instead, consider keeping the cost of the mesh 
optimal, but improving the running time from that of a fine-grained mesh. In 
such a case, we want to balance the communication diameter with the amount of 
work each processor must perform. Given an n1/3 × n1/3 mesh, notice that each of 
these n2/3 processors would store n1/3 elements of X and would be responsible for 
storing n1/3 final prefix results. This is similar to the PRAM algorithm in which 
we required every processor to be responsible for Θ(log n) input elements and 
final results.

So, let’s consider an n1/3 × n1/3 mesh, where each processor initially stores 
n1/3 entries of X. The algorithm follows the time- and cost-optimal PRAM algo-
rithm presented in the last section, combined with the global operations and 
techniques presented in the non-optimal n1/2 × n1/2 mesh algorithm just pre-
sented. First, every processor computes the prefix of its n1/3 entries in Θ(n1/3) 
time by the standard sequential algorithm. Now, consider the final restricted 
prefix value in each of the n2/3 processors. The previous mesh algorithm can be 
applied to these n2/3 entries, stored one per processor on the n1/3 × n1/3 mesh. 
Since this mesh algorithm runs in time proportional to the communication 
diameter of the mesh, this step runs in Θ(n1/3) time. At the conclusion of this 
step, every processor will now have to obtain the previous prefix value and go 
through and determine each of its final n1/3 results, as we did in the PRAM algo-
rithm. Clearly, this can be performed in Θ(n1/3) time. Therefore, the running 
time of the algorithm is Θ(n1/3).

This is due to the fact that we balanced the time required for data movement 
with the time required for sequential computing. Since the algorithm runs in 
Θ(n1/3) time on a machine with Θ(n2/3) processors, the cost of the algorithm is 
Θ(n1/3 × n2/3) = Θ(n), which is optimal.

Hypercube

In this section, we consider the problem of computing the parallel prefix on a 
hypercube computer. As with the mesh, when considering an operation that 
involves an ordering imposed on the data, we must first consider an ordering of the 
processors. In this section, we assume that the data set X = {x0, x1, . . . , xn−1} is dis-
tributed so that processor Pi initially contains data item xi. Notice that we have 
changed the indexing of the set X from [1, . . . , n], which was used for the RAM, 
Mesh, and PRAM, to [0, 1, . . . , n − 1] for the hypercube. This change of indexing 
allows us to accommodate the natural indexing of a hypercube of size n, in which 
the log2 n-bit indices are in the range of [0, 1, . . . , n − 1]. So we assume that every 
processor Pi initially contains data item xi, and at the conclusion of the algorithm, 
every processor Pi will store the ith prefix, x0 ⊗. . . ⊗ xi, 0 ≤ i ≤ n − 1.
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Parallel Prefix 181

The procedure we present is similar to the recursive doubling algorithm we pre-
sented for broadcasting on a hypercube. The algorithm operates by cycling through 
the log2 n bits of the processor indices. At iteration i, every processor determines the 
prefix for the subhypercube that it is in with respect to the i least significant bits of 
its index. In addition, every processor uses this partial information, as appropriate, 
to compute its required prefix value. The algorithm follows (see Figure 7-6).

Input: Processor Pi contains data element xi, 0 ≤ i ≤ n − 1.
Output: Processor Pi contains the ith prefix x0 ⊗ . . .⊗ xi.

In Parallel, every processor Pi does the following.
 subcube_prefix = xi {prefix for current subcube}
 processor_prefix = xi {prefix of desired result}
  {lsb = least significant bit and 
 msb = most significant bit}
 For b = lsb to msb, do
  {In this loop, we consider the binary 
 processor indices from the rightmost 
 bit to the leftmost bit.}
  send subcube_prefix to b-neighbor
  receive temp_prefix from b-neighbor
  If the bth bit of processor Pi is a 1, then
    processor_prefix = temp_prefix ⊗ processor_prefix
    subcube_prefix = temp_prefix ⊗ subcube_prefix
  Else
    subcube_prefix = subcube_prefix ⊗ temp_prefix 
 {We compute subcube_prefix differently
 than in the previous case, since ⊗ need 
 not be commutative.}
  End If
 End For
End Parallel

Analysis

The analysis of this algorithm is fairly straightforward. Notice that the n processors 
are uniquely indexed with log2 n bits. The algorithm iterates over these bits, each 
time performing Θ(1) operations, which include sending/receiving data over a link 
and performing a fixed number of unit-time operations on the contents of local 
memory. Therefore, given n elements initially distributed one per processor on a 
hypercube of size n, the running time of the algorithm is Θ(log n). Since the com-
munication diameter of a hypercube of size n is Θ(log n), the algorithm is optimal 
for this architecture. However, the cost of the algorithm is Θ(n log n), which is not 
optimal. In order to reduce the cost to Θ(n), we might consider reducing the 
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(a) Indexing of a hypercube
of size 8.

(b) Initial set of data.

(c) First step: Communicating
along 3-dimensional edges.

(e) Third step: Communicating 
along 1-dimensional edges.

(d) Second step: Communication 
along 2-dimensional edges.
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FIGURE 7-6 An example of computing the parallel prefix on a hypercube of 
size 8 with the operation of addition. Processor prefix values are shown large 
in (c), (d), and (e), and subcube  prefix values are small.
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number of processors from n to n/log2 n while still maintaining a running time of 
Θ(log n). We leave this problem as an exercise.

Coarse Grained Multicomputer

By making use of efficient gather and scatter operations, one may modify the algo-
rithm presented above for the CREW PRAM with n/log2  n processors or for the 
n1/3 × n1/3 mesh in order to obtain an algorithm for the parallel prefix computation 
on a CGM(n, q) that runs in optimal Θ(n/q) time. See the Exercises, where a more 
precise statement of the problem is given.

Maximum Sum Subsequence

In this section, we consider an application of the parallel prefix computation. The 
problem we consider is that of determining a subsequence of a data set that sums 
to the maximum value with respect to any subsequence of the data set. Formally, 
we are given a sequence X = 8x0, x1, . . . , xn−19 , and we are required to find a set of 
indices u and v, u ≤ v, such that the subsequence 8xu, xu+1, . . . , xv9  has the largest 
possible sum, xu + xu+1 +g+ xv, among all possible subsequences of X. Note that 
by a subsequence of X we mean a subset of X made up of consecutively indexed 
entries. Note also that while the largest sum is unique, there may be multiple sub-
sequences that correspond to the same largest sum.

If all the elements of X are nonnegative, then the problem is trivial, as the 
entire sequence represents the solution. Similarly, if all elements of X are nonposi-
tive, an empty subsequence is the solution, since, by convention, the sum of the 
elements of an empty set of numbers is 0. So, this problem is interesting only when 
both positive and negative values are present. This is the case we now consider for 
several models of computation.

RAM

The lower bound to solve this problem on a RAM is Ω(n), since if any one element 
is not examined, it is possible that an incorrect solution may be obtained. We will 
now attempt to develop an optimal Θ(n) time solution to this problem. Consider 
the situation of scanning the list from the first element to the last while maintain-
ing some basic information about the maximum subsequence observed and the 
contribution that the current element can make to the current subsequence under 
investigation. A first draft of the algorithm follows.

 1. Solve the problem for 8x0, x1, . . . , xi−19 .
 2. Extend the solution to include the next element, xi. Notice that the maximum 

sum in 8x0, x1, . . . , xi9  is the maximum of

a.  the sum of a maximum sum subsequence in 8x0, x1, . . . , xi−19 , which we refer 
to as Global_Max, and

b.  the sum of a subsequence ending with xi, which we refer to as  Current_Max.
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184 Chapter 7  Parallel Prefix

The five initialization steps each run in Θ(1) time. Each pass through the For-
loop also runs in Θ(1) time. Since the loop is performed Θ(n) times, it follows that 
the running time of the algorithm is Θ(n), which is optimal, as all n entries of the 
input array X must be examined.

CREW PRAM

Consider an efficient solution to the maximum sum subsequence problem for the 
CREW PRAM. Let’s attempt to design a CREW PRAM algorithm that is efficient 

The details of the algorithm are straightforward. (Also see the example pre-
sented in Figure 7-7.)

Global_Max ← x0
u ← 0 {Start index of global max subsequence}
v ← 0 {End index of global max subsequence}
Current_Max ← x0
q ← 0 {Initialize index of current subsequence}
For i = 1 to n − 1, do {Traverse list}
 If Current_Max ≥ 0 Then
  Current_Max ← Current_Max + xi
 Else
  Current_Max ← xi
  q ← i {Reset index of current subsequence}
 End Else
 If Current_Max > Global_Max Then
  Global_Max ← Current_Max
  u ← q
  v ← i
 End If
End For

FIGURE 7-7 An example of the maximum sum 
 subsequence problem.

i x Global_Max u v Current_Max q 

0 5 5 0 0 5 0 

1 3 8 0 1 8 0 

2 –2 8 0 1 6 0 

3 4 10 0 3 10 0 

4 –6 10 0 3 4 0 

5 –5 10 0 3 –1 0 

6 1 10 0 3 1 6 

7 10 11 6 7 11 6 

8 –2 11 6 7 9 6 
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Maximum Sum Subsequence 185

in its running time and cost-optimal. Based on our previous experience with 
designing cost-effective PRAM algorithms, it makes sense to target a Θ(log n) 
time algorithm on a machine with Θ(n/log n) processors. Such an algorithm would 
be time- and cost-optimal.

Suppose we first compute the parallel prefix sums S = {p0, p1, . . . , pn−1} of 
X = {x0, x1, . . . , xn−1}, where pi = x0 ⊗ . . . ⊗ xi. This can be performed in Θ(log n) 
time by the cost-optimal parallel prefix algorithm presented in the previous section.

Next, compute the parallel postfix maximum of S so that for each index i, the 
maximum pj, j ≥ i, is determined, along with the value j. Given data values 
{y0, . . . , yn−1}, we define the parallel postfix computation as an algorithm that deter-
mines the n values y0 ⊗ y1 ⊗ . . . ⊗ yn−1, y1 ⊗ y2 ⊗ . . . ⊗ yn−1, y2 ⊗ . . . ⊗ yn−1,  . . . , 
yn−2 ⊗ yn−1, yn−1. Notice that when computing the desired parallel postfix maxi-
mum, one can simply compute parallel prefix maximum on {pn−1, pn−2, . . . , p0} 
since the maximum operation is commutative.

Let mi denote the value of the postfix-max at position i, and let ai be the asso-
ciated index, i.e., pai

= max {pi, pi+1, . . . , pn−1}. This parallel postfix is computed in 
Θ(log n) time by the algorithm presented in the previous section.

Next, for each i, compute bi = mi − pi + xi, the maximum prefix value of any-
thing to the right minus the prefix sum plus the current value. Note that xi must be 
added back in since it appears in term mi as well as in term si. This operation can 
be performed in Θ(log n) time by having each processor compute the value of b 
for each of its Θ(log n) entries. Finally, the solution corresponds to the maximum 
of the bi’s, where u is the index of the position where the maximum of the bi’s is 
found and v = au. This final step can be computed by a semigroup operation in 
Θ(log n) time.

Therefore, the algorithm runs in optimal Θ(log n) time on a CREW PRAM 
with n/log2 n processors, which yields an optimal cost of Θ(n).

We now give an example for this problem. Consider the input sequence 
X = 8−3, 5, 2, −1, −4, 8, 10, −29 . The parallel prefix sum of X is S = 8−3, 2, 4, 3, −1,
 7, 17, 159 .

m0 = 17 a0 = 6 b0 = 17 − (−3) + (−3) = 17

m1 = 17 a1 = 6 b1 = 17 − 2 + 5 = 20

m2 = 17 a2 = 6 b2 = 17 − 4 + 2 = 15

m3 = 17 a3 = 6 b3 = 17 − 3 + (−1) = 13

m4 = 17 a4 = 6 b4 = 17 − (−1) + (−4) = 14

m5 = 17 a5 = 6 b5 = 17 − 7 + 8 = 18

m6 = 17 a6 = 6 b6 = 17 − 17 + 10 = 10

m7 = 15 a7 = 7 b7 = 15 − 15 + (−2) = −2

As the example shows, we have a maximum subsequence sum of b1 = 20. This 
corresponds to u = 1 and v = a1 = 6, or the subsequence 85, 2, −1, −4, 8, 109 . It is 
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186 Chapter 7  Parallel Prefix

also interesting to observe that the maximum sum subsequence for this example is 
a subsequence that contains positive and negative terms.

Mesh

We now consider a mesh. Notice that an optimal CREW PRAM algorithm for 
solving the maximum sum subsequence problem relies on a parallel prefix opera-
tion, a parallel postfix operation, a semigroup operation, and some local unit-time 
computations. Also notice that a semigroup computation can be implemented by a 
parallel prefix computation. Therefore, the maximum sum subsequence problem 
can be solved by using three parallel prefix operations and some local computa-
tions. Recall that one of these parallel prefix operations is actually a parallel post-
fix operation, which performs parallel prefix from the end to the beginning of the 
list of data. Therefore, in designing an algorithm for the mesh, we can simply fol-
low the general guidelines of the CREW PRAM algorithm while implementing the 
appropriate mesh steps in an efficient manner. So, we know that we can solve the 
maximum sum subsequence problem in Θ(n1/3) time on an n1/3 × n1/3 mesh. Since 
this algorithm runs in Θ(n1/3) time on a machine with n2/3 processors, the cost is 
Θ(n1/3 × n2/3) = Θ(n), which is optimal. Further, as discussed previously, this is the 
minimal running time on a mesh for a cost-optimal solution.

Array Packing

In this section, we consider an interesting problem, the result of which is a global 
rearrangement of data. The problem consists of taking an input data set, in which a 
subset of the items are marked, and rearranging the data set so that all of the 
marked items precede all of the unmarked items. Formally, we are given an array X 
of items. Each item has an associated label field that is initially set to one of two 
values, namely, marked or unmarked. The task is to pack the items so that all of the 
marked items appear before all of the unmarked items in the array. Notice that this 
problem is equivalent to sorting a set of 0s and 1s. In fact, if we consider 0 to rep-
resent marked and 1 to represent unmarked, then this problem is equivalent to sort-
ing a set of 0s and 1s into nondecreasing order.

RAM

The first model of computation that we consider is the RAM. Since this problem is 
equivalent to sorting a set of 0’s and 1’s, we could solve this problem quite simply 
in O(n log n) time by any one of a number of Θ(n log n) worst-case running time 
sorting routines. However, since we know something about the input data, we 
should consider the possibility of constructing a RAM sorting algorithm that runs 
in o(n log n) time. In this case, we know that the sort field consists of a restricted 
set of values. In fact, the keys used to sort the data can only take on one of two 
values. Using this information, we can consider scan-based sorts such as Counting 
Sort or Radix Sort.

C8208_ch07.indd   186C8208_ch07.indd   186 11/15/12   8:24 AM11/15/12   8:24 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Array Packing 187

Consider Counting Sort. If we are sorting an array of n entries, we could sim-
ply make one pass through the array and count the number of 0’s and the number 
of 1’s. Suppose we count X zeros and Y ones. Then we could simply write out the 
value zero X times followed by writing out the value one Y times. However, the 
situation we are presented with is slightly more complicated since each key is part 
of a larger record.

In such a case, we could initialize two linked lists, one for those records with a 
zero as key and one for those records with a one as key, and then traverse the array 
element by element. As we encounter each element in the array, we create and ini-
tialize a record with the pertinent information and add it in Θ(1) time to either the 
0’s list or the 1’s list, as appropriate. This traversal is complete in Θ(n) time.

We can then scan through the 0’s list, element by element, and overwrite the 
pertinent information into the next available place in the array. After exhausting the 
0’s list, we continue similarly with the 1’s list. Again, this step of writing the lists 
onto the array is done in Θ(n) time, and hence the algorithm is complete in asymp-
totically optimal Θ(n) time. The reader should observe that this algorithm is closely 
related to the Bin Sort algorithm discussed in Chapter 1, “Asymptotic Analysis.”

Suppose we are given an array of n records, and we are required to perform 
array packing in place. That is, suppose that the space requirements in the machine 
are such that we cannot duplicate more than some fixed number of items. In this 
case, we can use the array-based Partition routine from Quicksort (see Chapter 9, 
“Divide-and-Conquer”) to rearrange the items. This partition routine is imple-
mented by considering one index L that moves from the beginning toward the end 
of the array, i.e., from left to right, and another index R that moves from the end 
toward the beginning of the array, i.e., from right to left. Index L stops when it 
encounters an unmarked item, while index R stops when it encounters a marked 
item. When both L and R have found an out-of-place item, and L precedes R in the 
array, then the items are swapped and the search continues. When L does not pre-
cede R, the algorithm terminates. The running time of the algorithm is linear in the 
number of items in the array. That is, the running time is Θ(n).

CREW PRAM

Now consider the CREW PRAM. As with the maximum sum subsequence prob-
lem, we realize that in order to obtain an efficient and cost-effective algorithm, we 
should try to develop an algorithm that runs in Θ(log n) time using only Θ(n/log n) 
processors. This problem is easily solved using a parallel prefix sum to determine 
the rank of each 0 with respect to all 0’s and the rank of each 1 with respect to all 1’s.

That is, suppose we first determine for each 0 the number of 0’s that precede 
it. Similarly, suppose we determine for each 1 the number of 1’s that precede it. 
Further, assume that the total number of 0’s is computed as part of the process of 
ranking the 0’s. Then during a write stage, every 0 can be written to its proper loca-
tion, the index of which is one more than the number of 0’s that precede it. Also, 
during this write state, every 1 can be written to its proper location, the index of 
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188 Chapter 7  Parallel Prefix

which is one plus the number of 1’s that precede it plus the number of 0’s that also 
precede it.

Let’s consider the running time of such an algorithm. Given a CREW PRAM 
with Θ(n/log n) processors, the parallel prefix computation can be performed in 
Θ(log n) time, as previously described. Along with this computation, the total 
number of 0’s is easily determined in an additional Θ(log n) time. Therefore, the 
write stage of the algorithm runs in Θ(log n) time. Note that each processor is 
responsible for writing out Θ(log n) items. Hence, the total running time of the 
algorithm is Θ(log n), and the cost of the algorithm on a machine with Θ(n/log n) 
processors is Θ(log n × n / log n) = Θ(n), which is optimal. It is important to note 
that this algorithm can be easily adapted to sort a set of values chosen from a con-
stant size set. In fact, the algorithm can be easily adapted to sort records, where all 
keys are chosen from a set of constant size.

Network Models

Now, let’s consider the problem of array packing for the general network model. 
Suppose one simply cares about sorting the data set, which consists of 0’s and 1’s. 
Then the algorithm is straightforward. Using either a semigroup operation or a 
parallel prefix computation, determine the total number of 0’s and 1’s. These val-
ues are then broadcast to all processors. Assume there are k 0’s in the set. Then all 
processors Pi, i ≤ k, record their final result as 0, while all other processors record 
their final result as 1. This results in all 0’s appearing before all 1’s in the final 
sorted list. Notice that this is a simple implementation of the Counting Sort algo-
rithm we have used previously.

Suppose that instead of simply sorting keys, one needs the actual data to be 
rearranged. That is, assume that we are performing array packing on labeled 
records where all records that are marked are to appear before all records that are 
not marked. This is a fundamentally different problem from sorting a set of 0’s and 
1’s. Notice that for this variant of the problem, it may be that all of the records are 
on the “wrong” half of the machine under consideration. Therefore, the lower 
bound for solving the problem is a function of the bisection width. For example, on 
a mesh of size n, if all n records need to move across the links that connect the 
middle two  columns, a lower bound on the running time is Ω(n/n1/2) = Ω(n1/2). On 
a hypercube of size n, the bisection width gives us a lower bound of 
Ω(n/(n/2)) = Ω(1). However, the communication diameter yields a better lower 
bound of Ω(log n). The reader should consider bounds on other machines, such as 
the pyramid and mesh-of-trees.

Since the record-based variant of the array packing problem reduces to sort-
ing, the solution can be obtained by performing an efficient  general-purpose sort-
ing algorithm on the architecture of interest. Such algorithms will be discussed 
later in this book.
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Interval Broadcasting 189

Interval Broadcasting

In this section, we consider a variant of the parallel prefix problem. Assume that 
we are given a sequence of data items. Further, we assume that some subset of 
these items is “marked.” For example, given a list of 20 items, we might find that 
items 3, 7, 9, 15, and 18 are marked.

We can view these marked data items as separating the complete sequence of 
data items into logical subsequences, where the first item of every subsequence is 
a marked data item. The problem we consider is that of broadcasting a marked data 
item to all of the records in its subsequence. It is important to note that in each 
subsequence, there is one and only one marked data item, and, in fact, it is the first 
item of the subsequence. So, in the example given above, the data in item 3 would 
be broadcast to items 4, 5, and 6. The data in item 7 would be broadcast to item 8. 
The data in item 9 would be broadcast to items 10 through 14, and so forth. For 
this reason, the marked data items are often referred to as “leaders.” We now give 
a more concise description of the problem.

Suppose we are given an array X of n data items with a subset of the elements 
marked as “leaders.” We then broadcast the value associated with each leader to all 
elements that follow it in X up to but not including the next leader. Another exam-
ple, which is slightly more visual, is given below.

The top table in Figure 7-8 gives the information before the segmented broad-
cast. The leaders are those entries for which the “Leader” component is equal to 1. 
In the table at the bottom of Figure 7-8, we show the information after this seg-
mented broadcast. At this point, every entry knows its leader and the information 
broadcast from its leader.

Processor Index: 0 1 2 3 4 5 6 7 8 9

Leader 1 0 0 1 0 1 1 0 0 0

Data 18 22 4 36 -3 72 28 100 54 0

Processor Index: 0 1 2 3 4 5 6 7 8 9

Leader 1 0 0 1 0 1 1 0 0 0

Data 18 22 4 36 -3 72 28 100 54 0

LeaderIndex 0 0 0 3 3 5 6 6 6 6

LeaderData 18 18 18 36 36 72 28 28 28 28

FIGURE 7-8 An example of segmented broadcast. The top table shows the initial 
state, i.e., the information before the segmented broadcast. Thus, by examining 
the Leader field in each processor, we know the interval leaders are processors 
0, 3, 5, and 6. In the bottom table, we show the information after the segmented 
broadcast. Information from each leader has been propagated to all processors 
to the right, up to, but not including, the next leader.
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190 Chapter 7  Parallel Prefix

Solution Strategy

The interval broadcasting problem can be solved in a fairly straightforward  fashion 
by exploiting a parallel prefix computation, as follows. For each leader xi in X, 
 create the record (i, xi). For each data item xi that does not correspond to a leader in 
X, create the record (−1, xi). Now define our prefix operator ⊗ as

(i, a) ⊗ ( j, b) = e (i, a) if  i > j;

( j, b)  otherwise.

The reader should verify that ⊗ has all properties necessary to be an operator 
for parallel prefix. That is, the reader should verify that this operator is binary, 
closed, and associative. Recall that ⊗ need not be commutative. Notice that a 
straightforward application of a parallel prefix will now serve to broadcast the data 
associated with each leader to the members of its interval.

Analysis

Consider the RAM. A parallel prefix is implemented as a linear time scan operation, 
making a single pass through the data. So given an array X of n elements, the run-
ning time of the algorithm on a RAM is Θ(n), which is asymptotically optimal. 
Notice that the solution to the interval broadcasting problem simply consists of a 
careful definition of the prefix operator ⊗, coupled with a straightforward imple-
mentation of parallel prefix. Therefore, the analyses of running time, space, and 
cost on the CREW PRAM and network models are consistent with those for parallel 
prefix computations that were presented earlier in this chapter for these respective 
models. Similarly, as a consequence of an Exercise at the end of this chapter, the 
running time, space, and cost of this algorithm on the Coarse Grained Multicomputer 
are consistent with those for parallel prefix computations.

Point Domination Query

In this section, we consider an interesting problem from computational geome-
try, a branch of computer science concerned with designing efficient algorithms 
to solve geometric problems. Such problems typically involve points, lines, 
polygons, and other geometric figures. Consider a set of n data items, where 
each item consists of m fields. Further, suppose that each field is drawn from 
some linearly ordered set. That is, within each field, one can compare two entries 
and determine whether the first entry is less than, equal to, or greater than the 
second entry.

We consider the point domination problem in two-dimensional space. That is, 
we say that a point q1 = (x1, y1) dominates a point q2 = (x2, y2) if and only if x1 > x2 
and y1 > y2. A solution to this problem is useful, for example, if one wants to 
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Point Domination Query 191

FIGURE 7-9 An example of the point 
domination problem. In this example, 
exactly three points have no other 
point both above and to the right. The 
remainder of the points are dominated 
by at least one of these three points.

y 

x 

Suppose that the input to our problem consists of a set of n points, 
Q = {q1, q2, . . . , qn}, where each point qi = (xi, yi) is such that no two members of Q 
have the same x-coordinates or the same y-coordinates. Further, suppose that Q is 
initially ordered with respect to the x-coordinate of the records. Given such input, 
we now consider an algorithm to solve the point domination query.

Solution Strategy
Since the records are initially ordered with respect to the x-coordinate, the points 
can be thought of as lying ordered along the x-axis. The first step of the algorithm 
is to perform a parallel postfix operation, where the operator is maximum-y-value. 
Since the maximum operation is commutative, this is equivalent to performing a 
parallel prefix operation on the sequence of data 8qn, qn−1, . . . , q19 . Let pi denote 
the parallel prefix value associated with record qi. Notice that at the conclusion of 
the parallel prefix algorithm, the desired set of points consists of all qi for which 

determine for a given set of points Q = {q1, q2, . . . , qn}, which points are not domi-
nated by any point in Q.

Suppose we are interested in performing a study to identify the set of students 
for which no other student has both a higher grade point average (GPA) and has 
sent more tweets. An example is given in Figure 7-9, where the x-axis represents 
the number of tweets sent and the y-axis represents GPA. Exactly three points from 
this set of nine students satisfy our query.
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192 Chapter 7  Parallel Prefix

i < n and pi > pi+1. Also, qn is one of the desired points. We now consider the time- 
and space-complexity of the algorithm on the RAM, CREW PRAM, and 
network models.

RAM

Given an ordered array of data, a prefix operation can be performed on the n 
entries in Θ(n) time using a constant amount of additional space. A final pass 
through the data can be used to identify the desired set of records. We should note 
that this second pass could be avoided by incorporating the logic to recognize 
points that are not dominated into the parallel prefix operation. Note that it is easy 
to argue that the running time is optimal since the only way to complete the algo-
rithm faster would be not to examine all of the entries, which could result in an 
incorrect result.

CREW PRAM and Network Models

Notice that the solution to the 2-dimensional point domination query, where the 
input is given ordered by x-axis, is dominated by a parallel prefix operation. 
Therefore, the running time, space, and cost analyses are consistent with those 
of parallel prefix computations for these respective models given earlier in 
this chapter.

Computing Overlapping Line Segments

In this section, we consider other simple problems from computational geometry. 
These problems involve a set of line segments that lie along the same line. We can 
think of this as a set of line segments that lie along the x-axis, as shown in 
Figure 7-10, where the segments are shown raised above the x-axis for clarity. The 
line segments are allowed to overlap in any possible combination.

B 

s6 

A 

s5 s3 

s4 

s2 

s1 

FIGURE 7-10 An example of problems involving overlapping 
line segments. The line segments are all assumed to lie on 
the x-axis, though they are drawn superimposed for viewing 
purposes.
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Computing Overlapping Line Segments 193

In particular, we assume that the input consists of a set S = {s1, s2, . . . , sn} of n 
uniquely labeled line segments, all of which lie along the same horizontal line. 
Each member of S is represented by two records, one corresponding to each end-
point. Each such record consists of the x-coordinate of the endpoint, the label of 
the line segment, and a flag indicating whether the point is the left or right end-
point of the line segment.

In addition, we assume that these 2n records are ordered with respect to the 
x-coordinate of the records, and if there is a tie, i.e., two records with the same 
x-coordinate, the tie is broken by having a record with a Left endpoint precede a 
record with a Right endpoint.

Coverage Query: The first problem we consider is determining whether or not 
the x-axis is completely covered by the set S of n line segments between two given 
x-coordinates, A and B, where A < B.

Solution: We give a machine-independent solution strategy and then discuss the 
analysis for a variety of models.

 1. Determine whether or not left (s1) ≤ A and B ≤ max5right (si)6i=1

n
. If this is the 

case, then we can proceed. If not, we can halt with the answer that the coverage 
query is false.

 2. For each of the 2n records, create a fourth field that is set to 1 if the record 
represents a left endpoint, and is set to −1 if the record represents a right end-
point. We will refer to this field as the operand field.

 3. Considering all 2n records, perform a parallel prefix sum operation on the 
values in this operand field. The result of the ith prefix will be stored in a fifth 
field of the ith record, for each of the 2n records.

 4. Notice that any parallel prefix sum of 0 must correspond to a right endpoint. 
Suppose that such a right endpoint is at x-coordinate c. Then all line seg-
ments with a left endpoint in (−∞, c] must also have their right endpoint in 
(−∞, c]. Recall that in case of a tie in the x-coordinate, the left endpoint pre-
cedes the right endpoint, so the record that follows must be either a right 
endpoint with x-coordinate equal to c, or a left endpoint with x-coordinate 
strictly greater than c. Either way, the ordered sequence cannot have a right 
endpoint with x-coordinate strictly greater than c until after another left end-
point with x-coordinate strictly greater than c occurs in the sequence. Thus, 
there is a break in the coverage of the x-axis at point c. So, we determine the 
first record with parallel prefix sum equal to 0. If the x-coordinate of the 
endpoint is greater than or equal to B, then the answer to the coverage query 
is true, while otherwise it is false (see Figure 7-11).

RAM

Consider an implementation of this algorithm on a RAM. The input consists of an 
array S with 2n entries and the values of A and B. Step 1 requires the comparison 
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194 Chapter 7  Parallel Prefix

of the first element of S with the scalar quantity A and, since the records are 
ordered, a comparison of B with the last point. Therefore, Step 1 can be performed 
in Θ(1) time. Step 2 is completed with a simple Θ(n) time scan through the array. 
In Step 3, a parallel prefix computation is performed on an array of 2n items with 
a scan that runs in Θ(n) time. In Step 4, a final scan is used to determine the first 
break in the coverage of the line segments before determining in Θ(1) time whether 
or not this endpoint precedes B. Therefore, the running time of the RAM algorithm 
is Θ(n), which is optimal.

CREW PRAM

In order to attempt to derive a cost-optimal algorithm for this problem on the 
CREW PRAM, we will consider a CREW PRAM with Θ(n/log n) processors. In 
the first step, the values of A and B can be broadcast to all processors in Θ(1) 
time, as shown previously. This is followed by a Θ(log n) time OR semi-group 
operation to compute the desired comparison for A and then B, and a broadcast of 

FIGURE 7-11 Transforming the coverage query problem to the parentheses 
matching problem. For this example, notice that there is a break in 
 coverage between x6 and x7, as indicated by the 0 in the prefix value of x6.
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Computing Overlapping Line Segments 195

the decision concerning halting that runs in Θ(1) time. Step 2 runs in Θ(log n) 
time since every processor must examine all Θ(log n) of the records for which it 
is responsible. Step 3 is a straightforward parallel prefix, which can be performed 
on a CREW PRAM with Θ(n/log n) processors in Θ(log n) time, as discussed 
previously. In Step 4, a Θ(log n) time semigroup operation can be used to deter-
mine the first endpoint that breaks coverage, and a Θ(1) time comparison can be 
used to resolve the final query. Therefore, the running time of the algorithm is 
Θ(log n) on a CREW PRAM with Θ(n/log n) processors, resulting in an optimal 
cost of Θ(n).

Mesh

As we have done previously when attempting to derive an algorithm with Θ(n) 
cost on a mesh, we consider an n1/3 × n1/3 mesh, in which each of the n2/3 proces-
sors initially contains the appropriate set of n1/3 contiguous items from S. If we 
follow the flow of the PRAM algorithm, as implemented on a mesh of size n2/3, we 
know that the broadcasts and parallel prefix operations can be performed in Θ(n1/3) 
time. Since these operations dominate the running time of the algorithm, we have 
a Θ(n1/3) time algorithm on a mesh with n2/3 processors, which results in an opti-
mal cost of Θ(n).

Maximal Overlapping Point

The next variant of the overlapping line segments problem that we consider is the 
problem of determining a point on the x-axis that is covered by the most line seg-
ments. The input to this problem consists of the set S of 2n ordered endpoint 
records, as discussed above.

Solution
The solution we present for the maximal overlapping point problem is very similar 
to the solution just presented for the coverage query problem.

 1. For each of the 2n records, create a fourth field that is set to 1 if the  record rep-
resents a left endpoint, and is set to −1 if the record represents a right endpoint. 
We will refer to this field as the operand field.

 2. Considering all 2n records, perform a parallel prefix sum operation on the 
values in this operand field. For each of the 2n records, the result of the ith 
prefix will be stored in the fifth field of the ith record.

 3. Determine the maximum value of these prefix sums, denoted as M. All points 
with a prefix sum of M in the fifth field of their record  correspond to points 
that are overlapped by a maximal number of line segments.
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196 Chapter 7  Parallel Prefix

Analysis

The analysis of this algorithm follows that of the coverage query problem quite 
closely. Both problems are dominated by operations that are efficiently performed 
by parallel prefix computations. Therefore, the RAM algorithm is optimal at Θ(n) 
time. A CREW PRAM algorithm can be constructed with Θ(n/log n) processors 
that runs in Θ(log n) time, yielding an optimal cost of Θ(n). Finally, a mesh algo-
rithm can be constructed with Θ(n2/3) processors, running in Θ(n1/3) time, which 
also yields an algorithm with optimal Θ(n) cost.

Parallel Prefix on a NOW, Cluster, or Grid

Each of the problems considered in this chapter is often part of a solution to a 
much larger problem. In fact, solutions to the problems presented in this chapter 
are often used to solve problems for which one might use a NOW, Cluster, or Grid. 
That is, many of the larger problems that require solutions to the problems 
 presented in this section require access to machines with significant compute- and/
or data-capabilities.

The solutions presented in this section rely on standard low-level parallel com-
puting operations, including parallel prefix, broadcast, and semigroup operations. 
Some of these operations are either enhanced or restricted, but are still important 
operations with wide applicability.

For this reason, such operations are typically part of a set of pre-defined rou-
tines that come standard with the machines in question. That is, such routines will 
be part of standard data movement operations packages, numerical methods pack-
ages, or message passing packages, as appropriate. Therefore, the reality is that 
when designing solutions to such problems, it is critical to understand fundamental 
sequential and parallel solution strategies, objectives of efficiency or optimality, 
and alternative strategies.

However, when it comes time to implement such solutions, it is often best to 
use predefined routines that have been tuned at very low levels for the specific 
architectures in question. That is, it is in the best interest of a hardware or architec-
ture vendor to produce not only machines with efficient and desirable hardware 
subsystems, but also to supply software libraries that will make efficient use of the 
available hardware, including processors, memory, interconnection networks, stor-
age, and so forth.

Summary

In this chapter, we study parallel prefix computations. Roughly, a parallel prefix 
computation on n data items x1, . . . , xn is the result of applying a binary operator
⊗ when we wish to preserve not only the result x1 ⊗. . . ⊗ xn, but also the sequence 
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of partial results x1, x1 ⊗ x2, x1 ⊗ x2 ⊗ x3, . . . , x1 ⊗. . . ⊗ xn−1. We discuss efficient to 
optimal implementation of parallel prefix on a variety of computational models. 
We show the power of this computation by presenting several applications.

Chapter Notes

In this chapter, we study the implementation and application of parallel prefix, an 
extremely powerful operation, especially on parallel computers. Parallel prefix-
based algorithms are presented in R. Miller’s and Q.F. Stout’s Parallel Algorithms 
for Regular Architectures (The MIT Press, Cambridge, 1996), to solve fundamen-
tal problems as well as to solve application-oriented problems from fields includ-
ing image processing and computational geometry for mesh and pyramid 
computers. A similar treatment is presented for the PRAM in J. Já Já’s An 
Introduction to Parallel Algorithms (Addison-Wesley Publishing Company, New 
York, 1992). Parallel prefix is presented in a straightforward fashion in the intro-
ductory text by M.J. Quinn, Parallel Computing Theory and Practice (McGraw-
Hill, Inc., New York, 1994). Finally, the Ph.D. thesis by G.E. Blelloch, Vector 
Models for Data-Parallel Computing (The MIT Press, Cambridge, 1990), consid-
ers a model of computation that includes parallel prefix as a fundamental unit-time 
operation.

Efficient gather and scatter algorithms for coarse grained multicomputers are 
demonstrated in L. Boxer’s and R. Miller’s paper, “Coarse Grained Gather and 
Scatter Operations with Applications,” Journal of Parallel and Distributed 
Computing, 64 (2004), 1297–1320. These algorithms are discussed in Appendix 3, 
and are referred to in the Exercises for this chapter.

Exercises

 1. Show that a hypercube with Θ(n/log  n) processors can perform a parallel pre-
fix operation for a set of n data, {x0, x1, . . . , xn−1}, distributed Θ(log n) items 
per processor, in Θ(log n) time.

 2. The interval prefix computation is defined as performing a parallel prefix 
within predefined disjoint subsequences of the data set. Give an efficient solu-
tion to this problem for the RAM, CREW PRAM, and Mesh. Discuss the run-
ning time, space, and cost of your algorithm.

 3. Show how a parallel prefix operation can be used to broadcast Θ(1) data to all 
the processors of a parallel computer in the asymptotic time of a parallel pre-
fix operation. This should be done by giving a generic parallel algorithm, 
where the running time of the algorithm is dominated by a parallel prefix 
operation.
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198 Chapter 7  Parallel Prefix

 4. Define Insertion Sort in terms of parallel prefix operations for the RAM and 
PRAM. Give an analysis of running time, space, and cost of the algorithm.

 5. Give an optimal Θ(log n) time EREW PRAM algorithm to compute the paral-
lel prefix of n values x1, x2, . . . , xn.

 6. Give an efficient algorithm to perform Carry-Lookahead Addition of two 
n-bit numbers on a CREW PRAM. Hint: Keep track of whether each one-
bit subaddition stops (s) a carry, propagates (p) a carry, or generates (g) a 
carry. See the example below. Notice that if the ith carry indicator is p, then 
the ith carry is a 1 if and only if the leftmost non-p to the right of the ith 
position is a g.

0100111010110010010

0110010110101011100

sgpspgppgsgppsgppps

 7. Give an efficient algorithm for computing the parallel prefix of n values, ini-
tially distributed one per processor on a q-dimensional mesh of size n. Discuss 
the time and cost of your algorithm.

 8. Suppose that you are given a set of n pairwise disjoint line segments in the 
first quadrant of the Euclidean plane, each of which has one of its endpoints 
on the x-axis. Think of these points as representing the skyline of a city. Give 
an efficient algorithm for computing the piece of each line segment that is 
observable from the origin. You may assume that the viewer does not have 
x-ray vision. That is, the viewer cannot see through any piece of a line seg-
ment. You may also assume the input is ordered from left to right. Discuss the 
time, space, and cost complexity of your algorithms for each of the following 
models of computation.

  a. CREW PRAM

  b.  Mesh

  c. Hypercube

 9. Give an efficient algorithm for computing the parallel prefix of n values stored 
one per processor in

  a. the leaves of a tree machine and

  b.  the base of a mesh-of-trees of base size n.

Discuss the time- and cost-complexity of your algorithms.

 10. Consider the array packing algorithms presented in this chapter. Which of the 
routines is stable? That is, given duplicate items in the initial list, which of the 
routines will preserve the initial ordering with respect to duplicate items?
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 11. Suppose a set of n data, X = {x0, x1, . . . , xn−1}, is evenly distributed among the 
processors of a coarse grained multicomputer i.e., a CGM(n, q), such that 

  processor Pi has the data 5xj6in
q

j = 
(i−1)n

q +1
.

Give the steps of an efficient algorithm to perform a parallel prefix com-
putation on the CGM(n, q), and analyze its running time. Hint: you should be 
able to obtain an algorithm that runs in Θ(n/q) time. In order to do this, you 
may find useful the algorithms for gather and scatter operations that are pre-
sented in Appendix 3.
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In this chapter, we consider algorithms for manipulating linked lists, which we 
assume are arbitrarily distributed throughout the memory of the computational 

model under consideration. Each element of the list consists of a data record and a next
field. The next field contains the memory address of the next element in the list. In 
addition, we assume that the next field of the last entry in the list is set to null.

On a RAM, the list is arbitrarily distributed throughout the memory, and we assume 
that the location in memory of the first element is known. On a PRAM, we assume that 
the list is arbitrarily distributed throughout the shared memory. If the list has n ele-
ments on a PRAM of size n, we assume that every processor knows i) the location in 
memory of a unique list element and ii) the memory location of the first element in the 
list. In addition, if we are given a PRAM with m ≤ n processors, then we assume that 
each processor is responsible for Θ(n/m) such list elements.

RAM: A linked list of n elements stored in the memory of a sequential machine pro-
vides a model for traversing the data elements that is inherently sequential. Therefore, 
given a list of size n on a RAM, problems including search, traversal, parallel prefix, 
and performing a semigroup operation, to name a few, can be solved in Θ(n) time by a 
linear search.

PRAM: The most interesting parallel model to discuss in terms of linked list opera-
tions is the PRAM. This is due to the fact that the communication diameter is Θ(1)
and the bisection width of a PRAM with n processors is equivalent to Θ(n2). It was 
long believed by the parallel computing community that list-based operations were 
inherently sequential. However, some clever techniques have been used to circumvent 
this notion. We demonstrate some of these pointer jumping techniques in the context 
of two problems, namely, list ranking and parallel prefix. A description of the prob-
lems, along with PRAM implementations and analyses, follow.
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202 Chapter 8  Pointer Jumping

List Ranking

Suppose that we are given a linked list L of size n, and we wish to determine the 
distance from each data element to the end of the list. That is, for every list element 
L(i), we want to compute the distance to the end of the list. We denote this distance 
as d(i). Without loss of generality, we will assume that the first element in the list 
is marked. Note that, if necessary, the first element can be marked in Θ(1) time by 
the unique processor that has an identical memory location for its element and for 
the first element of its list. Note also that the only other element that knows its 
position is the last element of a list, since it has a next value of null. We define the 
distance, d(i), as follows.

d(i) = e 0 if next(i) = null;

1 + d1next(i)2 if next(i) ≠ null.

The PRAM algorithm we present operates by a recursive doubling procedure. 
Initially, every processor finds the next element in the list. That is, the first step 
consists of every element finding the element that succeeds it in a traversal of the 
list from beginning to end. In the next step, every element locates the element two 
places away from it, if such an element exists. In the following step, every element 
locates the element four places away from it, if such an element exists. Notice that 
in the first step, every element has a pointer to the next element. During the course 
of the algorithm, these pointers are updated. During every step of the algorithm, 
each element L(i) can easily determine the element twice as far as away from it as 
L(next(i)) is. Notice that the element twice as far from L(i) as L(next(i)) is simply 
L(next(next(i))), as shown in Figure 8-1. As the process progresses, every element 
needs to keep track of the number of such links traversed in order to determine its 
distance to the end of the list. In fact, some care needs to be taken for computing 
distances at the end of the list. The details follow.

Input: A linked list L consisting of n elements, arbitrarily stored in the 
shared memory of a PRAM with n processors.
Output: For every element L(i), determine the distance d(i) from that 
element to the end of the list.

Action:

{First, initialize the distance entries.}
For all L(i) do

 d(i) ← e0 if next(i) = null;
1 if next(i) ≠ null.

End For all
{Perform pointer-jumping algorithm.  

The actual pointer jumping step 
is next(i) ← next(next(i)).}
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List Ranking 203

In parallel, each processor Pi does the following.
 While next(i) ≠ null, do
  d(i) ← d(i) + d(next(i))
  next(i) ← next(next(i))
 End While
End parallel

1 1 1 1 1 1 1 1 1 0 

(a) Initial list with data values set to 1. Every processor knows
the list element one place away.

2 2 2 2 2 2 2 2 1 0

(b) Pointer jump to determine list elements two places away.

4 4 4 4 4 4 3 2 1 0

(c) Pointer jump to determine list elements four places away.

8 8 7 6 5 4 3 2 1 0

(d) Pointer jump to determine list elements eight places away.

9 8 7 6 5 4 3 2 1 0

(e) Final data values after recursive doubling.

FIGURE 8-1 An example of list ranking. Given a linked list, determine for each 
 element the number of elements in the list that follow it. The algorithm follows a 
recursive  doubling procedure. Initially, every processor finds the next element in 
the list. Given a list with 10 elements, the number of iterations required is 

⎡log2 10⎤ = 4.
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204 Chapter 8  Pointer Jumping

Analysis: Given a PRAM of size n, the running time of this algorithm is 
Θ(log n). This can be seen by the fact that the first element in the list must traverse 
⎡log2 n⎤ + 1 links in order to reach the end of the list. Since the time for a PRAM 
of size n to solve the list ranking problem for a list of size n is Θ(log n), the total 
cost is Θ(n log n), which we know is suboptimal.

In order to reduce this cost, we can consider a PRAM with n/log2 n processors. 
In this case, we can attempt to make modifications to this algorithm as we have done 
previously. That is, we can attempt to create a hybrid algorithm in which each pro-
cessor first solves the problem locally in Θ(log n) time, and then the algorithm just 
described is run on this set of partial results. Finally, in Θ(log n) time, we can make 
a final local pass through the data.

However, consider this proposal carefully. It is important to note that if each 
processor were responsible for Θ(log n) items, there is no guarantee that these 
items form a contiguous segment of the linked list. Therefore, there is no easy way 
to consider merging the Θ(log n) items that a processor is responsible for into a 
single partial result that can be used during the remainder of the computation. In 
this case, such a transformation fails, and we are left with a cost-suboptimal 
algorithm.

Linked List Parallel Prefix

Now let’s consider the parallel prefix problem. Although the problem is the same 
as we have considered earlier the book, the input is of a significantly different 
form. Previously, whenever we considered the parallel prefix problem, we had 
the advantage of knowing that the data was ordered in a random access structure, 
that is, an array. Now, we have to consider access to the data in the form of a 
linked list. Notice that if we simply perform a scan on the data, then the running 
time will be Θ(n), which is equivalent to the RAM algorithm. Instead, we con-
sider applying techniques of pointer jumping so that we can make progress 
simultaneously on multiple prefix results. For completeness, recall that we are 
given a set of data X = {x1, . . . xn} and a binary associative operator ⊗, from which 
we are required to compute prefix values p1, p2, . . . ,  pn, where the k-th prefix is 
defined as

pk = e x1 if k = 1;

pk−1 ⊗ xk if 2 ≤ k ≤ n.

We now present an algorithm for computing the parallel prefix of a linked list 
of size n on a PRAM of size n, based on the concept of pointer jumping.
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{pi is used to store the i-th prefix.}
For all i, pi ← xi

{Perform a pointer-jumping algorithm.}
In parallel, each processor Pi does the following.
 While next(i) ≠ null, do
  pnext(i) ← pi ⊗ pnext(i)
  next(i) ← next(next(i))
 End While
End parallel

An example of this algorithm is given in Figure 8-2, where we show the appli-
cation of a parallel prefix on a PRAM to a linked list of size 6. While going through 
the algorithm, it is important to implement the update steps presented inside of the 
“In parallel” statement in lockstep fashion across the processors.

Analysis: This algorithm is similar to that of the list ranking algorithm just 
presented. That is, given a PRAM of size n, the running time of this algorithm is 
Θ(log n). This can be seen by the fact that the first element in the list must traverse 
⎡log2 n⎤  links in order to propagate x1 to all n prefix values. Since the time for a 
PRAM of size n to compute the parallel prefix on a list of size n is Θ(log n), the 
total cost of the algorithm is Θ(n log n). As with the list ranking algorithm, the 
cost of the parallel prefix computation is suboptimal.

FIGURE 8-2 An example of parallel prefix on a PRAM with linked list input. 
Given a list of size 6, the recursive doubling procedure requires three iterations 
(⎡log2 6⎤ = 3).

Summary

In this chapter, we consider pointer jumping computations on a PRAM for the 
linked list data structure. The techniques presented allow us to double, in each 
parallel step, the portion of a list “known” to each node of the list, so that in 

C8208_ch08.indd   205C8208_ch08.indd   205 11/12/12   10:36 AM11/12/12   10:36 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



206 Chapter 8  Pointer Jumping

logarithmic time, each node can know its relationship with all other nodes between 
its own position and the end of the list. The problems we consider are those of list 
ranking and parallel prefix (for linked lists). Our solutions are efficient, although 
not optimal.

Chapter Notes

The focus of this chapter is on pointer-jumping algorithms and efficient solutions 
to problems involving linked lists, an inherently sequential structure. An excellent 
chapter was written on this subject by R.M. Karp and V. Ramachandran, entitled 
“A survey of parallel algorithms and shared memory machines,” which appeared 
in the Handbook of Theoretical Computer Science: Algorithms and Complexity 
(A.J. vanLeeuwen, ed., Elsevier, New York, 1990, pp. 869–941). It contains numer-
ous techniques and applications to interesting problems. In addition, pointer jump-
ing algorithms are discussed in An Introduction to Parallel Algorithms, by J. Já Já 
(Addison-Wesley Publishing Company, New York, 1992).

Exercises

 1. Consider a set of linked lists L1, L2, . . . , Lk on a CREW PRAM with n proces-
sors. Assume these lists have a total of n elements. Initially, each processor 
Pi,1 ≤ i ≤ n, knows the location of a unique list element, but not necessarily 
what list the element is in. Suppose that in every list, there is a unique element 
that is marked. Further, suppose that in each list, the uniquely marked element 
has a data value that must be broadcast to all elements of its list. Give an effi-
cient algorithm to complete this distinct multi-list broadcast.

 2. Describe an efficient algorithm to solve the following problem. Given a col-
lection of linked lists with a total of n elements, let every element know the 
number of elements in its list and how far the element is from the front of 
the list. Analyze the algorithm for the RAM and the CREW PRAM.

 3. Give an efficient algorithm to solve the following problem. For a linked list 
with n links, report the number of links with a given data value x. Analyze 
your algorithm for the RAM and the PRAM.

 4. Give an efficient algorithm to solve the following problem. Given a set of 
ordered linked lists with a total of n elements, record in every element the 
median value of the element’s list. Note that in an ordered list of length k, for 
even k, the median value can be taken either as the value in element (k/2 − 1) 
or element k/2 with respect to distance from the head of the list. Do not assume 
that it is known at the start of the algorithm how many elements are in any of 
the lists. Analyze the running time of your algorithm on the RAM and on the 
CREW PRAM.
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The phrase “divide-and-conquer” is used in the study of algorithms to refer to a 
method of solving a problem that typically involves i) partitioning a problem into 

smaller subproblems, ii) recursively solving these subproblems, and then iii) stitching 
these partial solutions together in order to obtain a solution to the original problem. 
The divide-and-conquer strategy is summarized below.

 1. Divide the problem into subproblems, each of which is smaller than the original.

 2. Conquer the subproblems by recursively solving them, unless a subproblem is 
small enough to be solved directly.

 3. Combine or stitch the solutions to the subproblems together in order to obtain a 
solution to the original problem.

C8208_ch09.indd   209C8208_ch09.indd   209 11/16/12   11:58 AM11/16/12   11:58 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



210 Chapter 9  Divide-and-Conquer

Merge Sort (Revisited)

The divide-and-conquer paradigm is exhibited in Merge Sort, a sorting algorithm 
that we have previously discussed (see Chapter 2, “Induction and Recursion”). 
Recall that the input to the Merge Sort routine consists of an unordered list of n 
elements, and the output consists of an ordered list of the n elements. A high-level 
divide-and-conquer description of a basic Merge Sort follows.

 1. Divide: Divide the unordered n-element input sequence into two unordered 
subsequences, each containing n/2 items.

 2. Conquer: Recursively sort each of the two subsequences, unless a subse-
quence has only one item, in which case the subsequence is already sorted.

 3. Stitch: Combine the two sorted sequences by merging them into the sorted 
result.

We should point out that this “top-down” divide-and-conquer description of 
Merge Sort is in contrast to a “bottom-up” description that students typically see in 
their early courses. A bottom-up description of Merge Sort might state that one 
should merge pairs of sequences of length 1 into ordered sequences of length 2, 
then merge ordered sequences of length 2 into ordered sequences of length 4, and 
so on. While these two descriptions differ significantly, the work they describe is 
identical. We now consider the time and space analysis of Merge Sort on a variety 
of models of computation.

RAM

The analysis for the RAM should be familiar to readers who have taken a traditional 
year-long introduction to computer science course or a course that focuses on data 
structures. Let’s first consider a schematic of the operations performed by the Merge 
Sort algorithm on a RAM. In Θ(n) time, the n elements in the list are initially divided 
into two sublists, each of size approximately n/2. Both of these lists are then recur-
sively sorted. These two sorted lists are then merged into a single ordered list. Notice 
that a traditional, sequential merge of two ordered lists with a total of n items runs in 
O(n) time, regardless of the sizes of the individual lists. So, assuming a typical imple-
mentation of a list, the total running time for both the initial split and the final merge 
is Θ(n). Figure 9-1 demonstrates the computation of the running time of Merge Sort.

The top-down description and analysis of a basic Merge Sort can be used to 
derive the running time of the algorithm in the form of the recurrence 
T(n) = 2T(n/2) + Θ(n). From the Master Method, we know that this recurrence has 
a solution of T(n) = Θ(n log n). This is not surprising considering the recursion 
tree presented in Figure 9-1.

Linear Array

We now consider an implementation of Merge Sort on a linear array. Assume 
that the elements of the list are arbitrarily distributed one per processor on a 

C8208_ch09.indd   210C8208_ch09.indd   210 11/16/12   11:58 AM11/16/12   11:58 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Merge Sort (Revisited) 211

linear array of size n, where for simplicity of presentation, we assume that n is a 
power of 2. Let’s consider the stitch step of the algorithm. That is, assume that 
processors P1, . . . , Pn/2 contain an ordered subset of the data and that processors 
P(n/2)+1, . . . , Pn contain the remaining elements in sorted order (see Figure 9-2). By 
knowing its processor ID, every processor knows the rank of its element with 
respect to its subsequence of size n/2 (see Figure 9-3). That is, processor 
Pi, 1 ≤ i ≤ n/2, knows that the element it currently contains is the i th element with 
respect to those elements stored in processors P1, . . . , Pn/2. Similarly, processor 
Pi, (n/2) + 1 ≤ i ≤ n, knows that the element it currently contains has a rank of 
i − n/2 with respect to those elements stored in processors P(n/2)+1, . . . , Pn. Based on 

C1(n / 2)

C2(n / 4)lo
g 2 n

 le
ve

ls

C2(n / 4)

C1(n / 2)

Cn

Time per level

Q(n)

Q(n)

Q(n)

Q(n)

Total: (n log n)

C2(n / 4) C2(n / 4)

FIGURE 9-1 A recursion tree giving insight into the time 
required to perform a traditional Merge Sort algorithm 
on a RAM. Without loss of generality, assume that the 
time required to perform a split and a merge routine on 
n items is Cn, for some constant C.

3 1 8 4

(a) Initial data.

(b) Independently sorted subarray data.

5 2 7 6

1 3 4 8 2 5 6 7

FIGURE 9-2 A snapshot of Merge 
Sort on a linear array of size 8. 
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212 Chapter 9  Divide-and-Conquer

Data

Local Rank 1 2 3 4 1 2 3 4 

1 3 4 8 2 5 6 7 

FIGURE 9-3 A snapshot of Merge Sort on a linear 
array of size 8, using the data from Figure 9-2. The 
snapshot shows the data and local ranks that are 
determined after the independent sorts on both the 
left and right subarrays.

Data

Local Rank

Rank in Other
         Subarray

1 2 3 4 1 2 3 4 

0 1 1 4 1 3 3 3 

1 3 4 8 2 5 6 7 

FIGURE 9-4 A snapshot of Merge Sort on a linear 
array of size 8 after the independent sorts on both 
the left and right subarrays. The data, local ranks, 
and ranks with respect to the opposite subarray are 
all given. The data is from Figure 9-2.

this information and knowledge of where an element ranks in the other subse-
quence, every processor will know the final position of the element it contains. 
That is, if the element in processor Pi, 1 ≤ i ≤ n/2, is such that s elements in pro-
cessors P(n/2)+1, . . . , Pn are less than it, then the final position for the element in 
processor Pi is i + s. Similarly, if the element in processor Pi, n/2 + 1 ≤ i ≤ n, is 
such that t  elements in processors P1, . . . Pn/2 are less than or equal to it, then the 
final position for the element in processor Pi is i − (n/2) + t (see Figure 9-4).

In order to determine the rank of an element with respect to the other subse-
quence, simply perform a rotation of the data and allow every processor to count 
the number of elements from the other subsequence that rank ahead of the element 
that the processor is currently maintaining. Specifically, the following occur dur-
ing the rotation.

• Every processor Pi, 1 ≤ i ≤ n/2, counts the number of elements in processors 
Pj,  n/2 + 1 ≤ j ≤ n, that are less than the entry maintained in Pi.

• Every processor Pj,  n/2 + 1 ≤ j ≤ n, counts the number of elements in proces-
sors Pi, 1 ≤ i ≤ n/2, that are less than or equal to the entry maintained in Pj.

A final rotation can then be used to send every element to its correct sorted 
position. The running time of such an algorithm is given by the recurrence 
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T(n) = T(n/2) + Θ(n). This recurrence has a solution of T(n) = Θ(n), which is opti-
mal for the linear array. We make two critical observations.

 1. The algorithm, as described, requires that during each recursive step, a rotation 
is only performed within the pairs of subsequences of processors being merged. 
That is, a complete rotation over the entire linear array of size n is not per-
formed during each recursive merge step. If a complete Θ(n) time rotation of 
the data through all n processors were performed during each of the Θ(log n) 
merge steps, then the running time of the algorithm would be Θ(n log n).

 2. Although the Θ(n) time algorithm is asymptotically equivalent in running time 
to the tractor-tread/rotation-based sorting algorithm for the linear array, the 
high order constants for this Merge Sort routine are significantly larger than 
those of the tractor-tread algorithm. This is clear from the fact that the last 
iteration of the Merge Sort procedure requires two complete rotations, whereas 
the rotation-based sort requires only one rotation in total.

Finally, consider the cost of this Merge Sort algorithm. The running time is 
Θ(n) on a linear array with n processors, which yields a total cost of Θ(n2). Notice 
that this is significantly larger than the Θ(n log n) lower-bound result on the 
 number of operations required for comparison-based sorting. Due to the Θ(n) 
communication diameter of the linear array, we know that it is not possible to 
reduce the running time of Merge Sort on a linear array of n processors. Therefore, 
our only reasonable option for developing a Merge Sort-based algorithm that is 
cost- optimal on a linear array is to reduce the number of processors. If we reduce 
the number of processors to one, then the cost-optimal RAM algorithm can be 
executed. Since this yields no improvement in running time, we would like to con-
sider a linear array with more than a fixed number of processors but less than a 
linear number of processors in the size of the input, in an asymptotic sense. We 
leave this problem as an exercise.

Cluster

Assume that the n elements to be sorted are stored in the master processor of a 
cluster of size N. We can use a recursive doubling technique to distribute the n 
items to the N processors. Once distributed, each of the processors in the cluster 
will sort its initial set of n/N  items. We then use a recursive halving technique to 
gather and merge pairs of sorted sublists continually until the final sorted list lands 
in the master processor.

The time to split the n data items in half, send each half to the “tree-based” 
children, receive the data back from the children, and merge the two sorted subsets 
of data is Θ(n). The base level of the recursion is invoked when each of the N pro-
cessors receives its n/N  pieces of data. Once this occurs, each processor sorts its 
data and sends it back to the processor that sent it the data. The time for the base of 
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214 Chapter 9  Divide-and-Conquer

the recursion is B(n/N) = Θ(n/N log n/N ). Therefore, the total running time to sort 
n data items initially stored in the master processor of a cluster of size N is given 
by T(n) = Θ(n + n/2 + n/4 +g+ n/N ) + B(n/N ), or

T(n) = Θ(n) + Ban

N
b = Θan +

n

N
 log 

n

N
b .

So, given data in a single processor of a cluster, it is asymptotically more 
 efficient to distribute the data to all processors, have each processor sort a reduced 
amount of data, and then combine the data. However, experience shows that due to 
the overhead of communication on existing clusters, if one needs to sort data 
that already resides in a single processor, it is much more efficient to have that 
processor sort the data locally rather than performing a distributed Merge Sort 
algorithm.

Selection

In this section, we consider the selection problem, which requires the identifica-
tion of the kth smallest element from a list of n elements, where the integer k is 
given as input to the procedure and where we assume that 1 ≤ k ≤ n. Notice that 
this problem serves as a generalization of a number of problems, three of which 
are given below.

• The minimum problem corresponds to k = 1.
• The maximum problem corresponds to k = n.
• The median problem corresponds to either k = ⎣n/2⎦por k = ⎡n/2⎤ .

A naïve algorithm to solve the selection problem consists of sorting the data, 
and then reporting the entry that resides in the k th position of the ordered list.

If we assume that on the given model of computation, the running time for the 
sort step dominates the running time for the report step, then the asymptotic 
 running time for selection is bounded by the running time for sorting. So, on a 
RAM, our naïve algorithm has a running time of O(n log n). Further, a solution to 
the problem has a worst-case lower bound of Ω(n) since every element might need 
to be examined.

In fact, for the restricted problem of finding the minimum or maximum 
 element, we know that an optimal Θ(n) time algorithm can be obtained by a semi-
group operation. This suggests the possibility of solving the more general  selection 
problem in o(n log n) time.

We first consider an efficient Θ(n) time algorithm for the RAM, which is 
 followed by a discussion of selection on parallel machines.
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Selection 215

RAM

We present an efficient algorithm based on the semigroup operation to solve the 
general selection problem. Assume that the n data items are initially stored in arbi-
trary order in an array. For ease of explanation, we assume that n, the number of 
elements in the array, is a multiple of 5.

Initially, we take the unordered array as input and sort disjoint subsequences 
of five items (see Figure 9-5). That is, given an array S, we sort S[1 . . . 5], 
S[6 . . . 10], . . . , S[n − 4 . . . n]. Notice that this requires the application of n/5 sorting 
routines. However, since each of the n/5 sorting routines is working on a constant 
number of items, each of these n/5 sorts can be performed in constant time. Once 
these segments of size 5 are sorted within the array, we gather the medians of each 
of these n/5 segments. Notice that after the initial local sort step, the first median is 
in S[3], the next median is in S[8], and so on.

FIGURE 9-5 Using the Partition routine to solve the Selection Problem. 

(a) Initial array of size 25.

10 18 23 17 5 11 16 1 9 4 6 15 22 8 3 14 20 24 2 19 7 12 21 25 13

(b) Array after independent sorts.

5 10 17 18 23 1 4 9 11 16 3 6 8 15 22 2 14 19 20 24 7 12 13 21 25

Next, we recursively find the median of these n/5 median values. This median 
of medians, which we denote as AM, serves as an approximate median of the entire 
set S. Once we have this approximation, we compare all elements of S with AM 
and create three buckets, namely, those elements less than AM, those elements 
equal to AM, and those elements greater than AM (see Figure 9-6). Finally, we 
determine which of these three buckets contains the k th element and solve the 
problem on that bucket, recursively if necessary. Notice that if the k th element falls 
in the second bucket, then, since all elements in this bucket have equal value, we 
have identified the requested element.
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216 Chapter 9  Divide-and-Conquer

Function Selection(k, S, lower, upper)
Input: An array S, positions lower and upper, and a value k.
Output: The k th smallest item in S[lower . . . upper].
Local variables:
n, the size of the subarray;
M, an array used for medians of certain subarrays of S;
smallList, equalList, bigList: lists used to partition S;
j, an index variable;
AM, an approximation of the median of S.

Action:

 If 0upper − lower 0 < 50, then {The base case of  recursion.
The value of the constant, in this

 case 50, is typically determined
 experimentally in terms of the

target computing system.}
  SelectionSort(S,lower,upper)
  return S[lower + k − 1]
End If
Else {The recursive case.}
  1. n = upper − lower + 1
  2. Sort disjoint subarrays of size 5 or less. That is,
     independently sort S[lower, . . . ,lower + 4],. . . ,
     S[lower + 5(⎡n/5⎤ − 1), . . . ,upper].
  3. For j = 1 to ⎡n/5⎤, do
      Assign the jth median to M[j]. That is,
      M[j] = S[lower + 5j − 3].
  4. AM = Selection1⎡ 0M 0/2⎤,M,1,⎡n/5⎤2, the median of M.
  5.  Create empty lists smallList, equalList, and 

 bigList.

FIGURE 9-6 Creating three buckets based on AM = 13, the median of the five 
medians (17, 9, 8, 19, 13) given in Figure 9-5b. The data given in Figure 9-5b 
is traversed from the beginning to the end of the array, with every element less 
than 13 being placed in smallList, every item equal to 13 being placed in 
equalList, and every item greater than 13 being placed in bigList. Notice that 
the items should be placed in these lists in a manner that allows for Θ(1) time 
insertion. This can be done either by placing a new item at the head of the list, 
as shown, or by placing items at the end of a list if a tail pointer is maintained.

smallList 12 7 2 8 6 3 11 9 4 1 10 5

equalList 13

25 21 24 20 19 14 22 15 16 23 18 17bigList
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Selection 217

  6.  For j = 1 to n, do
     Copy S[lower + j − 1] to 

c smallList if  S[lower + j − 1] < AM;
equalList if  S[lower + j − 1] = AM;
bigList otherwise.

     End For
  7. If k ≤ 0smallList 0, then
      CreateArray(smallList, smallList_array)
      return Selection(k,smallList_array,1, 0smallList 0)
     Else If k ≤ 0smallList 0 + 0equalList 0 then return AM
        Else {find result in bigList}
         CreateArray(bigList, bigList_array)
         return Selection(k− 0smallList 0− 0equalList 0,
                    bigList_array,1, 0bigList 0)
        End Else {find result in bigList}
End Else recursive case

Correctness of Algorithm

Consider the lists smallList, equalList, and bigList. These lists contain members of 
S such that if x ∈ smallList, y ∈ equalList, and z ∈ bigList, then x < y < z. 
Therefore, we have the following.

• If k ≤ 0 smallList 0 , then the entries of smallList include the k smallest entries of S, 
so the algorithm correctly returns Selection1k, smallList_array, 1, 0 smallList 0 2.

• If 0 smallList 0 <k≤ 0 smallList 0+ 0 equalList 0 , then the k th smallest entry of S 
belongs to equalList, each entry of which has a key value equal to AM, so the 
algorithm correctly returns AM.

• If 0 smallList 0+ 0 equalList 0 <k, then the k th smallest member of S must be the 1k− 0 smallList 0− 0 equalList 0 2th smallest member of bigList, so the algorithm cor-
rectly returns Selection1k− 0 smallList 0− 0 equalList 0 , bigList_array, 1, 0 bigList 0 2.

Analysis of Running Time

The base case of the recursive algorithm calls for sorting a list with some experi-
mentally determined constant. Therefore, the running time of the base case is 
Θ(1). This is due to the fact that any polynomial time algorithm, such as the Θ(n2) 
time Selection Sort, will run in constant time on a fixed number of input 
items. Again, note that the choice of 50 is arbitrary, as any fixed positive integer 
will suffice.

We now consider the remainder of the algorithm.

• Step 1 runs in Θ(1) time.

• Step 2 calls for sorting Θ(n) sublists of the input list, where each sublist has at 
most five entries. Since 5 is a constant, we know that each sublist can be sorted 
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218 Chapter 9  Divide-and-Conquer

in constant time. Therefore, the time to complete these Θ(n) sorts, each of 
which runs in Θ(1) time, is Θ(n).

• Step 3 gathers the medians of each sublist, which requires making a copy of 
⎡n/5⎤  elements, each of which can be retrieved in Θ(1) time. Therefore, the 
running time for this step is Θ(n).

• Step 4 requires the application of the entire procedure on an array with ⎡n/5⎤  
elements. Therefore, this step runs in T1⎡n/5⎤2 time.

• Step 5 calls for the creation of a fixed number of lists, which runs in Θ(1) time 
in most modern programming languages.

• Step 6 consists of copying each of the n input elements to exactly one of the 
three lists created in Step 4. Therefore, the running time for this step is Θ(n).

• Step 7 determines which of the three lists needs to be inspected and, in two of 
the three cases, a recursive call is performed. The running time for this step is 
a function of the input value k as well as the order of the initial set of data. Due 
to these complexities, analysis of the running time of this step is a bit more 
involved. Three basic cases must be considered, each of which we evaluate 
separately. Namely, the requested element could be in smallList, equalList, or 
bigList.

■ We first consider the case where the requested element is in smallList, 
which occurs when k ≤ 0 smallList 0 . Let’s consider just how large smallList 
can be. That is, what is the maximum number of elements that can be in 
smallList? The maximal size of smallList can be determined as follows.
◆   Consider the maximum number of elements that can be less than AM, 

the median of the medians. At most ⎣ 0M 0 /2⎦ = ⎣ ⎡n/5⎤ /2⎦  members of 
M are less than AM. For simplicity, and since our analysis is based on 
asymptotic behavior, let’s say that at most n/10 median elements are less 
than AM.

◆   Notice that each m ∈ M  is the third smallest entry of an ordered 
5-element sublist of the input list S. In the n/10 sublists for which we 
have m < AM , possibly all 5 members could be less than AM. However, 
in the n/10 sublists for which we have m ≥ AM , at most 2 members 
apiece are less than AM.

◆   Therefore, at most 5n/10 + 2n/10 = 7n/10 elements of the input 
list S can be sent to smallList. Thus, the recursive call to Selection 1k, smallList_array, 1, 0 smallList 0 2 runs in at most T(7n/10) time.

■ If 0 smallList 0 < k ≤ 0 smallList 0 + 0 equalList 0 , then the required element is 
in equalList, and this step runs in Θ(1) time, since the required  element 
is equal to AM.

■ If 0 smallList 0 + 0 equalList 0 < k, then the required element is in bigList. 
Consider the maximum number of elements that can appear in bigList. 
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Selection 219

An argument similar to the one given above for the size of smallList can 
be used to show that bigList has at most 7n/10 entries. Thus, the  recursive 
call of the Selection routine in this case runs in at most T(7n/10) time.

Finally, consider the total running time T(n) for the selection algorithm we 
have presented. There are positive constants c, c0 such that the running time of this 
algorithm is given by

T(n) ≤ cn for 1 ≤ n ≤ 50;

T(n) ≤ T(n/5) + T(7n/10) + c0n for n > 50.

By taking C = max{c,10c0}, the previous statement yields

T(n) ≤ Cn for 1 ≤ n ≤ 50;

T(n) ≤ T(n/5) + T(7n/10) + Cn/10 for n > 50.

Thus, for 1 ≤ n ≤ 50 we have T(n) ≤ Cn. This statement serves as the base case for 
an induction proof. Suppose we have T(n) ≤ Cn for all positive integer values 
n < m. Then we have

T(m) ≤ T(m/5) + T(7m/10) + Cm/10 ≤

(by the inductive hypothesis)

Cm/5 + C(7m/10) + Cm/10 = Cm.

This completes the induction proof that T(n) ≤ Cn. Therefore, T(n) = O(n). Since 
we also must examine every entry of the input list, we know that any selection 
algorithm must run in Ω(n) time. Therefore, our algorithm runs in optimal Θ(n) 
time on a RAM.

PRAM

Consider applying the algorithm we have just presented to a PRAM. Notice that 
the independent sorting of Step 2 can be performed in parallel in Θ(1) time. Step 
3 requires that the median elements are placed in their proper positions, which can 
be done quite simply on a PRAM in Θ(1) time. Step 4 is a recursive step that runs 
in time proportional to T(n/5). Step 5 runs in constant time. Step 6 can be 
 performed by a parallel prefix operation and an exclusive write. The parallel pre-
fix operation is used to determine the position of each element in the appropriate 
list of smallList, equalList, or bigList and the exclusive write is used to copy the 
element into its assigned position. Therefore, this step can be performed in 
O(log n) time. Now consider the recursion in Step 7. Again, the running time of 
this step is no more than T(7n/10). So, the running time for the algorithm can be 
expressed as T(n) = T(7n/10) + T(n/5) + O(log n), which is asymptotically equiva-
lent to T(n) = T(7n/10) + O(log n), which resolves to T(n) = O(log2 n). It should be 
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220 Chapter 9  Divide-and-Conquer

noted that the running time of this algorithm can be reduced to O(log n log log n) 
by applying some techniques that are outside the scope of this text. In addition, the 
problem can also be solved by first sorting the elements in Θ(log n) time and then 
selecting the required element in Θ(1) time. This Θ(log n) time sorting routine is 
also outside the scope of this book. In fact, Θ(n) optimal-cost algorithms for the 
selection problem on a PRAM are known. These algorithms are also outside the 
scope of this text.

Mesh

Consider the selection problem on a mesh of size n. Since the communication 
diameter of a mesh of size n is Θ(n1/2), and since it will be shown later in this chap-
ter that sorting can be performed on the mesh in Θ(n1/2) time, we know that the 
problem of selection can be solved in optimal Θ(n1/2) time on a mesh of size n.

Quicksort (Partition Sort)

Quicksort is an efficient and popular sorting algorithm that was originally 
designed by C.A.R. Hoare for the RAM. It is a beautiful algorithm that serves as 
an excellent example of the divide-and-conquer paradigm. Quicksort also serves 
as a good example of an algorithm without a deterministic running time, in the 
sense that its best-, expected-, and worst-case running times are not the same. 
Depending on the arrangement of the n input items on a RAM, Quicksort has a 
Θ(n) best-case  running time, a Θ(n log n) expected-case running time, and a Θ(n2) 
worst-case  running time. In particular, the reason that Quicksort is so popular on 
the RAM is due to its very fast Θ(n log n) expected-case running time, where 
“fast” is relative to other popular Θ(n log n) time and Θ(n2) time algorithms, 
including Merge Sort, Selection Sort, and Insertion Sort, to name a few.

One must be quite careful when invoking Quicksort since for certain datasets 
that are relatively common, Quicksort can run in Θ(n2) time. In fact, Quicksort’s 
worst-case Θ(n2) running time is often slower in practice than a “simple sort” such 
as Selection Sort. This may occur, for example, when trying to sort common data-
sets that include nearly ordered or nearly reverse ordered data.

The importance of Quicksort motivates us to study this algorithm carefully. 
Our discussion includes the following.

• An outline of the Quicksort algorithm as an example of divide-and-conquer.

• Examples.

• A more detailed description of the algorithm that is especially geared for 
implementation using linked lists.
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Quicksort (Partition Sort) 221

• Analysis of running time for various cases of input.

• A comparison of Quicksort and Merge Sort.

• A description of how Quicksort can be implemented for data given in an array.

• Analysis of memory usage.

• Discussion of ways to improve the performance of the basic Quicksort 
algorithm.

• Modifications of the Quicksort algorithm for efficient implementation on 
parallel computers.

Note that in Appendix 4, we prove that the expected running time of 
Quicksort for a list of n entries is Θ(n log n). The proof is challenging and 
should only be read by those with the patience and mathematical skills to make 
the experience worthwhile.

The basic Quicksort algorithm can be expressed as follows.

• Divide: Divide the n input items into three lists, denoted as smallList, equal-
List, and bigList, where all items in smallList are less than all items in equal-
List, all items in equalList have the same value, and all items in equalList are 
less than all items in bigList.

• Conquer: Recursively sort smallList and bigList. Note that a list need not be 
sorted if it contains no more than one element.

• Stitch: Concatenate smallList, equalList, and bigList.

The reader should note the similarity of the Divide step with the Divide step of 
the Selection algorithm discussed earlier in this chapter (see Figure 9-7). Also, 
note the Conquer step does not require processing equalList, as its members are 
sorted, since all have the same value. Finally, one should note that Quicksort does 
not rely on comparing list elements to each other for the purpose of determining an 
ordering of the elements.

Typically, the input data is divided into three lists by first using a small amount 
of time to determine an element that has a high probability of being a good approx-
imation to the median element. We use the term splitValue to refer to the element 
that is selected for this purpose. This value is then used much in the same way as 
AM was used during the selection algorithm. Every element is sent to one of three 
lists. The list smallList contains those elements less than splitValue. The list equal-
List contains those elements equal to splitValue. The list bigList contains those 
elements larger than splitValue. After recursively sorting bigList and smallList, the 
three lists can simply be concatenated.

C8208_ch09.indd   221C8208_ch09.indd   221 11/16/12   11:59 AM11/16/12   11:59 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



222 Chapter 9  Divide-and-Conquer

Naturally, we hope that the splitting item is chosen at every level of the recur-
sion to be close to the median of the data under consideration. Such a choice of 
splitValue would result in a running time given by T(n) = 2T(n/2) + Θ(n), which 
gives T(n) = Θ(n log n).

We now present details of a list-based Quicksort algorithm on a RAM. We 
start with a top-down description of the algorithm.

q 5 8 1 2 6 7 4 9 3 

(a) Initial unsorted list.

1 2 4 3 

8 6 7 9 

equalList 

smallList 

5 

bigList 

(b) Three lists after the partitioning based on the value of 5.

1 2 3 4

6 7 8 9

equalList

smallList

5

bigList

(c) The three lists after smallList and bigList are
recursively sorted.

1 2 3 4q 5 6 7 8 9

(d) Completed list after the three sorted sublists are
concatenated.

FIGURE 9-7 An example of Quicksort on a linked list. Notice that 
an item can be placed into the appropriate list either at the front 
or the back of the list in Θ(1) time since efficient concatenation 
at the end of Quicksort requires the use of tail pointers. We show 
lists built using Θ(1) time insertion at the back of the list, simply 
as a contrast to Θ(1) time insertion at the front of a list as shown 
in Figure 9-6. 
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Subprogram QuickSort(q)
Input: A list q.
Output: The list q, with the elements sorted.
Procedure: Use Quicksort to sort the list.
Local variables:
splitValue, key used to partition the list;
smallList, equalList, bigList, sublists for partitioning.

Action:

 If q has at least two elements, then {do work}
  Create empty lists smallList, equalList, and bigList.
   {Divide: Partition the list.}
  splitValue = findSplitValue(q);
  splitList(q, splitValue, smallList, equalList, bigList);
 {Conquer: Recursively sort sublists.}
  QuickSort(smallList); 
  QuickSort(bigList);
 {Stitch: Concatenate sublists.}
  Concatenate(smallList, equalList, bigList, q)
 End If
End Sort

Now let’s consider the running time of Quicksort.

• In Θ(1) time, we can determine whether or not a list has at least two items. 
Notice that a list having fewer than two items serves as the base case of recur-
sion, requiring no further work since such a list is already sorted.

• Constructing three empty lists can be performed in Θ(1) time using a modern 
programming language.

• Consider the time it takes to find splitValue. Ideally, we want this splitter to be 
the median element, so that smallList and bigList will be of approximately the 
same size. If smallList and bigList are of approximately the same size, then the 
running time of the algorithm will be minimized. The splitter can be chosen in 
as little as Θ(1) time, if one utilizes an easily accessible item such as the first 
item of the list. The splitter can also be chosen in as much as Θ(n) time by the 
Selection algorithm if one wants to determine the precise median. Initially, we 
will consider using a unit-time algorithm to determine the splitter. We realize 
that this could lead to a bad split and, if this continues through too many levels 
of recursion, to a very slow algorithm. Later in the chapter we will discuss 
improvements in choosing the splitter and the effect that such improvements 
have on the overall algorithm.
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224 Chapter 9  Divide-and-Conquer

• Splitting the list is performed in Θ(1) time per item. Dividing the n elements 
into the three aforementioned lists can be performed in Θ(n) time. This can be 
done by a straightforward traversal of the list, comparing each element to the 
splitter and tossing each element into the appropriate list. The algorithm 
follows.

Subprogram splitList(A, splitValue, smallList, equalList, bigList)
Input: List A, partition element splitValue.
Output: Three sublists corresponding to items of A less than, equal to, and 
greater than splitValue, respectively.
Local variable: temp, a pointer used for removing an entry from one list 
and moving the entry onto another list.

Action:

 While not empty(A), do
  getfirst(A, temp)
  If temp.key < splitValue, then
   putelement(temp, smallList)
  Else If temp.key = splitValue, then
      putelement(temp, equalList)
     Else putelement(temp, bigList)
 End While
End splitList

Notice that for the sake of efficiency, it is important to be able to add an ele-
ment to a list in Θ(1) time. That is, suppose that the elements of a list are main-
tained as a singly linked list in which the list is identified by a pointer that points 
to the first element, which contains data and a pointer to the second element, which 
contains data and a pointer to the third element, and so on, with the last element of 
a list having a pointer set to null. One may add an element to such a list in Θ(1) 
time by adding a new element as the first item of such a list. Alternately, if a tail 
pointer is kept to the last item in the list, then by taking advantage of the tail 
pointer, a new item may be added in Θ(1) time at the end of the list. Many pro-
grammers make the mistake of adding an element to a list of size m by starting at 
the head of the list and traversing the list until the end and adding the new element 
to the end of the list. Notice that such an approach runs in Θ(m) time and will 
adversely affect the running time of the algorithm. Finally, notice that in order to 
concatenate two lists in Θ(1) time, one will typically keep a tail pointer.

Since both inserting and removing a data item from a list can be done in Θ(1)
time, the split procedure can be implemented to run in Θ(n) time.

In the best case, every element of the input list goes into equalList, with small-
List and bigList remaining empty. If this is the case, then the algorithm makes one 
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Quicksort (Partition Sort) 225

pass through the data, places all of the items in a single list, performs two recursive 
calls that are completed in Θ(1) time, and concludes with a concatenation of the 
two empty lists to the one list containing all of the identical items in Θ(1) time. 
This results in a total running time of T(n) = 2T(0) + Θ(n) = Θ(n).

Without loss of generality, let’s now consider the case where all of the ele-
ments are distinct. Given this scenario, the best-case running time will occur when 
an even split occurs. That is, when one item is placed in equalList, ⎣n/2⎦pitems in 
either smallList or bigList, and ⎡n/2⎤ − 1 items in bigList or smallList, respec-
tively. In this situation, the running time of the algorithm, T(n), is approximately 
given as

 T(1) = Θ(1);

 T(n) = 2T(n/2) + Θ(n).

Recall that this recurrence results in a running time of T(n) = Θ(n log n). So, 
in the best case, the running time of Quicksort is asymptotically optimal. We show 
in Appendix 4 that the expected, i.e., average, running time of Quicksort is 
Θ(n log n), which has important practical implications. In fact, its Θ(n log n) aver-
age running time is one of the reasons that Quicksort comes packaged with so 
many computing systems.

Now consider the worst-case scenario of Quicksort. Suppose that at every 
level of recursion, either the maximum or minimum element in the list is chosen as 
splitValue. Examples of how this can occur are input lists that are already sorted, in 
either ascending or descending order. Therefore, after assigning elements to the 
three lists, one of the lists will have n − 1 items in it, one will be empty, and equal-
List will have only the splitter in it. In this case, the running time of the algorithm 
obeys the recurrence T(n) = T(n − 1) + Θ(n), which has a solution of T(n) = Θ(n2). 
That is, if one gets very unlucky at each stage of the recursion, the running time of 
Quicksort could be as bad as Θ(n2).

One should be concerned about this problem in the event that such a running 
time is not acceptable. Further, if one anticipates data sets that have large segments 
of ordered data, one may want to avoid a straightforward implementation of 
Quicksort. The scenario of a bad split at every stage of the recursion could also be 
realized with an input list that does not have large segments of ordered data (see 
the Exercises). Later in this chapter, we discuss techniques for minimizing the pos-
sibility of a Θ(n2)-time Quicksort algorithm.

Quicksort vs. Merge Sort

Quicksort and Merge Sort are most naturally implemented with data stored in linked 
lists. Consider a comparison of these two popular sorting techniques. Merge Sort 
requires a straightforward division of the elements into two lists of equal size, while 
Quicksort partitions its input list using some intelligent reorganization of the data. 
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226 Chapter 9  Divide-and-Conquer

Conversely, Merge Sort requires an intricate combination of the recursively sorted 
sublists, while Quicksort merely requires concatenation of three lists. Therefore, 
Merge Sort is referred to as an easy split, hard join algorithm, while Quicksort is 
referred to as a hard split, easy join algorithm. That is, Merge Sort is more efficient 
than Quicksort in the divide stage, but less efficient than Quicksort in the stitch stage.

Notice that in Merge Sort, comparisons are made between items in different 
lists during the merge operation. In Quicksort, however, comparisons are made 
between elements during the divide stage. The reason that no comparisons are 
made during the stitch step in Quicksort is because the divide step guarantees that 
if element x is sent to list smallList, element y is sent to list equalList, and element 
z is sent to bigList, then x < y < z.

Array Implementation

In this section, we discuss the application of Quicksort to a set of data stored in an 
array. The astute reader might note that with modern programming languages, one 
rarely encounters a situation where the data to be sorted is maintained in a static 
array. However, there are certain “dusty deck” codes that must be maintained in the 
original style of design and implementation for various reasons. This includes vin-
tage scientific software written in languages such as FORTRAN. In addition, there 
are other reasons why we present this unnatural implementation of Quicksort. The 
first is historic. When algorithms texts first appeared, the major data structure was 
a static array. For this reason, Quicksort has been presented in many texts predomi-
nantly from the array point of view. Although this is unfortunate, we do believe 
that for historic reasons, it is worth including an array implementation of Quicksort 
in this text. Finally, while the linked list implementation that we presented in the 
preceding section is straightforward in its design, implementation, and analysis, 
the array implementation is quite complex and somewhat counterintuitive. The 
advantage of this is that it allows us to present some interesting analysis techniques 
and to discuss some interesting algorithmic issues in terms of optimization.

Assume that the input to the Quicksort routine consists of an array A contain-
ing n elements to be sorted. For simplicity, we will assume that A contains only the 
keys of the data items. Note that the data associated with each element could more 
generally be maintained in other fields if the language allows an array of records 
or could be maintained in other related arrays. The latter situation was common in 
the 1960s and 1970s, especially with languages such as FORTRAN.

Notice that a major problem with a static array is partitioning the elements. We 
assume that additional data structures cannot be allocated in a dynamic fashion. 
For historical reasons, let’s assume that all rearrangement of data is restricted to 
the array(s) that contain the initial data plus a constant number of temporary data 
cells. While this situation may seem strange to current students of computer 
 science who have learned modern, i.e., post-1980s, programming languages, we 
reiterate that there are situations and languages for which this scenario is critical.
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Quicksort (Partition Sort) 227

So, let’s consider the basic Quicksort algorithm as implemented on an array A, 
where we wish to sort the elements A[left . . . right], where left ≤ right are integers 
that serve as pointers into the array. Typically, the first call on this recursive proce-
dure would have left = 1 and right = n if indexing begins with 1, or left = 0 and 
right = n − 1 if indexing begins with 0.

Subprogram QuickSort (A, left, right )
Input: An array A.
Output: The array A with elements sorted by the Quicksort method.

 If left < right, then
  Partition(A, left, right, partitionIndex)
  QuickSort(A, left, partitionIndex)
  QuickSort(A, partitionIndex + 1, right)
 End If
 End QuickSort

Notice that a concatenation step comes for free since concatenating two adja-
cent subarrays does not require any work. Therefore, no concatenation step is 
listed in our description of the array implementation of Quicksort above. The basic 
algorithm is similar to the linked list version of Quicksort presented previously. 
That is, we need to partition the elements and then sort each of the subarrays. For 
purposes of our discussion in this section, we view the array as being horizontal. In 
order to work more easily with an array, we will partition it into only two “subar-
rays” under a relaxed criterion that requires all elements in the left subarray to be 
less than or equal to all elements in the right subarray. It is critical to note that if 
the keys are not unique, then copies of the split element could appear in both the 
left and right subarrays. We then recursively sort the left subarray and the right 
subarray. Specifically, we have the following.

 1. Divide: A[left . . . right] is partitioned into two nonempty subarrays A[left . . . p] 
and A[p + 1 . . . right] such that all elements in A[left . . . p] are less than or equal 
to all elements in A[p + 1 . . . right].

 2. Conquer: Recursively sort subarray A[left . . . p], if left < p, and A[ p + 1 . . . right], 
if p + 1 < right.

 3. Stitch: Requires no work since the data is in an array that is already correctly 
joined.

So, given the basic algorithm, we only need to provide an algorithm for the 
partition routine (see Figure 9-8). We need to point out that this routine is specific 
to array implementations. Over the years, we have watched numerous program-
mers try to implement this routine on a linked list because they did not understand 
the fundamentals of Quicksort and did not realize that this array implementation is 
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228 Chapter 9  Divide-and-Conquer

5 8 1 2 6 7 4 9 3 

1 2 3 4 5 6 7 8 9

(a) The initial unordered array is given.

3 4 1 2 6 7 8 9 5

(b) The data is shown after partitioning has been
performed with respect to the value of 5. Notice
that <3,4,1,2> are all less than or equal to 5 and
<6,7,8,9,5> are all greater than or equal to 5.

(c) The array is presented after the recursive sorting on
each of the two subarrays. Notice that this results in 
the entire array being sorted.

unnatural. The standard partition routine that we are about to present should only 
be used with an array.

This partition routine works as follows. First, choose a partition value. Next, 
partition the array into two subarrays so that all elements in the left subarray are 
less than or equal to the partition value, while all elements in the right subarray are 
greater than or equal to this value. This is done by marching through the array 
from left to right in search of an element that is greater than or equal to the parti-
tion value, and similarly, from right to left in search of an element that is less than 
or equal to the partition value. In other words, we march through the array from 
the outside in, looking for misplaced items. If such elements are found, they are 
swapped, and the search continues until the elements discovered are in their proper 
subarrays. Refer again to Figure 9-8. Pseudo-code follows.

Subprogram Partition(A, left, right, partitionIndex)
Input: A subarray A[left, . . . , right].
Output: An partition index, pIndex, and the subarray A[left, . . . , right] 
partitioned so that all elements in A[left, . . . , pIndex] are less than or equal to 
all elements in A[ pIndex + 1, . . . , right].
Local variables: splitValue; indices i, j

FIGURE 9-8 An example of Quicksort on an array of size 9. 
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Quicksort (Partition Sort) 229

Action:

splitValue ← A[left] {A simple choice of splitter}
i ← left − 1
j ← right + 1
While i < j, do
 Repeat i ← i + 1 until A[i] ≥ splitValue
 Repeat j ← j − 1 until A[j] ≤ splitValue
 If i < j, then Swap(A[i],A[j])
 Else pIndex ← j
End While
End Partition

We now present an example of the partition routine. Notice that the marching 
from left to right is accomplished by the movement of index i, while the marching 
from right to left is accomplished by the movement of index j. It is important to 
note that each is looking for an element that could be located in the other subarray. 
That is, i will stop at any element greater than or equal to the splitter element, and 
j will stop at any element less than or equal to the splitter element. The reader 
should note that the condition for reiteration of the While-loop body, i < j, guaran-
tees the algorithm will terminate without allowing either index to move off of the 
end of the array, so there is no infinite loop or out-of-bounds indexing.

EXAMPLE

Initially, splitValue is chosen to be A[1] = 5, i is set to left − 1 = 0 and j is set to 
right + 1 = 9, as shown in Figure 9-9a.

Since i < j, the algorithm proceeds by incrementing i until an element is 
found that is greater than or equal to 5. Next, j is decremented until an element 
is encountered that is less than or equal to 5. At the end of this first pair of index 
updates, we have i = 1 and j = 7, as shown in Figure 9-9b.

Since i < j, we swap elements A[i] = A[1] and A[ j] = A[7]. This results in 
the configuration of the array shown in Figure 9-9c.

Since i < j, the algorithm proceeds by incrementing i until an element is 
found that is greater than or equal to 5. Next, j is decremented until an element 
is encountered that is less than or equal to 5. At the end of this pair of index 
updates, we have i = 4 and j = 6, as shown in Figure 9-9d.

Since i < j, we swap elements A[i] = A[4] and A[ j] = A[6]. This results in 
the configuration of the array shown in Figure 9-9e.

Since i < j, the algorithm continues. First, we increment i until an element 
(6) is found that is greater than or equal to 5. Next, we decrement j until an 
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230 Chapter 9  Divide-and-Conquer

element (4) is found that is less than or equal to 5. At the end of this pair of 
index updates, we have i = 6 and j = 5 (see Figure 9-9f ).

Since i ≥ j, the procedure terminates with the partitionIndex set to j = 5. 
This means that Quicksort can be called recursively on A[1 . . . 5] and A[6 . . . 8].

5(a)

i

3 2 6 4 1 3 7

j

5(b)

i

3 2 6 4 1 3 7

j

3(c)

i

3 2 6 4 1 5 7

j

3
(d)

i

3 2 6 4 1 5 7

j

3
(e)

i

3 2 1 4 6 5 7

j

(f) 3

j

A[left...p] A[p+1...right]

3 2 1 4 6 5 7

i

FIGURE 9-9 An example of the Partition routine of Quicksort 
on an array of 8 items.
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Analysis of Quicksort

In this section, we consider the time and space requirements for the array version 
of Quicksort, as implemented on a RAM.

Time
Notice that the running time is given by T(n) = T(nL) + T(nR) + Θ(n), where Θ(n) 
is the time required for the partition and concatenation operations, T(nL) is the 
time required to sort recursively the left subarray of size nL, and T(nR) is the time 
required to sort recursively the right subarray of size nR, where nL + nR = n.

Consider the best-case running time. That is, consider the situation that will 
result in the minimum running time of the array version of Quicksort as presented. 
Notice that in order to minimize the running time, we want T(nL) = Θ(T(nR)), 
which occurs if nL = Θ(nR). In fact, it is easy to see that the running time is mini-
mized if we partition the array into two approximately equally sized pieces at 
every step of the recursion. An ideal partition with an appropriate number of ele-
ments results in the recurrence T(n) = 2T(n/2) + Θ(n), which has a solution of 
T(n) = Θ(n log n). This situation will occur if every time the partition element is 
selected, it is the median of the elements being sorted.

Consider the worst-case running time. Notice that the running time is maxi-
mized if either nL or nR is equal to n − 1. That is, the running time is maximized if the 
partition is such that the subarrays are of size 1 and n − 1. This would yield a recur-
rence of T(n) = T(n − 1) + Θ(n), which resolves to T(n) = Θ(n2). While this situation 
can occur in a variety of ways, notice that this situation easily occurs for data that is 
ordered or reverse-ordered. The user should be very careful of this since sorting data 
that is nearly ordered can occur frequently in a number of important situations.

Finally, consider the expected running time. As it turns out, the expected-case 
running time is asymptotically equivalent to the best-case running time. That is, 
given a set of elements with distinct keys arbitrarily distributed throughout the 
array, we expect the running time of Quicksort to be Θ(n log n). The proof of this 
running time is a bit complex, though very interesting. We present this proof in 
Appendix 4.

A summary of the running times for the array version of Quicksort is pre-
sented in the table below.

Scenario Running Time

Best-Case Θ(n log n)
Worst-Case Θ(n2)

Expected-Case Θ(n log n)

Space
In this section, we consider the additional space used by the array version of 
Quicksort as implemented on a RAM. This may seem like a trivial issue since the 
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232 Chapter 9  Divide-and-Conquer

routine does not use anything more than a few local variables. That is, there are no 
additional arrays, no dynamic allocation of memory, and so on. However, since the 
routine is recursive, the system will create a system stack entry for each procedure 
call pushed onto the system stack.

Consider the best-case space scenario. This occurs when both procedure 
calls are placed on the system stack, the first is popped off and immediately dis-
carded, and the second is popped off and evaluated. In this case, there will never 
be more than three items on the system stack, which include the initial call to 
Quicksort and at most two additional recursive calls. Notice that this situation 
occurs when the array is split into pieces of size 1 and n − 1. Furthermore, the 
recursive calls must be pushed onto the system stack so that the subarray of size 
1 is sorted first. This procedure call terminates immediately since sorting an 
array of size 1 represents the base case of the Quicksort routine. Next, the sys-
tem stack is popped and the procedure is invoked to sort the subarray of size 
n − 1. What we have described may seem to imply that the system stack will 
grow to have Θ(n) recursive calls. However, the system stack can be prevented 
from growing to more than three calls by a minor modification in the code that 
replaces a tail-end recursive call by either an increment to left or a decrement to 
right, and a branch.

Now let’s consider the worst-case space scenario. This situation is almost iden-
tical to the best-case space scenario. The only difference is that the procedure calls 
are pushed onto the system stack in the reverse order. In this situation, the proce-
dure will first be invoked to evaluate the subarray of size n − 1, which in turn 
generates other recursive procedure calls, and after that routine is complete, the 
system stack will be popped and the subarray of size 1 will be sorted. In this situ-
ation, the chain of recursive calls generated by the call to evaluate the subarray of 
size n − 1 requires the system stack to store Θ(n) procedure calls. Demonstration 
of this claim is left as an exercise.

It is interesting to note that both the best-case and worst-case space situations 
occur with the Θ(n2) worst-case running time.

Consider the expected-case space scenario. This occurs with the expected-case 
Θ(n log n) running time, where no more than Θ(log n) procedure calls are ever on 
the system stack at any one time. Again, this can be seen in conjunction with the 
expected-case analysis that appears in Appendix 4.

A summary of space requirements for the array version of Quicksort is pre-
sented in the table below.

Scenario Extra Space

Best-Case Θ(1)
Worst-Case Θ(n)

Expected-Case Θ(log n)
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In Appendix 4, we show that the expected running time of Quicksort is
Θ(n log n). The proof is rather long and requires a level of mathematical sophisti-
cation that will be beyond some readers. Therefore, we recommend that only those 
with strong mathematical abilities and interests read the proof.

Improving Quicksort

In this section, we discuss some improvements that can be made to Quicksort. 
First, we consider modifications targeted at improving the running time. It is 
important to note that the modifications we discuss should be evaluated experi-
mentally on the systems under consideration. One way to reduce the probability of 
a bad splitter is to sample more than one element. For example, quickly choosing 
the splitter as the median of more than one key should result in a small percentage 
improvement in overall running time for large input sets. 

When considering the asymptotic running time of Quicksort, one might use 
the Selection algorithm presented earlier in this chapter to choose the splitter as 
the median value in the list. Notice that this raises the time to choose the splitter 
from Θ(1) to Θ(n). However, this increased running time has no effect on the 
asymptotic expected-case running time of Quicksort. Further, because such a 
selection guarantees good splits, choosing the split value in this fashion lowers the 
worst-case running time of Quicksort to Θ(n log n).

If one is really concerned about trying to avoid the worst-case running time of 
Quicksort, it might be wise to reduce the possibility of having to sort mostly 
ordered or reverse-ordered data. As strange as it may seem, a reasonable way to do 
this is first to randomize the input data. That is, take the set of input data and ran-
domly permute it. This will have the effect of significantly reducing the possibility 
of taking ordered sequences of significant length as input.

After experimentation, the reader will note that Quicksort is very fast for large 
values of n, but relatively slow when compared to Θ(n2) time algorithms such as 
Selection Sort and Insertion Sort for small values of n. The reader might perform 
an experiment comparing Quicksort to Selection Sort, Insertion Sort, and other 
sorting methods for various values of n. One of the reasons that Quicksort is slow 
for small n is that there is significant overhead to recursion. This overhead does 
not exist for straight-sorting methods, like Insertion Sort and Selection Sort, which 
are constructed as tight, doubly nested loops. 

Therefore, one might consider a hybrid approach to Quicksort that exploits an 
asymptotically inferior routine, which is only applied in a situation where it is bet-
ter in practice. Such a hybrid sort can be constructed in several ways. The most 
obvious is to use Quicksort only as long as right − left ≥ m, for some experimen-
tally determined m. That is, one uses the basic Quicksort routine of partitioning 
and calling Quicksort recursively on both the left and right subarrays. However, 
the base case changes from a simple evaluation of left < right to right − left < m. 
In the case that right − left < m, then one applies the straight-sorting routine that 
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234 Chapter 9  Divide-and-Conquer

was used to determine the cutoff value of m. Possibilities include Selection Sort 
and Insertion Sort, with Selection Sort typically being favored.

Consider an alternative approach. Sort the data recursively, so long as 
right − left ≥ m. Whenever a partition is created such that right − left < m, simply 
ignore that partition. That is, leave that partition in an unsorted state whenever a par-
tition exists such that right − left < m. Notice that at the end of the entire Quicksort 
procedure, every element will be within m places of where it really belongs. At this 
point, one could run Insertion Sort on the entire set of data. Notice that Insertion Sort 
runs in O(mn) time, where n is the number of elements in the array, and m is the 
maximum distance any element must move. Therefore, for m small, Insertion Sort is 
a very fast routine. In fact, for m constant, this implementation of Insertion Sort runs 
in only Θ(n) time. Further, compared to the previous hybrid approach, this approach 
has an advantage in that only one additional procedure call is made, compared to the 
O(n) procedure calls that could be made if small subarrays are immediately sorted. 
Hence, this version of a hybrid Quicksort is generally preferred.

Note that similar remarks apply to Merge Sort. Keeping track of the number of 
elements in a list will not raise the asymptotic cost of Merge Sort in either time or 
memory usage. By doing so, we can modify the base case of Merge Sort so that 
when the list to be sorted has length less than some constant determined experi-
mentally, then this base case is handled by, say Selection Sort. This does not raise 
the asymptotic cost of the Merge Sort algorithm, since the lists to be sorted in this 
fashion have length of Θ(1). The fact that we have presented Selection Sort using 
an array data structure and Merge Sort using a pointer-based linked list structure is 
not a barrier to this proposal. One can bridge this difference in data structures by 
using either of the following approaches.

• Our array-based presentation of Selection Sort is easily mimicked in a pointer-
based linked list.

• Alternately, the data of the pointer-based list can be copied to an array and 
sorted using the array-based implementation of Selection Sort, and then the 
sorted array can be copied back to a pointer-based linked list. Exercises at the 
end of Chapter 2 discuss efficient transformations between array and pointer-
based linked list data structures.

We now consider improvements in the space requirements of Quicksort. Recall 
that the major space consideration is the additional space required for the system 
stack. One might consider unrolling the recursion and rewriting Quicksort in a 
nonrecursive fashion, which requires maintaining your own stack. This can be 
used to save some real space, but it does not have a major asymptotic benefit and 
causes the code to become more complex. Another improvement we might con-
sider is to maintain the stack only with jobs that need to be done and not jobs rep-
resenting tail-end recursion that are simply waiting for another job to terminate. 
However, in terms of saving significant space, one should consider pushing the 
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Modifications of Quicksort for Parallel Models 235

jobs onto the stack in an intelligent fashion. That is, one should always push the 
jobs onto the stack so that the smaller job is evaluated first. This helps to avoid or 
lessen the Θ(n) worst-case additional space problem, which can be quite important 
if you are working in a relatively small programming environment.

Modifications of Quicksort for Parallel Models

There have been numerous attempts to parallelize Quicksort for a variety of 
machines and models of computation. One parallelization that is particularly inter-
esting is the extension of Quicksort, by Bruce Wagar, to Hyperquicksort, a 
Quicksort-based algorithm targeted at medium- and coarse-grained parallel com-
puters. In this section, we first describe the Hyperquicksort algorithm for a 
medium-grained hypercube and then present an analysis of its running time.

Hyperquicksort

 1. Initially, it is assumed that the n elements are evenly distributed among the 2d 
nodes of a hypercube so that every node contains N = n/2d elements.

 2. Each node sorts its N items independently using a Θ(N log N) time algorithm.

 3. Node 0 determines the median of its N elements, denoted as Med. This is per-
formed in Θ(1) time since the elements in the node have just been sorted.

 4. Node 0 broadcasts Med to all 2d nodes in Θ(d) time.

 5. Every node logically partitions its local set of data into two groups, X and Y, 
where X contains those elements less than or equal to Med and Y contains 
those elements greater than Med. This step runs in Θ(log N) time by way of a 
binary search for Med among the values of the node’s data.

 6. Consider two disjoint subcubes of size 2d−1, denoted as L and U. For simplic-
ity, let L consist of all nodes with a 0 as the most significant bit of the node’s 
address and let U consist of all nodes with a 1 as the most significant bit of 
the node’s address. Note that the union of L and U is the entire hypercube of 
size 2d. So every node of the hypercube is a member of either L or U. Each 
node that is a member of L sends its set Y to its adjacent node in U. Likewise, 
each node in U sends its set X to its adjacent node in L. Notice that when this 
step is complete, all elements less than or equal to Med are in L, while all ele-
ments greater than Med are in U. The expected time for the transmission of 
data, as described, is Θ(N). Note this is not the worst-case time, since the sets 
X and Y are not restricted to a size of Θ(N).

 7. Each node now merges the set of data just received with the one it has kept. 
That is, a node in L merges its own set X with its U-neighbor’s set X and a node 
in U merges its own set Y with its L-neighbor’s set Y. Therefore, after an 
expected Θ(N) time for merging two sets of data, every node again has a sorted 
set of data.
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236 Chapter 9  Divide-and-Conquer

 8. Repeat Steps 3-7 on each of L and U simultaneously, recursively, and in paral-
lel until the subcubes consist of a single node, at which point the data in the 
entire hypercube is sorted.

The time analysis embedded in the presentation above does not coincide with 
the analysis for the worst-case running time as the algorithm continues to iterate 
over Steps 3-7 due to the fact that the data may become quite unbalanced. That is, 
pairs of processors may utilize ω (N) time to transmit and merge data. As a 
 consequence, when the algorithm terminates, all processors may not necessarily 
have N items.

Assuming that the data is initially distributed in a random fashion, Wagar has 
shown that the expected-case running time of this algorithm is

ΘaN log N +
d(d + 1)

2
+ dNb .

The N log N  term represents the sequential running time from Step 2. The 
d(d + 1)/2 term represents the broadcast step used in Step 4. The dN  term repre-
sents the time required for the exchanging and merging of the sets of elements. We 
leave discussion of the efficiency of this running time as an exercise.

In the next section, we will consider a medium-grained implementation of 
Bitonic Sort. We will see that Bitonic Sort offers the advantage that, throughout 
the algorithm, all nodes maintain the same number of elements per processor. 
However, given good recursive choices of splitting elements, Hyperquicksort 
offers the advantage that it is more efficient than Bitonic Sort.

Bitonic Sort (Revisited)

In Chapter 5, we presented some motivation, history, and a detailed description of 
Bitonic Sort. In addition, we presented an analysis of the algorithm for several 
models of computation. To recap, given a set of n elements, we showed that Bitonic 
Sort will run in Θ(log2 n) time on a PRAM of size n, in Θ(log2 n) on a fine-grained 
hypercube of size n, and in Θ(n log2 n) time on a RAM.

In this section, we consider Bitonic Sort on a medium-grained hypercube as a 
means of comparison to the Hyperquicksort routine presented in the last section. 
We then consider Bitonic Sort on a fine-grained mesh of size n.

Our initial assumptions are the same as they were for Hyperquicksort. Assume 
that we are initially given n data elements evenly distributed among the 2d proces-
sors so that each processor contains N = n/2d items. Suppose that each processor 
sorts its initial set of data in Θ(N log N) time. Once this is done, we simply follow 
the data movement and general paradigm of the fine-grained Bitonic Sort algo-
rithm, as previously presented. The major modification is to accommodate the 
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Bitonic Sort (Revisited) 237

difference between processors performing a comparison and exchange of two 
items for the fine-grained model, and a comparison and exchange of 2N items for 
the medium-grained model.

Suppose processor A and processor B need to order their 2N  items so that the 
N smaller items will reside in processor A and the N larger items will reside in 
processor B. This can be accomplished as follows. In Θ(N) time, processors A and 
B exchange data so that each processor has the complete set of 2N  items. Each 
processor now merges the two sets of items in Θ(N) time, simultaneously and 
independently. Finally, processor A “retains” the N smallest items by discarding 
the N largest items, and processor B “retains” the N largest items by discarding the 
N smallest items.

The running time of Bitonic Sort on a medium-grained hypercube consists of 
the simultaneous initial set of Θ(N log N) time sequential sorts, followed by the 
d(d + 1)/2 steps of Bitonic Sort, each of which runs in Θ(N) time, resulting in a 
total running time of

ΘaN log N +
d(d + 1)

2
 Nb .

As mentioned previously, the reader should note two major differences when 
considering whether to use Bitonic Sort or Hyperquicksort on a medium-grained 
hypercube.

 1. The expected-case running time of Hyperquicksort is more efficient than the 
running time of Bitonic Sort by a relatively small factor.

 2. When Bitonic Sort terminates, the data is distributed evenly among the 
 processors, while this is not the case with Hyperquicksort.

Bitonic Sort on a Mesh

In this section, we present a straightforward implementation of the fine-grained 
Bitonic Sort algorithm on a fine-grained mesh computer. After the presentation of 
the algorithm, we discuss details of the implementation and the effect that such 
details have on the running time of the algorithm.

Initially, let’s assume that a set of n data elements is given, arbitrarily distrib-
uted one per processor on a mesh of size n. In order to perform sorting on a 
 distributed-memory parallel machine, we must define the ordering of the pro-
cessors, since the elements are sorted with respect to the ordering of the proces-
sors. Initially, we assume that the processors are ordered with respect to shuffled 
 row-major indexing scheme, as shown in Figure 9-10. Note that for a machine 
with more than 16 processors, this ordering holds recursively within each 
quadrant.
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238 Chapter 9  Divide-and-Conquer

FIGURE 9-10 The shuffled-row major index 
scheme as applied to a mesh of size 16. It is 
important to note that on a mesh of size n, 
this indexing continues recursively within 
each quadrant.

0 1 4 5 

2 3 6 7 

8 9 12 13 

10 11 14 15 

At the end of this section, we will discuss a simple way to adapt Bitonic Sort 
to whatever predefined processor ordering is required/utilized. Recall that Bitonic 
Sort is a variant of Merge Sort. Viewed in a bottom-up fashion, initially bitonic 
sequences of size 2 are bitonically merged into sorted sequences of size 4. Then 
bitonic sequences of size 4 are bitonically merged into sorted sequences of size 8, 
and so on. At each stage, the sequences being merged are independent and the 
merging is performed in parallel on all such sequences. In addition, recall that the 
concatenation of an increasing sequence with a decreasing sequence forms a 
bitonic sequence. Therefore, we must be careful when merging a bitonic sequence 
into a sorted sequence as to whether it is merged into an increasing or a decreasing 
sequence. The reader may wish to review the section on Bitonic Sort before pro-
ceeding with the remainder of this section.

In the example presented below, notice that we exploit the shuffled row-
major indexing scheme. Therefore, sequences of size 2 are stored as 1 × 2 
strings, sequences of size 4 are stored as 2 × 2 strings, sequences of size 8 are 
stored as 2 × 4 strings, and so on. A critical observation is that if a comparison 
and possible exchange must be made between data that reside in two processors, 
then those processors always reside in either the same row or in the same  column. 
This is due to the properties of the shuffled row-major indexing scheme coupled 
with the fact that Bitonic Sort only compares entries that differ in one bit of their 
indexing.

Consider the example of Bitonic Sort on a mesh of size 16, as presented in 
Figure 9-11. This example shows how to sort the initial set of arbitrarily distrib-
uted data into increasing order with respect to the shuffled row-major ordering of 
the processors. The first matrix shows the initial set of arbitrarily distributed data. 
Notice that a sequence of size 1 is, by default, sorted into both increasing and 
decreasing order. Therefore, initially, there are n/2 bitonic sequences of size 2, in 
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Example:

initially ordered

into 1 ´ 1 sections

910 14 2

4 15 11 12

6 1 5 13

8 3 7 0

109 14 2

15 4 11 12

1 6 13 5

8 3 0 7

49 14 12

15 10 11 2

1 3 13 7

8 6 0 5

94 14 12

10 15 11 2

1 3 13 7

6 8 5 0

94 14 12

10 2 11 15

13 7 1 3

6 8 5 0

24 11 12

10 9 14 15

13 8 5 3

6 7 1 0

Now sorted into

1 ´ 2 sections

Now sorted into

2 ´ 2 sections

01 5 4

2 3 7 6

9 8 13 12

11 10 14 15

10 4 5

2 3 6 7

8 9 12 13

10 11 14 15

42 11 12

9 10 14 15

13 8 5 3

7 6 1 0

42 5 3

7 6 1 0

13 8 11 12

9 10 14 15

32 5 4

1 0 7 6

11 8 13 12

9 10 14 15

Now sorted into

2 ´ 4 sections

Now sorted into a

4 ´ 4 sections

FIGURE 9-11 An example of Bitonic Sort on a mesh of size 16. The elements are 
sorted into shuffled-row major order, as given in Figure 9-10. The initial data is 
given in the top-left matrix. After applying a comparison-exchange operation 
between indicated elements, e.g., 10-9, 14-2, 4-15, and so forth, the matrix has 
been ordered into disjoint 1 × 2 segments, as indicated in the next matrix. The 
interpretation of the figure continues in this manner. Note up until the final stage, 
half the sorted sections are in ascending order, and the other half are in 
 descending order.
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240 Chapter 9  Divide-and-Conquer

the form of 1 × 2 strings, each of which must be bitonically merged. This is 
accomplished by a single comparison, representing the base case of the Bitonic 
Sort, resulting in the second matrix. Notice that some of the sequences are sorted 
into increasing order and some into decreasing order. Next, we take this matrix 
and wish to merge bitonic sequences of size 4, in the form of 2 × 2 strings, into 
sorted order. This is accomplished by first performing a comparison-exchange 
operation between items that are two places apart in the indexing, followed by 
recursively sorting each of the 1 × 2 strings independently. The fourth matrix 
shows the result of this sorting. Notice that each of the four quadrants has data in 
sorted order with  respect to the shuffled row-major indexing. In particular, notice 
that the northwest and southwest quadrants are sorted into increasing order, while 
the northeast and southeast quadrants are sorted into decreasing order. The 
 example continues, showing the details of combining 2 × 2 strings into 
sorted 2 × 4 strings, and finally combining the two 2 × 4 strings into the final 
sorted 4 × 4 string.

Analysis of Running Time
Recall from the detailed analysis of Bitonic Sort presented in Chapter 5 that 
Bitonic Sort is based on Merge Sort. As such, it uses Θ(log n) parallel merge 
operations, merging lists of size 1 into lists of size 2, then lists of size 2 into lists 
of size 4, and so forth. However, the merge operation is not the standard merge 
routine that one learns in a second semester computer science course, but rather 
the more complex bitonic merge. Further, the time for each bitonic merge requires 
a slightly more complex analysis than that of determining the time for a tradi-
tional merge. For example, merging pairs of elements into ordered lists of size 2 
requires one level of comparison-exchange operations, which can be thought of 
as one parallel comparison-exchange operation. This is the base case. Merging 
bitonic sequences of size 2 into ordered lists of size 4 requires an initial compari-
son-exchange level, that is, n/2 comparison-exchange operations, followed by 
applying the Bitonic Sort routine for sequences of size 2 to each of the resulting 
subsequences. Therefore, the total number of comparison-exchange levels is 
1 + 1 = 2. The time to merge bitonic sequences of size 4 into ordered sequences 
of size 8 requires one comparison-exchange level to divide the data, followed by 
two parallel comparison-exchange levels to sort each of the bitonic subsequences 
of size 4. Therefore, the total number of comparison-exchange levels to merge a 
bitonic sequence of size 8 into an ordered sequence is three (1 + 2 = 3). In gen-
eral, the time to merge two bitonic sequences of size n/2 into an ordered sequence 
of size n is Θ(log n).

Recall that in order to use the bitonic merge unit to create a sorting  routine/
network, we apply the basic Merge Sort scenario. That is, sorting an arbitrary 
sequence of n items requires us first to sort two subsequences of size n/2 
in parallel, then to perform a comparison-exchange on items n/2 apart, and 
then to merge recursively each subsequence of size n/2. Therefore, the total 
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 number of comparison-exchange levels, i.e., parallel comparison-exchange 
operations, is

a

log2 n

i=1

i =
1log2 n21log2 n + 12

2
=

1

2
 1log2 n + log n2.

The reader should refer to the section on Bitonic Sort for the original presenta-
tion of this analysis.

Now consider a mesh implementation. Suppose that each of the Θ(log2 n) 
comparison-exchange levels is implemented by a column or row rotation, as 
appropriate. Such an implementation leads to a Θ(n1/2 log2 n) running time on a 
mesh of size n. However, if we look closely at the data movement operations that 
are required in order to perform the comparison-exchange operations, we notice 
that during the first iteration, when creating the 1 × 2 lists, the data items are only 
one link apart. When creating the 2 × 2 lists, the data items are again only one 
link apart. When creating the 2 × 4 and 4 × 4 lists, the data items are either one or 
two links apart, and so forth. Therefore, if we are careful to construct modified 
row and column rotations that allow for simultaneous and disjoint rotations within 
segments of a row or column, respectively, the running time of Bitonic Sort oper-
ations can be improved significantly. With this optimized rotation scheme, the 
time to sort n items on a mesh of size n is given by the recurrence 
T(n) = T(n/2) + Θ(n1/2), where T(n/2) is the time to sort each of the subsequences 
of size n/2, and the Θ(n1/2) term represents the time required to perform a set of 
n/2 comparison-exchange operations. Therefore, the running time of the Bitonic 
Sort algorithm is Θ(n1/2), which is optimal for a mesh of size n. While the algo-
rithm is optimal for this architecture, notice that the cost of the algorithm is 
Θ(n3/2), which is far from optimal. We leave as an exercise the possibility of mod-
ifying this architecture and algorithm to achieve a cost-optimal sorting algorithm 
on a mesh.

Sorting Data with Respect to Other Orderings

How would we handle the situation of sorting a set of data on a fine-grained mesh 
into an ordering other than shuffled row-major? For example, given a set of n data 
items, initially distributed in an arbitrary fashion one per processor on a mesh of 
size n, how would the data be sorted into row-major or snake-like order? If one is 
only concerned about asymptotic complexity, the answer is quite simple: perform 
two sorting operations. The first operation will sort data in terms of a known sort-
ing algorithm into the indexing order required by that algorithm. For example, one 
could use Bitonic Sort and sort data into shuffled row-major order. During the 
second sort, each processor would generate a sort key that corresponds to the 
desired destination address with respect to the desired indexing scheme, such as 
row major or snake-like ordering.
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242 Chapter 9  Divide-and-Conquer

Suppose that one wants to sort the 16 data items from the previous example 
into row-major order. One could first sort the data into shuffled row-major order 
and then resort the items so that they are appropriately ordered. For example, dur-
ing the second sort, keys would be created so that processor 0 would send its data 
to processor 0, processor 1 would send its data to processor 1, processor 2 would 
send its data to processor 4, processor 3 would send its data to processor 5, proces-
sor 4 would send its data to processor 2, and so forth (see Figure 9-12). The com-
bination of these two sorts would result in the data being sorted according to 
row-major order in the same asymptotically optimal Θ(n1/2) time. Notice that this 
algorithm assumes that the destination addresses can be determined in O(n1/2) 
time, which is sufficient for most well-defined indexing schemes.

FIGURE 9-12 An example of sorting data on a mesh into row-major order by two 
applications of sorting into shuffled-row major order. The initial unordered set of 
data is given in (a). After applying a shuffled-row major sort, the data appears as 
in (b). Note that in the lower right corner of each item is the index for where that 
item should be placed with respect to shuffled-row major order so that the data 
will be in row-major order. The items are then sorted into shuffled-row major 
order with respect to these indices, with the results in row-major order as 
shown in (c).

5 2 10 6

12 8 4 0

14 1 11 13

15 7 3 9

(a) Initial data.

00 11 42 53

24 35 66 77

88 99 1210 1311

1012 1113 1414 1515

(b) Sorted data with 
keys for resorting.

00 11 24 35

42 53 66 77

88 99 1012 1113

1210 1311 1414 1515

(c) Resorted data 
with keys.

Sorting on a Cluster

Ordering data on a cloud or a cluster is an important operation. Many corporations 
and agencies require data to be ordered at various stages of operation. Since a clus-
ter or network of workstations, which may or may not be used to implement a 
cloud, typically has a reasonably fast interconnect between the various nodes, sort-
ing is typically performed on such systems by using one of the aforementioned 
algorithms with the node labels mapped onto the cluster/NOW. Note that in some 
cases, nodes may contain multiple processors and each processor may contain mul-
tiple cores or have an attached processor, for example, a General Purpose Graphics 
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Concurrent Read/Write 243

Processing Unit, or GPGPU. Regardless, while the interprocessor communication 
time may be dramatically different between on-node processors and processors 
connected by an external interconnection network, Hyperquicksort, Bitonic Sort, 
or a modified Merge Sort are the standard options. In such a case, one’s time is 
often best spent in performing in-depth timing studies to determine the most effi-
cient algorithm for the particular data under consideration.

Concurrent Read/Write

In this section, we discuss an important application of sorting that allows for the 
efficient and straightforward porting of PRAM algorithms to other architectures. 
The PRAM is the most widely studied parallel model of computation. As a 
result, a significant body of algorithmic literature exists for that architecture. 
Therefore, when one considers developing an efficient algorithm for a non-
PRAM-based parallel machine, it is often constructive to consider first the algo-
rithm that would result from a direct simulation of the PRAM algorithm on the 
target architecture. In order to simulate the PRAM, it is critical to be able to 
simulate the concurrent read and concurrent write capabilities of the PRAM on 
the target machine.

A concurrent read, or, in its more general form, an associative read, can be 
used in a situation where a set of processors must obtain data associated with a set 
of keys, but where there need not be a priori knowledge as to which processor 
maintains the data associated with any particular key.

For example, processor Pi might need to know the data associated with the key 
“blue,” but might not know which processor Pj in the system is responsible for 
maintaining the information associated with the key “blue.” In fact, all processors 
in the system might be requesting one or more pieces of data associated with keys 
that are not necessarily distinct.

A concurrent write, or in its more general form, an associative write, may be 
used in a situation where a set of processors Pi must update the data associated 
with a set of keys, but again Pi does not necessarily know which processor is 
responsible for maintaining the data associated with the key.

As one can see, these concurrent read/write operations generalize the CR/
CW operations of a PRAM by making them associative, in other words, by 
locating data with respect to a key rather than by an address. In order to maintain 
consistency during concurrent read and concurrent write operations, we will 
assume that there is at most one master record, stored in some processor, associ-
ated with each unique key. In a concurrent read, every processor generates 
one request record corresponding to each of a small fixed number of keys that 
it wishes to receive information about. A concurrent read permits multiple 
 processors to request information about the same key. A processor requesting 
information about a nonexistent key will receive a null message at the end of 
the operation.
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244 Chapter 9  Divide-and-Conquer

Implementation of a Concurrent Read

A relatively generic implementation of a concurrent read operation on a parallel 
machine with n processors follows.

 1. Every processor creates C1 master records of the form [Key, Return Address, 
data, “MASTER”], where C1 is the maximum number of keyed master records 
maintained by any processor, and Return Address is the index of the processor 
that is creating the record. Processors maintaining less than C1 master records 
will create dummy records so that all processors create the same number of 
master records.

 2. Every processor creates C2 request records of the form [Key, Return Address, 
data, “REQUEST”], where C2 is the maximum number of request records 
generated by any processor, and Return Address is the index of the processor 
that is creating the record. Processors requesting information associated with 
less than C2 master records will  create dummy records so that all processors 
create the same number of request records. Notice that the data fields of the 
request records are presently undefined.

 3. Sort all (C1 + C2)n records together by the Key field. In case of ties, place 
records with the flag “MASTER” before records with the flag “REQUEST.”

 4. Use a broadcast within ordered intervals to propagate the data associated with 
each master record to the request records with the same Key field. This allows all 
request records to find and store their required data.

 5. Return all records to their original processors by sorting all records on the 
Return Address field.

Therefore, the time to perform a concurrent read, as described, is bounded by 
the time to perform a fixed number of sort and interval operations. See Figure 9-13.

Implementation of Concurrent Write (overview)

The implementation of the concurrent write is quite similar to that of the concur-
rent read. In general, it consists of a sort step to group records with similar keys 
together, followed by a semigroup operation within each group to determine the 
value to be written to the master record, followed by a sort step to return the records 
to their original processors. Again, it is assumed that there is at most one master 
record, stored in some processor, associated with each unique key. When proces-
sors generate update records, they specify the key of the record and the piece of 
information they wish to update. If two or more update records contain the same 
key, then a master record will be updated with the minimum data value of these 
records. In other circumstances, one could replace the minimum operation with 
any other commutative, associative, binary operation. Therefore, one can see that 
the implementation of the concurrent write is nearly identical to the implementa-
tion just described for the concurrent read.
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Summary 245

Concurrent Read/Write on a Mesh

A mesh of size n can simulate any PRAM algorithm that works with n data items 
on n processors by using a concurrent read and concurrent write to simulate every 
step of the PRAM algorithm. Suppose that a given PRAM algorithm runs in T(n) 
time. Then by simulating every read step and every write step of the PRAM algo-
rithm in a systematic fashion by a Θ(n1/2) time concurrent read and concurrent 
write, respectively, the running time of the PRAM algorithm as ported to a mesh of 
size n will be O(T(n)n1/2), which is often quite good. In fact, it is often not more 
than some polylogarithmic factor from optimal.

Summary

In this chapter, we examine the recursive divide-and-conquer paradigm for solving 
problems. We show the power of this paradigm by illustrating its efficient usage in 
several algorithms for sorting, including sequential versions of Merge Sort and 
Quicksort and their adaptations to several parallel models; also, reconsideration of 

[–,1,–1,M],[blue,1,?,R] [blue,2,30,M],[red,2,?,R] [green,3,40,M],[blue,3,?,R] [red,0,10,M],[blue,0,?,R] 

(a) The initial data is given where each processor maintains one master record
(signified by an “M” in the fourth field) and generates one request record
(with an “R” in the fourth field).

[blue,1,?,R],[blue,3,?,R] [green,3,40,M],[red,0,10,M] [red,2,?,R],[–,1,–1,M][blue,2,30,M],[blue,0,?,R]

(b) After sorting all of the data together based on the key (first) field, with ties
broken in favor of master records, we arrive at the situation shown here.

[blue,1,30,R],[blue,3,30,R] [green,3,40,M],[red,0,10,M] [red,2,10,R],[–,1,–1,M][blue,2,30,M],[blue,0,30,R]

(c) A segmented broadcast is then performed so that the information maintained
in the master records is propagated to the appropriate request records.

[red,0,10,M],[blue,0,30,R] [–,1,–1,M],[blue,1,30,R] [blue,2,30,M],[red,2,10,R] [green,3,40,M],[blue,3,30,R]

(d) The data is resorted based on the return address (second) field.

FIGURE 9-13 An example of a concurrent read on a linear array of size 4. 
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246 Chapter 9  Divide-and-Conquer

Bitonic Sort and its implementations on a coarse-grained hypercube and on a fine-
grained mesh. Efficient to optimal divide-and-conquer algorithms for selection 
and for concurrent read and write operations on parallel computers are also given.

Chapter Notes

Divide-and-conquer is a paradigm central to the design and analysis of both parallel 
and sequential algorithms. An excellent reference, particularly for sequential algo-
rithms, is Introduction to Algorithms by T.H. Cormen, C.E. Leiserson, R.L. Rivest, 
and C. Stein (3rd ed.: The MIT Press, Cambridge, MA, 2009). A nice text focusing 
on algorithms for the hypercube, which includes some divide-and-conquer algo-
rithms, is Hypercube Algorithms for Image Processing and Pattern Recognition by 
S. Ranka & S. Sahni (Springer-Verlag, New York, 1990). More general references 
for theoretical parallel algorithms that exploit the divide-and-conquer paradigm are 
Parallel Algorithms for Regular Architectures by R. Miller and Q.F. Stout (The MIT 
Press, 1996), and Introduction to Parallel Algorithms and Architectures: Arrays, 
Trees, Hypercubes, by F.T. Leighton (Morgan Kaufmann Publishers, San Mateo, 
CA, 1992). Details of advanced PRAM algorithms, including a Θ(log n) time sort-
ing algorithm, can be found in An Introduction to Parallel Algorithms by J. JáJá, 
(Addison-Wesley, 1992).

Optimal-cost PRAM algorithms for the Selection Problem are given in R.J. 
Cole’s paper, “An optimally efficient selection algorithm,” Information Processing 
Letters 26 (1987/88), 295–299.

The Quicksort algorithm was originally presented by in “Quicksort,” by 
C.A.R. Hoare, Computer Journal, 5(1):10–15, 1962. Wagar’s Hyperquicksort 
algorithm was originally presented in, “Hyperquicksort: A fast sorting algorithm 
for hypercubes,” by B. Wagar in Hypercube Multiprocessors 1987, 292–299.

Exercises

 1. We have shown that Quicksort has a Θ(n2) running time if its input list is 
sorted or nearly sorted. Other forms of input can also produce a Θ(n2) running 
time. For example, let n = 2k for some positive integer k and suppose

  • the input list has key values x1, x2, . . . , xn,

  •  the subsequence O = {x1, x3, . . . , xn−1} of odd-indexed keys is decreasing,

  •  the subsequence E = {x2, x4, . . . , xn} of even-indexed keys is increasing,

  • xn−1 > xn,

  •  queues are used for the lists, with the partitioning process enqueueing new 
items to smallList, equalList, and bigList, and

  •  the split value is always taken to be the first key in the list.

  Show that under these circumstances, the running time of Quicksort is Θ(n2).
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Exercises 247

 2. In our sequential implementation of Quicksort, the “conquer” stage of the algo-
rithm consists of two recursive calls. The order of these calls clearly does not 
matter in terms of the correctness and running time of the algorithm. However, 
the order of these recursive calls does affect the size of the stack needed to keep 
track of the recursion. Show that if one always pushes the jobs onto the stack so 
that the larger job is processed first, then the stack must be able to store n items.

 3. Suppose that on a parallel computer with n processors, processor Pi has data 
value xi, i ∈ {1, . . . , n}. Further, suppose that i ≠ j ⇒ xi ≠ xj. Describe an effi-
cient algorithm so that every processor Pi can determine the rank of its data 
value xi. That is, if xi is the k th largest member of 5xj6 j=1

n , then processor Pi 
will store the value k at the end of the algorithm. Analyze the running time of 
your algorithm in terms of operations discussed in this chapter. Your analysis 
may be quite abstract. For example, you may express the running time of your 
algorithm in terms of the running times of the operations you use.

 4. Suppose that we implement a linked-list version of Quicksort on a RAM using 
predefined abstract data types. Further, suppose that inserting an element into 
a list is actually written so that it traverses the list from the front to the end and 
then inserts the new element at the end of the list. Give an analysis of the run-
ning time of Quicksort under this situation.

 5. Suppose we are given a singly-linked list on a RAM and mistakenly imple-
ment the array version of Quicksort to perform the partition step. Give the 
running time of the partition step and use this result to give the running time of 
the resulting version of the Quicksort algorithm.

 6. Describe and analyze the running time of Bitonic Sort given a set of n data 
items arbitrarily distributed n/p per processor on a hypercube with p proces-
sors where n >>  p, i.e., where n is ω ( p).

 7. Prove that algorithm Partition is correct.

 8. Modify Quicksort so that it recursively sorts as long as the size of the subarray 
under consideration is greater than some constant C. Suppose that if a subar-
ray of size C or less is reached, then the subarray is not sorted. As a final post-
processing step, suppose that this subarray of size at most C is then sorted by 
one of the following simple sorts.

  a. Insertion Sort

  b. Bubble Sort

  c. Selection Sort

  Given the total running time of the modified Quicksort algorithm. Prove that 
the algorithm is correct.

 9. Let S be a set of n distinct real numbers and let k be a positive integer with 
1 < k < n. Give a Θ(n) time RAM algorithm to determine the middle k entries 
of S. The input entries of S should not be assumed ordered; however, if the 
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248 Chapter 9  Divide-and-Conquer

 elements of S are such that s1 < s2 < . . . < sn, then the output of the algorithm is 
the set {s(n−k)/2, s((n−k)/2)+1, . . . , s(( n+k)/2)−1}, not necessarily sorted. Since the run-
ning time of the algorithm should be Θ(n), sorting S should not be part of the 
algorithm.

 10. Analyze the running time of the algorithm you presented in response to the 
previous query as adapted in a straightforward fashion

  a.  for a PRAM and

  b. for a mesh.

 11. Develop a version of Merge Sort for a linear array of Θ(log n) processors to 
sort n data items, initially distributed Θ(n/log n) items per processor. Show 
that your algorithm runs in Θ(n) time and that it is cost-optimal.

 12. Analyze the running time of a concurrent read operation involving Θ(n) items 
on a mesh of size n.

 13. Given a set of n data items distributed on a mesh of size m, m ≤ n, so that each 
processor contains n/m items, what is the best lower bound for the time to sort 
these items? Justify your answer. Provide an algorithm that matches these 
bounds.

 14. Given a set of n input elements, arbitrarily ordered, prove that any sorting net-
work has a depth of at least log2 n.

 15. Prove that the number of comparison units in any sorting network on n inputs 
is Ω(n log n).

 16. Suppose that we are given a sequence of arcs of a circle R = 8r1, r2, . . . , rn9 , and 
are required to find a point on the circle that has maximum overlap. That is, we 
are required to determine a, not necessarily unique, point q that has a maxi-
mum number of arcs that overlap it. Suppose that no arc is contained in any 
other arc, that no two arcs share a common endpoint, and that the endpoints of 
the arcs are given completely sorted in clockwise order. Further, suppose that 
the tail point of an arc only appears following the head of its arc. Give efficient 
algorithms to solve this problem on the following architectures. In addition, 
discuss the time-, space-, and cost complexity.

  a. RAM

  b. PRAM

  c. Mesh

 17. Give an efficient algorithm to compute the parallel prefix of n values, initially 
distributed one per processor in the base of a pyramid computer. Discuss the 
time- and cost-complexity of your algorithm. You may assume processors in 
the base mesh are in shuffled row major order, with data distributed 
accordingly.
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Exercises 249

 18. Show that the expected time Θ(N log N + (d(d + 1)/2) + dN ) of Wagar’s 
Hyperquicksort algorithm achieves the ideal Tpar(n) = Θ(Tseq(n)/q) for a coarse 
grained hypercube. Recall q = 2d is the number of processors, N = n/q = n/2d 
is the initial number of data items in each processor, and in the coarse-grained 
model we assume q2 ≤ n.

 19. Suppose a foundation wishes to award scholarships to the students who score 
in the top 5% of applicants according to their scores on a competitive exam. 
Devise an efficient RAM algorithm, that does not sort the data, to determine 
which students receive the awards.
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The field of computational geometry focuses on the design, analysis, and imple-
mentation of efficient algorithms to solve problems involving geometric objects, 

including points, lines, and polygons. Problems in computational geometry are derived 
from a variety of areas, including computer graphics, computer-aided design and 
manu facturing, visualization, robotics, and geographic information systems, to name a 
few. Fundamental problems in computational geometry involve relationships among 
points, line segment intersection, proximity of objects, shortest paths, the convex hull, 
and the Voronoi Diagram, to name a few.

In fact, in Chapter 7, “Parallel Prefix,” we presented a solution to dominance, a 
fundamental problem in computational geometry. In this chapter, we consider addi-
tional problems from this important and interesting field. Note that many of the prob-
lems in this chapter were chosen so that we could continue our exploration of the 
divide-and-conquer solution strategy.
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252 Chapter 10  Computational Geometry

Convex Hull

The first problem we consider is that of determining the convex hull of a set of 
points in the plane. The convex hull is an important geometric structure that has 
been extensively studied. The convex hull of an object can be used to solve prob-
lems in numerous fields, including image processing, feature extraction, layout 
and design, molecular biology, and geographic information systems. Further, the 
convex hull of a set S of points often gives a good approximation of S, while pro-
viding a significant reduction in the volume of data used to represent or approxi-
mate S. Finally, the convex hull of a set S is often used as an intermediate step in 
order to obtain additional geometrical information about S.

Definitions: A set of planar points R is convex if and only if for every pair of 
points x, y ∈ R, the line segment xy is contained in R (see Figure 10-1). Let S be 
a set of n points in the plane. The convex hull of S is defined to be the smallest 
convex polygon P containing all n points of S. A solution to the convex hull 
problem consists of determining an ordered list of points of S that define the 
boundary of the convex hull of S. This ordered list of points is referred to as 
hull(S). Each point in hull(S) is called an extreme point of the convex hull and 
a pair of adjacent extreme points is referred to as an edge of the convex hull 
(see Figure 10-2), or a hull edge, as appropriate.

FIGURE 10-1 Examples of convex and non-convex regions. The regions in 
(a) are convex. The regions in (b) are not convex, as the line segments uv 
and xy are not contained in their respective regions.

(a)

(b)

u
v

y

x
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Convex Hull 253

The reader may wish to consider an intuitive construction of the convex hull. 
Suppose that each of the planar points in S is represented as a headless nail perpen-
dicular to and sticking out of a wooden board. Now, take a sufficiently elastic rub-
ber band and stretch it to its maximum in all directions. Lower the rubber band 
over the nails so that all the nails are enclosed within the rubber band. Finally, 
release the rubber band so that it is restricted from collapsing only by the nails in S 
that it touches. The rubber band can be thought of as forming a polygon. This poly-
gon P, along with its interior, represents the convex hull of S. The nails that cause 
the rubber band to change direction are the extreme points of the convex hull. Note 
that there may be some nails that are touched that do not cause the rubber band 
to change direction if they are in between two nails that do force a change of 
 direction. Finally, the adjacent extreme points of P are defined as the edges of the 
convex hull.

Notice that a solution to the convex hull problem requires presenting a set of 
points in a predefined order. Therefore, we first consider the relationship between 
the convex hull problem and sorting.

Theorem: Sorting is linear-time transformable to solving the convex hull prob-
lem. That is, in Θ(n) time, we can transform the problem of sorting n real numbers 
to the problem of finding the convex hull of n points in the Euclidean plane.

Proof: Without loss of generality, suppose we are given a set of n unique real 
numbers, X = {x1, . . . , xn}. Then a convex hull algorithm can be used to sort the 
points in X with only linear overhead, as follows. Corresponding to each number xi 
is the point pi = (xi, xi

2). Notice that these n points all lie on the parabola y = x2. 

FIGURE 10-2 The convex hull. The set S of n points in the plane is represented 
by circles, some of which are black and some of which are gray. The extreme 
points of S are represented by the gray points. The set of such extreme points 
is denoted by hull(S). Each pair of  adjacent extreme points represents an 
edge of the convex hull.
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254 Chapter 10  Computational Geometry

The convex hull of this set consists of a list of all the distinct points pi sorted by 
x-coordinate.

In the more general case of the problem, there might be duplicate entries in X. 
That is, suppose that for some i and j, pi = pj. Then at most one of these will 
appear in the listing of members of hull(X). We can modify the algorithm given for 
unique data items so that every unique representative p ∈ hull(X) can keep track 
of the number of times that p appears in X. One Θ(n)-time pass through the list 
representing hull(X) will enable us to read off the values of the xi in order.

Further, if the values being sorted belong to larger records, then instead of 
keeping track of the number of occurrences of duplicated values, the representative 
of a value can maintain a list of records with the same value. This would not change 
the asymptotic running time of the algorithm.

Implications of Theorem: Based on this theorem, we know the convex hull 
problem cannot be solved asymptotically faster than we can sort a set of points 
presented in arbitrary order. So, given an arbitrary set of n points in the Euclidean 
plane, solving the convex hull problem requires Ω(n log n) time on a RAM.

Graham’s Scan

In this section, we present a traditional sequential solution to the convex hull 
 problem, known as Graham’s Scan, which was developed by Ron Graham in 1972. 
The reader may notice that this algorithm is dominated by sort and scan operations 
and does not rely on a divide-and-conquer solution strategy. The Graham Scan 
procedure is quite simple and is presented for completeness. A description  follows 
(see Figure 10-3).

FIGURE 10-3 Graham’s Scan is a technique for determining the convex hull of a set 
of points. The lowest point is chosen as point 0 and the remaining points are sorted 
into counterclockwise order with respect to the angles they make to a horizontal 
line through point 0. Graham’s Scan examines the points in the order listed.
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Convex Hull 255

 1. Select the lowermost point in S and label this point 0. If there is more than one 
lowermost point in S, choose the leftmost such point to label 0.

 2. Sort the remaining n − 1 points of S by angle in [0, π ) with respect to the ori-
gin, i.e., point 0. Specifically, do the following.

  a.  For each of the points p = (x, y) ∈ S other than the point (x0, y0) marked as 
point 0, compute the associated angle φ  by

φ = cos−1 
(x − x0)

2(x − x0)2 + ( y − y0)2
.

  b.  Sort S \{(x0, y0)} by the angles computed in the previous step.

  c.  For any angle that includes multiple points, remove all duplicates, retaining 
only the point at the maximum distance from point 0. Without loss of gener-
ality, we will proceed under the assumption that the set S has n distinct points.

 3. Now consider the points [1, . . . , n − 1] in sequence. We build the convex hull 
up in an iterative fashion. At the ith iteration, we consider point S(i). For i = 1, 
we have point S(1) initially considered an “active point,” i.e., it is an extreme 
point of the two element set S(0, . . . ,1). For 1 < i < n, we proceed as follows. 
Assume the active points prior to the i th iteration are S(0), S( j1), . . . , S( jk), 
where 0 < j1 < . . .< jk < i.

  a.  Suppose that the path from S( jk−1) to S( jk) to S(i) turns toward the left at 
S( jk) in order to reach S(i), as shown in Figure 10-4. Then the point S(i) is 
an extreme point of the convex hull with respect to the set of points 
S(0, . . . , i), and it remains active. Further, all of the currently active points in 
S(0, . . . , i − 1) remain active. That is, those points that were extreme points 
of S(0, . . . , i − 1) will remain extreme points of S(0, . . . , i).

FIGURE 10-4 A path from 
S( jk−1) to S( jk) to S(i) that 
makes a left turn at S( jk).

S(i) 

S( jk) 

S( jk�1) 

  b.  Suppose that the path from S( jk−1) to S( jk) to S(i) turns toward the right at 
S( jk) in order to reach S(i), as shown in Figure 10-5. Then the point S(i) is 
an extreme point of the convex hull with respect to the set of points 
S(0, . . . , i), and it remains active. However, we now know that some of the 
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256 Chapter 10  Computational Geometry

currently active points in S(0, . . . , i − 1) are not extreme points in S(0, . . . , i) 
and must be eliminated from consideration as extreme points. This elimi-
nation is performed by working backwards through the ordered list of cur-
rently active points and eliminating each point that continues to cause 
point S(i) to be reached by a right turn with respect to the currently active 
points in S(0, . . . , i − 1). In fact, we only need work backwards through the 
ordered list of currently active points until we reach an active point that is 
not eliminated.

  c.  Suppose that S( jk−1), S( jk), and S(i) are collinear. Then the ordering of the 
points implies that the path from S( jk−1) to S( jk) to S(i) does not turn at 
S( jk) in order to reach S(i). Therefore, S( jk) can be eliminated since it can-
not be an extreme point in S(0, . . . ,i). (See Figure 10-6.)

FIGURE 10-5 A path from 
S( jk−1) to S( jk) to S(i) that 
makes a right turn at S( jk).

S(i)

S( jk) 

S( jk�1) 

FIGURE 10-6 A path from S( jk−1) to 
S( jk) to S(i) that is straight. That is, 
the three points are collinear.

S(i)

S( jk) 

S( jk�1) 

Consider the example presented earlier in Figure 10-3. We are required to enu-
merate the convex hull of S, a set consisting of 11 points. Details of the algorithm, 
as applied to this example, are as follows.

 a.  Scan the list of points in order to determine the lowest point. Label this lowest 
point 0. Note that if there is more than one lowest point, choose the leftmost 
one.

 b.  Sort the remaining n − 1 points by angle with respect to a horizontal line 
through point 0. The points are now ordered in counterclockwise fashion 
with respect to point 0, as shown in Figure 10-3. Initially, all n points are can-
didates as extreme points of hull(S).

 c.  The point labeled 0 must be an extreme point of the convex hull, as it is the 
lowest point in the set S. We proceed to visit successive points in order, apply-
ing the “right-turn test” described in the algorithm given above.

 d.  The first stop on our tour is point number 1, which is accepted since points 0 
and 1 form a convex set.
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Convex Hull 257

 e.  Now, consider point number 2. Notice that the turn from point 0 to 1 to 2 is a 
left turn. Therefore, points 0, 1, and 2 are extreme points with respect to 
S(0, . . . , 2).

  f .  Now, consider point number 3. Notice that the turn from point 1 to 2 to 3 is a 
right turn. Therefore, we begin to work backwards from the preceding point. 
That is, point number 2 must be eliminated. Next, consider the turn from 
point 0 to 1 to 3. This is a left turn. Therefore, point number 1 remains, and 
this backward scan to eliminate points is complete. So points 0, 1, and 3 are 
the extreme points representing the convex hull of S(0, . . . 3).

 g.  Now, consider point number 4. Notice that the turn from point 1 to 3 to 4 is a 
left turn. Therefore, no points are eliminated, and we know that points 0, 1, 3, 
and 4 are extreme points of S(0, . . . , 4).

  h.  Now, consider point number 5. Notice that the turn from point 3 to 4 to 5 is a 
right turn. Therefore, we begin to work backwards from the preceding point.  
That is, point number 4 is eliminated. Next, consider the turn from point 1 to 
3 to 5. Notice that this is a left turn. Therefore, the points 0, 1, 3, and 5 are the 
extreme points representing the convex hull of S(0, . . . , 5).

  i.  Now, consider point number 6. Notice that the turn from point 3 to 5 to 6 is a 
right turn. Therefore, we begin to work backwards from the preceding point. 
That is, point number 5 is eliminated. Next, consider the turn from point 1 to 
3 to 6. This is a left turn. Therefore, the points 0, 1, 3, and 6 are the extreme 
points representing the convex hull of S(0, . . . , 6).

  j.  Now, consider point number 7. Notice that the turn from point 3 to 6 to 7 is a 
left turn. Therefore, no points are eliminated, and we know that points 0, 1, 3, 
6, and 7 are extreme points of S(0, . . . , 7).

 k.  Now, consider point number 8. Notice that the turn from 6 to 7 to 8 is a right 
turn. Therefore, we begin to work backwards from the preceding point. That 
is, point number 7 is eliminated. Now consider the turn from point 3 to 6 to 8. 
This is a left turn. Therefore, the points 0, 1, 3, 6, and 8 are the extreme points 
representing the convex hull of S(0, . . . , 8).

 l.  Now, consider point number 9. Notice that the turn from point 6 to 8 to 9 is a 
right turn. Therefore, we begin to work backwards from the preceding point. 
That is, point number 8 is eliminated. Now consider the turn from point 3 to 
6 to 9. This is a left turn. Therefore, the points 0, 1, 3, 6, and 9 are the extreme 
points representing the convex hull of S(0, . . . , 9).

m.  Now, consider point number 10. Notice that the turn from point 6 to 9 to 10 is a 
left turn. Therefore, no points are eliminated, and we know that points 0, 1, 3, 6, 
9, and 10 are extreme points of S(0, . . . , 10). The solution is now complete.

Notice that where we discuss a “right turn” or “left turn” above, these can be 
determined computationally in Θ(1) time. Specifically, given line segments xy and 
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258 Chapter 10  Computational Geometry

yz in the Euclidean plane, the following cases provide the necessary information 
to determine the relationship between xy and yz.

 1. If xy and yz are both vertical or have the same slopes, then there is no turn from 
x to y to z as these points are collinear.

 2. If xy and yz both have positive slopes and the slope of xy is greater than the 
slope of yz, then the turn from x to y to z is to the right.

 3. If xy and yz both have positive slopes and the slope of xy is less than the slope 
of yz, then the turn from x to y to z is to the left.

 4. If xy is vertical and yz has a positive slope, then the turn from x to y to z is to 
the right.

 5. If xy has a positive slope or is vertical and yz has a negative slope, then the 
turn from x to y to z is to the left.

 6. If xy has a negative slope and yz is vertical or has a positive slope, then the 
turn from x to y to z is to the right.

 7. If xy and yz both have negative slopes and the slope of xy is greater than the 
slope of yz, then the turn from x to y to z is to the right.

 8. If xy and yz both have negative slopes and the slope of xy is less than the slope 
of yz, then the turn from x to y to z is to the left.

Analysis on a RAM
Let’s consider the running time and space requirements of Graham’s Scan on a 
RAM. The first step of the algorithm consists of determining point 0, the leftmost-
lowest point in the set S. That is, we choose a lowest point, and if there are multiple 
points in S with the minimum y-coordinate, the one we select is the leftmost. 
Assuming that S contains n points, the leftmost-lowest point can be determined in 
Θ(n) time by a simple scan through the data.

In Θ(n) time, the remaining n − 1 points of S can then have their angles com-
puted with respect to a horizontal line through point 0. These n − 1 points can then 
be sorted with respect to these angles in Θ(n log n) time.

Next, the algorithm considers the points in order and makes decisions about 
eliminating points. Notice that each time a new point i is encountered during the 
scan, it will be an extreme point of S(0, . . . , i). This is due to the fact that we are 
traversing the points in order according to their angles with respect to S(0), and we 
have eliminated, at Step 3c) above, all but one member of any set in 
S \{S(0)} = {s ∈ S 0 s ≠ S(0)} that has the same angle with S(0). Each time a new 
point is visited, Θ(1) work is necessary in order to

 1. include the new point in the data structure if it is active, and

 2. stop any backwards search that might arise.

The remainder of the time spent in the tour is accounted for when consider-
ing the total number of points that can be eliminated, since with a judicious 
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Convex Hull 259

choice of data structures, no point is ever considered once it has been eliminated. 
It is important to consider the analysis from a global perspective. Since no point 
is ever eliminated more than once, the total time required for the loop in Step 3 
is Θ(n), though the analysis is a bit different than some of the straightforward 
deterministic analyses presented earlier in the book. Therefore, the running time 
of Graham’s Scan on a RAM is a worst-case optimal Θ(n log n), since the run-
ning time is dominated by the sort performed in Step 2.

Next, we consider the space required in addition to that which is necessary in 
order to maintain the initial set of points. Notice that this algorithm does not rely 
on recursion, so we need not worry about the system stack. It does, however, 
require a separate data structure that in the worst case might require a copy of 
every point. That is, it is possible to construct situations where the number of 
extreme points is Θ(n), e.g., when the n points approximate a circle. Therefore, 
if an additional stack or array is used, the additional space will be Θ(n). However, 
if one maintains the points in a pointer-based data structure, it is possible to avoid 
making copies of the points. Of course, the penalty one pays for this is the addi-
tional Θ(n) pointers.

Parallel Implementation
Consider parallel implementations of Graham’s Scan. Steps 1 and 2 require com-
puting a semigroup operation and sorting the data. These steps can be performed 
efficiently on most parallel models. However, Step 3 does not appear easily ame-
nable to a parallel implementation. One might try to remove concave regions in 
parallel and hope that, reminiscent of our pointer jumping algorithms, the number 
of such parallel removals will be polylogarithmic in the number of points. However, 
consider the situation where the first n − 1 points form a convex set, but when the 
last point is added to this set, then Θ(n) points must be removed. It is not clear that 
such a situation can be easily parallelized.

Jarvis’ March

Another important sequential algorithm for solving the convex hull problem was 
developed in 1973 by R.A. Jarvis. This algorithm, which is referred to as Jarvis’ 
March, works by a package wrapping technique. To illustrate this technique, con-
sider a piece of string with one end fixed at the lowest point, which we again refer 
to as point number 0. Next, wrap the string around the nails representing the 
points in a counterclockwise fashion. This can be done by iteratively adding the 
point with the least polar angle with respect to a horizontal line through the most 
recently added point. Since all the remaining points are considered at each itera-
tion, the total running time of this algorithm is O(nh), where h is the number of 
extreme points on hull(S). Therefore, when the number of extreme points is 
o(log n), Jarvis’ March is asymptotically superior to Graham’s Scan in terms of 
running time.
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260 Chapter 10  Computational Geometry

Divide-and-Conquer Solutions to the Convex Hull Problem

In this section, we focus on divide-and-conquer solutions to the convex hull prob-
lem. Initially, we present a generic divide-and-conquer solution. The analysis is 
then presented based on an implementation for the RAM and mesh. At the conclu-
sion of this section, we present a divide-and-conquer algorithm, complete with 
analysis, targeted at the PRAM.

Generic Divide-and-Conquer Solution to the Convex Hull Problem
Assume that we are required to enumerate the extreme points of a set S of n planar 
points. We will enumerate the points so that the rightmost point is labeled 1, where 
in the case of ties, the lowest of the rightmost points is labeled 1. At the conclusion 
of the algorithm, the numbering of the extreme points will be given in counter-
clockwise fashion, starting with a rightmost point. Notice that for algorithmic con-
venience and in order to remain  consistent with the literature, the first enumerated 
extreme point determined by this algorithm differs in position from the first enu-
merated extreme point derived from Graham’s Scan or Jarvis’ March, where we 
used the leftmost-lowest point. A generic divide-and-conquer algorithm to 
 determine the extreme points of the convex hull of a set of n planar points follows.

 1. If n = 2, then return. In this case, both of the points are extreme points of the 
given set. If n = 1, then return. In this case, the point is an extreme point of the 
given set. If n > 2, then we continue with Step 2.

 2. Divide the n points by x-coordinate into two sets, A and B, each of size approx-
imately n/2. The division of points is done so that all points in A are to the left 
of all points in B. That is, A is linearly separable from B by a vertical line (see 
Figure 10-7).

 3. Recursively compute hull(A) and hull(B). See Figure 10-8.

 4. Stitch hull(A) and hull(B) together to determine hull(S). This is done as fol-
lows (see Figure 10-9).

a.  Find the upper and lower common tangent lines, which are often referred to 
as the lines of support, between hull(A) and hull(B).

b.  Discard the points inside the quadrilateral formed by the four points that 
determine these two lines of support.

c.  Renumber the extreme points so that they remain ordered with respect to 
the defined enumeration scheme. This is necessary since the algorithm is 
recursive in nature.

Notice that Step 2 requires us to divide the input points into disjoint sets A and 
B in such a fashion that

• every point of A is to the left of every point of B, and

• both A and B have “approximately” n/2 members.
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Convex Hull 261

FIGURE 10-7 A set of n planar points evenly divided into two sets A 
and B by x-coordinate. All points in A lie to the left of every point in B.

A B 

FIGURE 10-8 An illustration of the situation after hull(A) and hull(B) 
have been determined from input shown in Figure 10-7.

A B 

FIGURE 10-9 The stitch step. In order to construct hull(S) from hull(A) 
and hull(B), the upper common tangent line and lower common 
 tangent line between hull(A) and hull(B) are determined. 

A B 
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262 Chapter 10  Computational Geometry

Unfortunately, if we are overly strict in our interpretation of “approximately,” 
these requirements might not be met. Such a situation might occur when the 
median x-coordinate is shared by a large percentage of the input points. For exam-
ple, suppose five of 100 input points have x-coordinate less than 0, 60 input points 
have x-coordinate equal to 0, and 35 input points have x-coordinate greater than 0. 
The requirement that every point of A is to the left of every point of B results in 
either 0A 0 = 5 and 0B 0 = 95, or 0A 0 = 65 and 0B 0 = 35. This is not really a problem 
since the recursion will quickly rectify the imbalance due to the fact that at most 
two points with the same x-coordinate can be extreme points of a convex hull. 
Thus, when we determine the vertical line of separation between A and B, we can 
arbitrarily assign any input points that fall on this line to A.

This algorithm is a fairly straightforward adaptation of divide-and-conquer.
An interesting step is that of determining the lines of support. Note that lines 

of support are not necessarily determined by easily identified points. For example, 
the lines of support are not necessarily determined by the topmost and bottommost 
points in the two convex hulls, as illustrated in Figure 10-10. Considerable thought 
is required in order to construct an efficient algorithm to determine these four 
points and hence the two tangent lines.

FIGURE 10-10 An illustration of the common tangent lines between linearly 
 separable convex hulls. The upper common tangent line between hull(A) and 
hull(B) does not necessarily include the topmost extreme points in either set. 
A similar remark can be made about the lower common tangent line.

Lower 
common 
tangent 
line 

Upper common tangent 
line 

Since the convex hulls of A and B are linearly separable by a vertical line, there 
are some restrictions on possibilities of points that determine the upper tangent line. 
For example, consider al, a leftmost point of A and ar, a rightmost point of A. 
Similarly, consider bl, a leftmost point of B, and br, a rightmost point of B. It is then 
easy to show that the upper common tangent line is determined by an extreme point 
of hull(A) on or above alar, where the edges of hull(A) on or above alar are referred 
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Convex Hull 263

to as the upper envelope of A, and an extreme point of hull(B) on or above blbr, 
the upper envelope of B. Similarly, the lower common tangent line is determined 
by an extreme point of hull(A) on or below al ar and an extreme point of hull(B) on 
or below blbr. Therefore, without loss of generality, we focus on determining the 
upper common tangent line, and note that determining the lower common tangent 
line is similar.

The extreme point p ∈ hull(A) that determines the upper common tangent line 
has the property that if x and y are, respectively, its left and right neighbors among 
the extreme points of hull(A), where one or both of x and y may not exist, then 
every extreme point of hull(B) lies on or below gxp , while at least one extreme 
point of hull(B) lies on or above gpy  (see Figure 10-11). Notice that the mirror 
image scenario is valid in terms of identifying the right common tangent point, 
that is, the upper common tangent point in hull(B).

FIGURE 10-11 Constructing the upper common tangent lines. The upper common 
tangent line includes the extreme point p ∈ hull(A) with the following properties. 
Let the next extreme point in counterclockwise order be called x and the previous 
extreme point in counterclockwise order be called y. Then every extreme point of 
hull(B) lies on or below gxp  while at least one extreme point of hull(B) lies on or 
above gpy .

Upper common tangent line 

A 

x 
p 

y 

B 

Convex Hull Algorithm on a RAM
In this section, we consider the implementation details and running time of the 
divide-and-conquer algorithm just presented for the RAM. In order to partition the 
points with respect to x-coordinates, a Θ(n log n) time sorting procedure can be 
used. In fact, it is important to notice that this single sort will serve to handle the 
partitioning that is required at every level of the recursion. That is, sorting is only 
performed once for partitioning, not at every level of recursion. Now let’s consider 
the stitch step. The necessary points can be identified in Θ(log n) time by a clever 
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264 Chapter 10  Computational Geometry

“teeter-totter” procedure. Basically, the procedure performs a type of binary search 
in which endpoints of a line segment, one from hull(A) and the other from hull(B), 
are adjusted in a binary search-type iterative fashion. Once the extreme points are 
identified, then with an appropriate choice of data structures, the points can be 
reordered and renumbered in Θ(n) time. This eliminates the points inside the 
quadrilateral determined by the lines of support. Therefore, the running time of 
the algorithm is given by T(n) = Θ(n log n) + R(n), where Θ(n log n) is the time 
required for the initial sort, and R(n) is the time required for the recursive proce-
dure. Notice that R(n) = 2R(n/2) + Θ(n), where Θ(n) time is required to stitch two 
convex hulls. The latter is because Θ(log n) time is required to identify the tangent 
line, and Θ(n) time is required to reorder the points. Therefore, R(n) = Θ(n log n), 
and it follows that the running time of the entire algorithm is Θ(n log n), which is 
asymptotically optimal.

Convex Hull Algorithm on a Mesh
In this section, we discuss a mesh implementation and provide an analysis of the 
divide-and-conquer solution to the convex hull problem. Specifically, given n 
points, arbitrarily distributed one point per processor on a mesh of size n, we will 
show that the convex hull of the set S of planar points can be determined in optimal 
Θ(n1/2) time.

The basic algorithm follows. First, sort the points into shuffled row-major 
order. This results in the first n/4 points, with respect to x-coordinate ordering, 
being mapped to the northwest quadrant, the next n/4 points being mapped to the 
northeast quadrant, and so forth, as shown in Figure 10-12. Notice that with this 
indexing scheme, the partitioning holds recursively within each quadrant.

FIGURE 10-12 Dividing the n planar points in S so that 
each of the four linearly separable sets of points is stored in 
a different quadrant of the mesh. Notice that the vertical 
slabs of points in the plane need not cover the same area of 
space. They simply must contain the same number of points.

S1 S2

S3 S4

S1 S2 S3 S4
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Convex Hull 265

Since this algorithm is recursive, we now need only discuss the binary search 
routine. Notice that due to the mesh environment and the way in which we have 
partitioned the data, we will perform simultaneous binary searches between S1 and 
S2, as well as between S3 and S4. We will then perform a binary search between 
S1 ∪ S2 and S3 ∪ S4. Therefore, we only need to describe the binary search between 
S1 and S2, with the others being similar. In fact, we will only describe the binary 
search that will determine the upper common tangent line between S1 and S2.

Notice that it takes Θ(n1/2) time to broadcast a query from S1 to S2 and then 
report the result back to all processors in S1. So, in Θ(n1/2) time, we can determine 
whether or not some line from S1 goes above all of the points in S2 or whether there 
is at least one point in S2 that is above the query line. If we continue performing 
this binary search in a natural way, the running time of this convex hull algorithm 
will be Θ(n1/2 log n).

However, if we first perform a query from S1 to S2, and then one from S2 to S1, 
notice that half of the data from S1 and half the data from S2 can be logically elimi-
nated. The reader should note that while logically eliminating points during this 
back-and-forth binary search, reducing the total number of points under consider-
ation by at least half during each iteration, the points representing the common tan-
gent line segments remain in the active sets.

So, if the logically active data is compressed into a smaller submesh after 
the binary search, then each iteration of the binary search, including the com-
pression, will take time proportional to the square root of the number of items 
remaining. Therefore, such a dual binary search with compression will run in 
B(n) = B(n/2) + Θ(n1/2) = Θ(n1/2) time. Hence, the total running time of the divide-
and-conquer-based binary search on a mesh of size n is the Θ(n1/2) time for the 
initial sort plus

T(n) = T(n/4) + B(n) = T(n/4) + Θ(n1/2) = Θ(n1/2)

time for the remainder of the algorithm. Therefore, the total running time to deter-
mine the convex hull on a mesh of size n is Θ(n1/2), which is optimal for this 
architecture.

Convex Hull Algorithm on a PRAM
In this section, we present a divide-and-conquer algorithm to solve the convex hull 
problem on a PRAM. The algorithm follows the spirit of the divide-and-conquer 
algorithm that we have presented. However, the individual steps have been opti-
mized for the PRAM. The algorithm follows.

 1. Partition the set S of n planar points into n1/2 sets, denoted R1, R2, . . . , Rn1/2. The 
partitioning is done so that all points in region Ri are to the left of all points in 
region Ri+1 for 1 ≤ i ≤ n1/2 − 1 (see  Figure 10-13). This partitioning is most sim-
ply accomplished by sorting, as previously described.
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266 Chapter 10  Computational Geometry

 2. Recursively, and in parallel, solve the convex hull problem for every Ri, 
i ∈ {1, 2, . . . , n1/2}. At this point, hull(Ri) is now known for every Ri.

 3. Stitch the n1/2 convex hulls together in order to determine hull(S). This is done 
by the combine routine that we define below.

FIGURE 10-13 An illustration of partitioning the set S of 
n planar points into n1/2 linearly separable sets, each 
with n1/2 points. The sets are denoted as R1, R2, . . . , Rn1/2.

R1 R2 R4 R5R3

Combine
The input to the combine routine is the set of convex hulls, hull(R1), hull(R2), . . . , 
hull(Rn1/2), each represented by O(n1/2) extreme points. Notice that hull(R1) ≤
hull(R2) ≤ . . . ≤ hull(Rn1/2), where we use “A ≤ B” to mean that “all points in A are 
to the left of all points in B.” The combine routine will produce hull(S). As we have 
done previously, we will only consider the upper envelopes of hull(Ri), 1 ≤ i ≤ n1/2, 
and we will describe an algorithm to merge these n1/2 upper envelopes in order to 
produce the upper envelope of hull(S). The procedure for determining the lower 
envelope is analogous. The algorithm follows.

 1. Assign n1/2 processors to each set Ri of points. For each Ri, determine the 
n1/2 − 1 tangent lines between hull(Ri) and every distinct hull(Rj). Notice that a 
total of n1/2 × (n1/2 − 1) = O(n) such upper tangent lines are determined. These 
tangent lines are computed as follows.

a.  Let Ti, j be used to denote the upper common tangent line between hull(Ri) 
and hull(Rj), i ≠ j.

b.  For each Ri, use the kth processor that was assigned to it to determine the 
upper tangent line between hull(Ri) and hull(Rk), i ≠ k. Each of these upper 
tangent lines can be determined by a single processor in O(log n) time by 
invoking the “teeter-totter” algorithm outlined above. In fact, all Θ(n) tan-
gent lines can be determined simultaneously in O(log n) time on a CREW 
PRAM.

 2. Let Vi be the tangent line with the smallest slope in {Ti,1, Ti,2, . . . , Ti,i−1}. That 
is, with respect to Ri, Vi represents the tangent line of minimum slope that 
“comes from the left.” Let vi be the point of contact of Vi with hull(Ri).
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Convex Hull 267

 3. Let Wi be the tangent line with largest slope in {Ti,i+1, Ti,i+2, . . . , Ti,n1/2}. That is, 
with respect to Ri, Wi represents the tangent line of maximum slope that 
“comes from the right.” Let wi be the point of contact of Wi with hull(Ri).

 4. Notice that both Vi and Wi can be found in O(log n) time by the n1/2 processors 
assigned to Ri. This only requires that the n1/2 processors perform a minimum 
or maximum operation, respectively.

 5. Since neither Vi nor Wi can be vertical, they intersect and form an angle, with 
the interior point upward. If this angle is ≤180°, or if wi is to the left of vi, then 
none of the points of the upper envelope of hull(Ri) belong to hull(S). Other-
wise, all points from vi to wi, inclusive, belong to hull(S) (see Figures 10-14, 
10-15, 10-16, and 10-17). Notice that this determination is performed in Θ(1) 
time.

 6. Finally, compress all of the extreme points of hull(S) into a compact region in 
memory in O(log n) time by performing parallel prefix computations.

The running time of the combine routine is dominated by the time required to 
determine the common tangent lines and the time required to organize the final 
results. Therefore, the running time for the combine routine is O(log n).

FIGURE 10-14 Suppose that vi is to the left of wi and that the angle above 
the intersection of their tangents exceeds 180°. Then all of the extreme 
points of Ri between (and including) vi and wi are extreme points of S.

vi wi

Ri

vi = wi

Ri

FIGURE 10-15 Suppose that vi = wi and that the angle above the intersection 
of their tangents exceeds 180°. Then vi is an extreme point of S.
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268 Chapter 10  Computational Geometry

FIGURE 10-17 Suppose that wi is to the left of vi. Then no extreme point 
on the upper envelope of Ri is an extreme point of S.

vi 

 wi 

Ri 

vi = wi 

Ri 

FIGURE 10-16 Suppose that vi = wi and that the angle above the intersection 
of their tangents does not exceed 180°. In this case, no extreme point on the 
upper envelope of Ri is an extreme point of S.

PRAM Analysis
While it is beyond the scope of this text, we have mentioned that sorting can be 
performed on a PRAM in Θ(log n) time. Therefore, the running time of this con-
vex hull algorithm is given by T(n) = S(n) + R(n), where S(n) = Θ(log n) is the 
time required for the initial sort, and R(n) = R(n1/2) + C(n) is the time required for 
the recursive part of the algorithm, including the C(n) = O(log n) time combine 
routine. Hence, the running time for this convex hull algorithm is Θ(log n). Further, 
this results in an optimal total cost of Θ(n log n).

Smallest Enclosing Box

In this section, we consider the problem of determining a smallest enclosing “box” 
of a set of points. That is, given a set S of n planar points, determine a, not neces-
sarily unique, minimum-area enclosing rectangle of S. This problem has applica-
tions in layout and design. Since a rectangle is convex, it follows from the definition 
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Smallest Enclosing Box 269

of convex hull that any enclosing rectangle of S must enclose hull(S). One can 
show that for a minimum-area enclosing rectangle, i) each of its edges must inter-
sect an extreme point of hull(S) and ii) one of the edges of the rectangle must be 
collinear with a pair of adjacent extreme points of hull(S) (see Figure 10-18).

FIGURE 10-18 A smallest enclosing box of S. A, 
not necessarily unique, minimum-area enclosing 
rectangle of S includes three edges, each of which 
contains an extreme point of hull(S), and one 
edge that is collinear with an edge of hull(S).

W

x

x

N

E 

A straightforward solution to the smallest enclosing box problem consists of 
the following steps.

 1. Identify the extreme points of the set S of n planar points.

 2. Consider every pair of adjacent extreme points in hull(S). For each such pair, 
find the three maximum points, as shown in Figure 10-18, and as described 
below.

  a.  Given a line collinear with hull edge xx', the point E associated with xx' is 
the last point of hull(S) encountered as a line perpendicular to xx' passes 
through hull(S) from left to right.

  b.  The point N associated with hull edge xx' is the last point encountered as a 
line parallel to xx', originating at xx', passes through hull(S).

  c.  Finally, the point W associated with hull edge xx' is the last point of hull(S) 
encountered as a line perpendicular to xx' passes through hull(S) from right 
to left.

 3. For every adjacent pair of extreme points, x and x', determine the area of the 
minimum enclosing box that has an edge collinear with hull edge xx'.
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270 Chapter 10  Computational Geometry

 4. A smallest enclosing box of S is a box that yields the minimum area over all of 
the rectangles just determined. Therefore, identify a box that corresponds to 
the minimum area with respect to those values determined in Step 3.

RAM

We have shown that the convex hull of a set S of n planar points can be determined 
in Θ(n log n) on a RAM. Further, given m enumerated extreme points, for each 
pair of adjacent extreme points, one can determine the other three critical points by 
a binary search type of procedure in Θ(log m) time. Therefore, the time required to 
determine the m restricted minimum-area rectangles is Θ(m log m). Once these m 
rectangles have been determined, a minimum-area rectangle over this set can be 
determined in Θ(m) time by a simple scan. Therefore, the running time for the 
entire algorithm on a RAM is Θ(n log n + m log m) = Θ(n log n), since m = O(n).

PRAM

Consider the same basic strategy as just presented for the RAM. Notice that the m 
restricted minimum-area rectangles can be determined simultaneously in Θ(log m) 
time on a PRAM. Further, a semigroup operation can be used to determine the 
minimum of these in Θ(log m) time. Therefore, the running time of the entire algo-
rithm, including the time to determine the extreme points of the convex hull, is 
Θ(log n + log m) = Θ(log n) on a PRAM.

Mesh

Given a mesh of size n, we have shown how to enumerate the m extreme points of 
hull(S) in Θ(n1/2) time. In order to arrive at an asymptotically optimal algorithm 
for this architecture, we need to be able to design a Θ(n1/2) time algorithm to gen-
erate the m rectangles. Once we have generated the rectangles, we know that a 
straightforward Θ(n1/2) time semigroup operation can be used to identify one of 
these of minimum area. So, how do we determine all m minimum-area rectangles 
simultaneously in Θ(n1/2) time?

Recall that the extreme points of hull(S) have been enumerated. Each point is 
incident on two hull edges. Each such edge has an angle of support that it makes 
with hull(S). These angles are all in the range of [0, 2π), where the angle, in 
radian measure, is viewed with respect to the points of S (see Figure 10-19). 
Consider the situation in which every edge xx' is trying to determine its point N. 
This corresponds to the situation in which every edge xx' is searching for the 
extreme point of hull(S) that has an angle of support that differs from that of xx' 
by π. In order for edge xx' to determine its other two points, E and W, it is simply 
searching for points bounded by hull edges with angles of support that differ 
from that of xx' by π/2 and 3 π/2, respectively. Therefore, these simultaneous 
searches can simply be performed by a fixed number of sort-based routines and 
ordered interval broadcasts. In the interest of flow of text, we have not given all 
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All-Nearest Neighbor Problem 271

of the details, but it should be clear that these operations are essentially  performed 
in a straightforward fashion by concurrent read operations. Therefore, the run-
ning time of this algorithm, including the time to identify the extreme points of 
hull(S), is Θ(n1/2).

All-Nearest Neighbor Problem

In this section, we consider another fundamental problem in computational geom-
etry. Suppose we have a set S of n planar points and for every point in S we want to 
know a, not necessarily unique, nearest neighbor with respect to the other points 
in S. That is, we are required to determine for every point p ∈ S, a point p, such 
that dist( p, p ) is the minimum dist( p, q), p ≠ q, q ∈ S. For this reason, the prob-
lem is often referred to as the all-nearest neighbor problem.

An optimal Θ(n log n)-time algorithm for the RAM typically consists of con-
structing the Voronoi Diagram of S and then traversing this structure. The Voronoi 
Diagram of a set of planar points consists of a collection of n convex polygons, 
where each such polygon Ci represents the region of 2-dimensional space such that 
any point in Ci is closer to pi ∈ S than to any other point in S. The Voronoi Diagram 
is a very important structure in computational geometry. While a detailed discus-
sion of the construction of the Voronoi Diagram is beyond the scope of this book, 
references to such algorithms are given at the end of the chapter.

In this section, we will concentrate on an interesting divide-and-conquer solu-
tion to the all-nearest neighbor problem for the mesh. Notice that an optimal 
Θ(n1/2)-time algorithm on a mesh of size n carries with it a cost of Θ(n3/2). So, 
while not cost-optimal, this is significantly better than a brute-force algorithm that 
uses Θ(n2) operations to compute distances between all pairs of points.

 FIGURE 10-19 An illustration of angles of support. 
The angle of incidence of hull edge EA is π/2,  of 
AB is 3π/4,  of BC is π,  and so forth. An angle of 
support of extreme point A is in [π/2,  3π/4]. An 
angle of support of extreme point B is in [3π/4, π], 
 and so forth.
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C       
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272 Chapter 10  Computational Geometry

We consider an algorithm that partitions the points into disjoint sets of points, 
solves the problem recursively within each set of points, and then stitches the par-
tial results together in an efficient fashion. We prevent the stitching process from 
becoming the dominant step by partitioning in such a way that almost all of the 
points within each partition know their final answer after the recursive solution.

We can accomplish this as follows.

 1. Partition the plane into linearly separable vertical slabs and solve the problem 
recursively within each vertical slab.

 2. Repartition the plane into linearly separable horizontal slabs and solve the 
problem recursively within each horizontal slab.

 3. We can then utilize a theorem from computational geometry that states that 
there are no more than a fixed number of points in each rectangle formed by 
the intersection of a horizontal and vertical slab that could have a nearest neigh-
bor somewhere other than in its horizontal or vertical slab (see Figure 10-20).

FIGURE 10-20 The nearest neighbor of p is neither in the 
same horizontal nor vertical slab as p is.

p

We now give an outline of the algorithm.

 1. Solve the problem recursively in vertical slabs, as follows.

  a. Sort the n points in S by x-coordinate, creating four vertical slabs.

  b.  Solve the all-nearest neighbor problem recursively (Steps 1-3) within each 
vertical slab.

 2. Solve the problem recursively in horizontal slabs, as follows.

  a.  Sort the n points in S by y-coordinate, creating four horizontal slabs.

  b.  Solve the all-nearest neighbor problem recursively (Steps 1-3) within each 
horizontal slab.
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Line Intersection Problems 273

 3. Sort the n points of S with respect to the identity of their boxes. The identity of 
a specific box is given as the concatenation of the label of the vertical slab and 
the label of the horizontal slab.

  a.  For the points in each box, it is important to note that a result from compu-
tational geometry shows that at most two points closest to each corner of 
the box could be closer to a point outside the box than to any point found so 
far. Notice that there are no more than 8 × 16 = 128 such corner points. In 
fact, if we count carefully we notice that the 4 interior rectangles can each 
have 8 such points, the 4 corner rectangles can each have only 2 such points, 
and the remaining 8 edge-rectangles can each have 4 such points. That is, 
the total number of points that could have a closest neighbor outside of its 
rectangle is actually 72, though 128 and 72 are both just  constants.

  b.  Each of these corner points can now be passed through the mesh so that 
they can view, and be viewed by, all n points. After this traversal, each of 
these corner points will know its nearest neighbor. Hence, the solution will 
be complete.

Running Time

The running time of this algorithm on a mesh of size n is given as T(n) =
2T(n/4) + Θ(n1/2). Using the Master Method, we can determine that this recur-
rence has a solution of T(n) = Θ(n1/2 log n), which is within a log n factor of 
 optimal for this architecture.

Line Intersection Problems

Suppose we are given a set L of n line segments in the Euclidean plane. The seg-
ments may be arbitrary, or we may have additional knowledge, for example, that 
every member of L is either horizontal or vertical. Common line intersection prob-
lems include the following.

 1. Intersection Query: Determine if there is at least one pair of members of L 
that intersect.

 2. Intersection Reporting: Find and report all pairs of members of L that 
 intersect.

An easy, though perhaps inefficient, method of solving the intersection query 
problem is to solve the intersection reporting problem and then observe whether or 
not any intersections were reported. We might hope to obtain an asymptotically 
more efficient solution to the intersection query problem that does not require us 
to solve the intersection reporting problem.

An obvious approach to both problems is based on an examination of each of 
the Θ(n2) pairs of members of L. It is easy to see how such an approach yields an 
O(n2) time RAM algorithm for the intersection query problem, and a Θ(n2) time 
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274 Chapter 10  Computational Geometry

RAM algorithm for the intersection reporting problem. In fact, other solutions are 
more efficient.

• Consider the intersection query problem. In Θ(n) time, create two records for 
each member of L, one for each endpoint. Let each record have an indicator as to 
whether the endpoint is a left or right endpoint, where lower corresponds to right 
in the case of a vertical segment. Sort these records into ascending order by the 
x-coordinates of their endpoints, using the left/right indicator as the secondary 
key, with right < left, and y-coordinates as the tertiary key. Now, perform a plane 
sweep operation, which allows us to “sweep the plane” from left to right, main-
taining an ordered data structure T of non-intersecting members of L not yet 
eliminated from consideration, as possible members of an intersecting pair. 
Assume that T is a data structure, such as a balanced tree, in which insert, retrieve, 
and delete operations can be performed in sequential O(log n) time. As we move 
the vertical “sweep line” from left to right and encounter a left endpoint of a 
member s of L, we insert s into T, then determine whether or not s intersects 
either of its at most two neighbors in T. If we find an intersection, we report its 
existence and halt. As the sweep line encounters a right endpoint of a member s 
of L, we remove s from T, and, as above, determine whether or not s intersects 
either of its, at most, 2 neighbors in T. If we find an intersection, we report its 
existence and halt. Otherwise, we continue the plane sweep (see Figure 10-21).

FIGURE 10-21 Illustration of a plane sweep operation to solve the intersection 
query problem. The line segments are labeled by left endpoint. As a sweep of the 
all endpoints is performed from left to right, when a left endpoint is encountered, 
the line segment is inserted into the list at the appropriate ordered, i.e., top to 
bottom, position, and is tested for intersection with its neighbors in the list. The 
currently active ordered list of line segments is shown beneath each endpoint. 
When a right endpoint is encountered, an evaluation of an intersection is made 
before removing that point from the ordering. Here, when the left endpoint of e is 
encountered, the d-e intersection is detected.
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Line Intersection Problems 275

• Consider the intersection reporting problem. We can construct an algo-
rithm with an output-sensitive running time for the RAM, which is asymptoti-
cally faster under certain conditions than the straightforward Θ(n2) time 
required for the brute force algorithm. The term output-sensitive refers to the 
fact that the amount of output is a parameter of the running time. That is, if 
there are k intersections, a RAM algorithm for this problem can be constructed 
to run in O((n + k)log n) time. Thus, if k = o(n2/log n), such an algorithm is 
asymptotically faster than one that examines all pairs. Such an algorithm can 
be obtained by making minor modifications to the solution above for the inter-
section query problem. The most important change is that instead of halting 
upon discovering an intersection, we list the intersection and continue the 
plane sweep to the right.

Overlapping Line Segments

In Chapter 7, we examined the following problems.

• The coverage query problem considers the question of whether or not a given 
fixed interval [a, b] is covered by the union of an input set of intervals.

• The maximal overlapping point problem determines a point of the real line that 
is covered by the largest number of members of an input set of intervals.

Such problems fall within the scope of computational geometry. Another 
problem in computational geometry that is concerned with overlapping line seg-
ments is the minimal-cover problem, which can be expressed as follows: Given an 
interval [a, b] and a set of n intervals S = 53ai, bi46i=1

n
, find a minimal-membership 

subset S ' of S such that [a, b] is contained in the union of the members of S ', if 
such a set exists, or report that no such set exists. Another version of this problem 
uses a circle instead of an interval for the object to be covered and a set of circular 
arcs instead of a set of intervals.

An application of this problem is in minimizing the cost of security. The inter-
val [a, b] might represent a borderline to be guarded, and the members of S might 
represent sectors that can be viewed by individual guards. A positive solution to 
the problem might represent a minimal-cost solution, including a listing of the 
responsibilities of the individual guards, for keeping the entire borderline or perim-
eter under surveillance.

Efficient solutions exist for both the interval and circular versions of these 
problems, which are quite similar. For the reader’s convenience, we will consider 
the interval version of the problem as some of its steps are easier to state than their 
analogs in the circular version of the problem.

We discuss a greedy algorithm, that is, an algorithm marked by steps designed 
to reach as far as possible towards a solution. The algorithm is greedy in that it 
starts with a member of S that covers a and extends maximally to the right. If no 
such member of S exists, then the algorithm terminates and reports that the 
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276 Chapter 10  Computational Geometry

requested coverage does not exist. Further, once a member s ∈ S is selected, a 
maximal successor for s is determined. That is, a successor is a member of S that 
intersects with s and extends maximally to the right. This procedure continues 
until either b is covered, which represents a successful outcome, or a successor 
cannot be found, which represents an unsuccessful outcome. Thus, a high-level 
view of this algorithm is as follows.

• Find a member s ∈ S that covers a and has a maximal right endpoint. If no 
such member of S exists, report failure and halt.

• While failure has not been reported and s = [ai, bi] does not cover b, assign to s 
a member of S \{s} that has a maximal right endpoint among those members of 
S \{s} that contain bi. If no such member of S \{s} exists, report failure and halt.

At the end of these steps, if failure has not been reported, the selected mem-
bers of S form a minimal-cardinality cover of [a, b]. See Figure 10-22, in which 
the intervals of S have been raised vertically in the Euclidean plane for clear view-
ing, but should be thought of as all belonging to the same Euclidean line.

The approach outlined above is inherently sequential. However, we can revise 
the algorithm so that it can be implemented on a RAM or on a variety of parallel 
architectures. Such an architecture-independent algorithm follows.

 1. For each t ∈ S, find its successor, if one exists.

 2. For each t ∈ S, take the union of t and its successor as a chain of at most two 
connected intervals. Then take the union of this chain of at most two intervals 
and its final line segment’s successor’s chain of at most two intervals to pro-
duce a chain of at most four. Repeat this doubling until the chain starting with 
t either does not have a successor chain or covers b.

 3. Use a minimum operation to find a chain that covers [a, b] with a minimal 
number of intervals.

FIGURE 10-22 A minimal-cardinality cover of [a, b] consists of line 
 segments 3, 4, 6, and 7.
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Line Intersection Problems 277

As is so often the case, “find” operations, including those mentioned above, 
are typically facilitated by having the data appropriately sorted. It is useful to have 
the intervals ordered from left to right. However, since the data consists of inter-
vals rather than single values, some thought must be given to what such an order-
ing means. Our primary concern is to order the intervals in such a way as to enable 
an efficient solution to the problem at hand, by enabling us to identify successor 
intervals efficiently. The ordering that we use is embedded in the algorithm given 
below, which relies on a postfix operation on the ordered intervals in order to 
determine maximal overlap of [a, b] with a minimum number of intervals.

a. Sort the interval records by left endpoint, breaking ties in favor of maximal 
right endpoints.

b. We observe that if {[ai, bi], [aj, bj]} � S and [ai, bi] � [aj, bj], then any con-
nected chain of members of S of minimal-cardinality among those chains 
that start with [ai, bi] and cover [a, b], will have at least as many members as 
a connected chain of members of S of minimal-cardinality among those 
chains that start with [aj, bj] and cover [a, b]. Therefore, we can remove all 
such nonessential intervals [ai, bi] by performing a simple prefix operation 
on the ordered set of interval data. Without loss of generality, we will pro-
ceed under the assumption that no remaining member of S is a subset of 
another remaining member of S.

c. For each remaining [ai, bi] ∈ S, create two records. The first set of records, 
called successor records, consists of two components, namely, the index i of 
the interval and the index j of the successor of the interval. For each interval 
[ai, bi] ∈ S, we initialize its successor record to (i, i), with the interpretation 
that initially every interval is its own successor. Notice that during the proce-
dure, the first component of these records does not change, while the second 
component will eventually point to the successor of interval [ai, bi]. The second 
set of records, referred to as information records, contains connectivity infor-
mation. The components of the information records include the following.

   •  The first two components are the left and right endpoints, respectively, of 
the connected union of members of S represented by the record’s chain 
of intervals.

   •  The third and fourth components represent the indices of the leftmost and 
rightmost members of the record’s chain, respectively.

   •  The fifth component is the index of the successor to the rightmost interval 
in the record’s chain, i.e., the successor to the interval indexed by the fourth 
component.

   •  The sixth component is the number of members of S in the line segment’s 
chain.

 For each record [ai, bi] ∈ S, we initialize an information record to (ai, bi, i, i, i, 1).
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278 Chapter 10  Computational Geometry

d. Sort the information records into ascending order by the second component.

e. In this step, we use the first four components of the information records. 
Determine the span of the chain of intervals starting at ai as follows, where ° is 
an operation defined as

(ai, bj, i, j) ° (ak, bm, k, m) = e (ai, bm, i, m) if  ai ≤ ak ≤ bj < bm;

(ai, bj, i, j) otherwise.

 The result of this operation represents [ai, bj] ∪ [ak, bm], provided these line 
segments intersect and [ak, bm] extends [ai, bi] to the right more than does 
[aj, bj]. In this case, we can say the result represents [ai, bm], and that [ak, bm] is 
the successor of [ai, bj]. Otherwise, the result of this operation is its first fac-
tor, representing [ai, bj]. Note the interval we call the successor of [ai, bj] may 
change as the algorithm proceeds. Use a parallel postfix operation with opera-
tion ° to compute, for each information record representing [ai, bi], the transi-
tive closure of ° on all records representing line segment i up through and 
including the information record representing line segment n. Since the inter-
vals are ordered by their left endpoints, it follows that the fourth component of 
the postfix information record representing line segment [ai, bi] is the index of 
the successor of the chain initiated by [ai, bi].

f . For all i ∈ {1, 2, . . . , n}, copy the fourth component of the postfix information 
record created in the previous step, representing [ai, bi], to the second compo-
nent of the successor record representing [ai, bi], so that the successor record 
for [ai, bi] will have the form (i, si), where si is the index of the successor of 
[ai, bi].

g. For all i ∈ {1, 2, . . . , n}, compute the chain of intervals vi obtained by starting 
with [ai, bi] and adding successors until either b is covered or we reach an 
interval that is its own successor. This can be done by way of a parallel postfix 
computation in which we define • as

(ai, bj, i, j, k, c) • (am, bq, m, q, r, s) = e (ai, bq, i, q, r, c + s) if  k = m;

(ai, bj, i, j, k, c) otherwise.

h. A minimum operation on 5vi6 i=1
n

, in which we seek the minimal sixth compo-
nent such that the interval determined by the first and second components 
contains [a, b], determines whether or not a minimal-cardinality covering of 
[a, b] by members of S exists, and, if so, its cardinality. If j is an index such 
that vj yields a minimal-cardinality covering of [a, b] by members of S, the 
members of S that make up this covering can be listed by a parallel prefix 
operation that marks a succession of successors starting with [aj, bj].
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Chapter Notes 279

Computational Geometry on NOW, Clusters, 
and Grids

Many large-scale applications require the evaluation and/or construction of geo-
metric objects as part of their solution strategy. Many such applications require the 
use of large-scale computing systems in order to solve problems of interest. Such 
systems include large-scale NOW, clusters, grids, and clouds. Algorithms to solve 
problems in computational geometry on such systems typically require the redis-
tribution of data so that data on each node consists of records representing objects 
that are in close proximity in space. After such a redistribution of data, the algo-
rithm is typically implemented by solving subproblems within computational 
nodes, followed by stitching such results together.

That is, the solutions typically mimic algorithms presented in this and previ-
ous chapters on parallel architectures when considering a cost-effective solution, 
i.e., an architecture in which asymptotically fewer processors are utilized than the 
number of data to be processed. So, these geometric algorithms are typically of a 
hybrid nature. That is, solve the local subproblems in the nodes and then use the 
fine-grained communication protocols to stitch such solutions together into a final 
result, which is then typically distributed to all of the nodes/processors.

Summary

In this chapter, we consider algorithms for several interesting problems from com-
putational geometry. Problems considered include computation of the convex hull 
of a set of planar points, computation of a smallest enclosing box for a set of pla-
nar points, the All-Nearest Neighbor Problem, and several problems concerning 
line intersections and overlaps in the Euclidean plane.

Chapter Notes

The focus of this chapter is on efficient sequential and parallel solutions to funda-
mental problems in the field of computational geometry. The reader interested in a 
more comprehensive exploration of computational geometry is referred to 
Computational Geometry by F.P. Preparata & M.I. Shamos (Springer-Verlag, 
1985). In fact, the proof that sorting is linear-time transformable to the convex hull 
problem comes from this source. The reader interested in parallel implementations 
of solutions to problems in computational geometry is referred to S.G. Akl & K.A. 
Lyons’ Parallel Computational Geometry (Prentice Hall, 1993).

The Graham’s Scan algorithm was originally presented in “An efficient algo-
rithm for determining the convex hull of a finite planar set,” by R.L. Graham in 
Information Processing Letters 1, 1972, 132–133. The Jarvis March algorithm was 
originally presented by R.A. Jarvis in the paper “On the identification of the 
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280 Chapter 10  Computational Geometry

convex hull of a finite set of points in the plane,” Information Processing Letters 2, 
1973, 18–21. These algorithms are also presented in a thorough fashion in 
Introduction to Algorithms (3rd ed.: The MIT Press, Cambridge, MA, 2009) by 
T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein.

The generic divide-and-conquer solution to the convex hull problem presented 
in this chapter is motivated by the material presented in Parallel Algorithms for 
Regular Architectures by R. Miller & Q.F. Stout (The MIT Press, 1996). The 
 “teeter-totter” binary search algorithm referred to when describing an intricate 
binary search for determining common tangent lines was originally presented by 
M.H. Overmars and J. van Leeuwen in “Maintenance of configurations in the 
plane,” in the Journal of Computer and Systems Sciences, vol. 23, 1981, 166–204. 
The interesting divide-and-conquer algorithm for the PRAM was first presented 
by M. Atallah and M. Goodrich in “Efficient parallel solutions to some geometric 
problems,” in the Journal of Parallel and Distributed Computing 3, 1986, 
492–507. One might note that this algorithm exploits the CR capabilities of a 
CREW PRAM. We should point out that an optimal Θ(log n) time EREW PRAM 
algorithm to solve the convex hull problem has been presented by R. Miller & 
Q.F. Stout in “Efficient parallel convex hull algorithms,” in IEEE Transactions on 
Computers, 37 (12), 1988. However, the presentation of the Miller and Stout algo-
rithm is beyond the scope of this book.

The notion of angles of support is interesting in that it allows multiple parallel 
searches to be implemented by a series of sort steps. Details of the mesh convex 
hull algorithm that relies on angles of support can be found in Parallel Algorithms 
for Regular Architectures.

The reader interested in learning more about the Voronoi Diagram and its 
application to problems involving proximity might consult Computational 
Geometry by F.P. Preparata & M.I. Shamos (Springer-Verlag, 1985). Details of the 
all-nearest neighbor algorithm for the mesh can be found in Parallel Algorithms 
for Regular Architectures.

A RAM algorithm for the circular version of the cover problem was pre-
sented by C.C. Lee and D.T. Lee in “On a Cover-Circle Minimization Problem,” 
in Information Processing Letters 18 (1984), 180–185. A CREW PRAM algo-
rithm for the circular version of this problem appears in “Parallel Circle-Cover 
Algorithms,” by A.A. Bertossi in Information Processing Letters 27 (1988), 
133–139. The algorithm by Bertossi was improved independently in each of the 
following papers:

• M.J. Atallah and D.Z. Chen, “An Optimal Parallel Algorithm for the Minimum 
Circle-Cover Problem,” Information Processing Letters 32 (1989), 159–165.

• L. Boxer and R. Miller, “A Parallel Circle-Cover Minimization Algorithm,” 
Information Processing Letters 32 (1989), 57–60.

• D. Sarkar and I. Stojmenovic, “An Optimal Parallel Circle-Cover Algorithm,” 
Information Processing Letters 32 (1989), 3–6.
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Chapter Notes 281

The exercises of this chapter, which appear in the next section, include ques-
tions concerning the all maximal equally spaced collinear points problem. This 
and several related problems were studied in the following papers:

• A.B. Kahng and G. Robins, “Optimal Algorithms for Extracting Spatial 
Regularity in Images,” Pattern Recognition Letters 12 (1991), 757–764.

• L. Boxer and R. Miller, “Parallel Algorithms for All Maximal Equally Spaced 
Collinear Sets and All Maximal Regular Coplanar Lattices,” Pattern 
Recognition Letters 14 (1993), 17–22.

• L. Boxer, R. Miller, and A. Rau-Chaplin, “Scalable Parallel Algorithms 
for Geometric Pattern Recognition,” Journal of Parallel and Distributed 
Computing 58 (1999), 466–486.

• G. Robins, B.L. Robinson, and B.S. Sethi, “On Detecting Spatial Regularity in 
Noisy Images,” Information Processing Letters 69 (1999), 189–195.

• L. Boxer and R. Miller, “A Parallel Algorithm for Approximate Regularity,” 
Information Processing Letters 80 (2001), 311–316.

These problems have considerable practical value, as the presence of the 
regularity amidst seeming or expected chaos is often meaningful. For example, 
the members of S might represent points observed in an aerial or satellite photo, 
and the maximal equally spaced collinear sets might represent traffic lights, 
military formations, property or national boundaries in the form of fence posts, 
and so forth. The paper of Kahng and Robins presents a RAM algorithm for the 
all maximal equally spaced collinear sets problem that runs in optimal Θ(n2) 
time. This algorithm seems to be essentially sequential. The 1993 Boxer and 
Miller paper and the 1999 paper of Boxer, Miller, and Rau-Chaplin show how a 
rather different algorithm can be implemented in efficient to optimal time on 
parallel architectures. These three papers are concerned with exact solutions. The 
Robins et al. paper gives an approximate sequential solution that runs in O(n5/2) 
time. The asymptotically slower running time for an approximate solution, as 
opposed to an exact solution, is due to the fact that an approximate solution may 
have more output than an exact solution. Notice, however, that an approximate 
solution is likely to be more useful than an exact solution, since data is gener-
ally not exact. On the other hand, the approximate solution to this problem is 
beyond the scope of this book. The algorithm of Robins et al. seems essentially 
sequential. A rather different algorithm appears in the 2001 Boxer and Miller 
paper, giving an approximate parallel solution that can be implemented on mul-
tiple platforms.

A prominent area of Computational Geometry that we have not discussed is 
that of “guarding an art gallery,” in which a typical problem is the following. Given 
a polygon P and a point x of P or its interior, determine efficiently what portions of 
P are visible from x. Notice that if P is known to be convex, then this problem is 
trivial. Sources of further information on this topic include the following.
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282 Chapter 10  Computational Geometry

M. DeBerg, O. Cheong, M. van Kreveld, and M. Overmars, Computational 
Geometry: Algorithms and Applications, Springer, Berlin, 2010.

J. O’Rourke, Art Gallery Theorems and Algorithms, Oxford University Press, 
New York, 1987 - available for free downloading from the author’s Web site at 
http://maven.smith.edu/~orourke/books/ArtGalleryTheorems/Art_Gallery_Full_
Book.pdf

Exercises

Notes: Several of the exercises are concerned with polygons. Assume that by 
“polygon” we do not mean just the edges. Rather, we mean the union of its edges 
and the interior of the polygon.

Also, among the exercises are those with solutions that can use the lexico-
graphic order of points in the Euclidean plane. The lexicographic order is defined 
as follows. If p = ( px, py) and q = (qx, qy), then p < q if either px < qx or both 
px = qx and py < qy.

 1. Given a set S of n planar points, construct an efficient algorithm to determine 
whether or not there exist three points in S that are collinear. Hint: While there 
are Θ(n3) triples of members of S, you should be able to construct an algorithm 
that runs in o(n3) sequential time.

 2. Given a set of n line segments in the plane, prove that there may be as many as 
Θ(n2) intersections.

 3. Show that the algorithm sketched in this chapter to solve the intersection query 
problem runs in Θ(n log n) time on a RAM.

 4. Given a set of n line segments in the plane that have a total of k intersections, 
show that a RAM algorithm can report all intersections in O((n + k)log n) time.

 5. Given a convex polygon with n vertices, construct an algorithm that can be 
implemented efficiently on a variety of architectures to determine the area of 
the polygon. The input to the problem consists of the circularly ordered verti-
ces of the polygon. Analyze the running time of this algorithm for a RAM, ER 
PRAM with n/log n processors, hypercube of size n/log n, mesh of size n2/3, 
and CGM (n, q).

 6. Given a polygon with n vertices, construct an efficient algorithm to determine 
whether or not the polygon is simple.

 7. Given a simple polygon P and a point p, give an efficient algorithm to deter-
mine whether or not p is contained in P.

 8. Given two simple polygons, each consisting of n vertices, give an efficient 
algorithm to determine whether or not the polygons intersect.

 9. Give an efficient algorithm to determine the convex hull of a simple polygon.

 10. On a fine-grained parallel computer, a very different approach can be taken to 
the Intersection Reporting Problem. Suppose input to a PRAM, mesh, or 
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Exercises 283

hypercube of n processors consists of the n line segments in the Euclidean 
plane. In the case of a mesh or hypercube, assume the segments are initially 
distributed one per processor. Give a solution to the Intersection Reporting 
Problem that is optimal in the worst case, and prove the optimality, for each of 
these architectures. Hints: This can be done with an algorithm that “seems” 
simpler to describe than the RAM algorithm described in the text. Also, the 
processors of a hypercube may be renumbered in a circular fashion.

 11. In this chapter, we sketched an algorithm to solve the following problem: For a 
set of n intervals and a range [a, b], give an efficient algorithm to determine a 
minimal-cardinality subset of the intervals that cover [a, b] or show, when 
appropriate, that no such cover exists. Prove the algorithm runs

  • in Θ(n log n) time on a RAM,

  •  in Θ(log n) time on a CREW PRAM of size n, and

  •  in Θ(n1/2) time on a mesh of n processors, assuming the intervals are initially 
distributed one per processor.

 12. In the Graham Scan procedure given in this chapter, prove that both the point 
chosen as the origin, and the last point encountered in the tour, must be extreme 
points of the convex hull.

 13. Given a set S of n planar points, prove that a pair of farthest neighbors, i.e., 
a pair of points at maximum distance over all pairs of points in S, must be 
 chosen from the set of extreme points.

 14. Given two sets of points, P and Q, give an efficient algorithm to determine 
whether P and Q are linearly separable. That is, give an efficient algorithm 
to determine whether or not it is possible to define a line l with the property 
that all points of P lie on one side of l while all points of Q lie on the other 
side of l.

 15. In this problem, we consider the all maximal equally spaced collinear points 
problem in the Euclidean plane �2: Given a set S of n points in �2, identify all 
of the maximal equally spaced collinear subsets of S that have at least three 
members. A collinear set {p1, p2, . . . , pk}, for which we assume in the following 
that the points are numbered according to their order on their common line, is 
equally spaced if all the line segments pi pi+1, i ∈ {1,2, . . . , k − 1}, have the 
same length. Assume that we are given a set S of n points in �2, where each 
point is represented by its Cartesian coordinates (see Figure 10-23).

  a.  Show that O(n2) is an upper bound for the output of this problem. Hint: 
Show that every pair of distinct points {p, q} � S can be a consecutive pair 
of at most one maximal equally spaced collinear subset of S.

  b.  Show that Ω(n2) is a lower bound for the worst-case output of this problem. 
Hint: Let n be a square and let S be the square of integer points

S = 5(a,b) 0 1 ≤ a ≤ n1/2, 1 ≤ b ≤ n1/26 .
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284 Chapter 10  Computational Geometry

    Let S0 � S be defined by

S0 = e (a, b) `  n1/2

3
≤ a ≤

2n1/2

3
, 

n1/2

3
≤ b ≤

2n1/2

3
f .

     Show that if {p, q} � S0, p ≠ q, then {p, q} is a consecutive pair in a maxi-
mal equally spaced collinear subset C of S such that 0C 0 ≥ 3. Together with 
part a) of this exercise, this shows the worst-case output for this problem 
is Θ(n2).

  c.  Consider the following algorithm, which can be implemented on a variety 
of architectures, although the details of implementing some of the steps 
will vary with the architecture.

  i.  Form the set P of all ordered pairs ( p, q) ∈ S such that p < q in the 
lexicographic order of points in �2.

  ii.  Sort the members ( p, q) of P in ascending order with respect to all the 
following keys:

   •  The primary key of ( p, q) is the slope of the line determined by 
( p, q), using ∞  as the slope of a vertical line.

   •  The secondary key of ( p, q) is d( p, q), the Euclidean distance from 
p to q.

   •  The tertiary key of ( p, q) is ( p, q), which is lexicographically 
ordered.

  iii.  Use a parallel postfix operation on P to identify all maximal equally 
spaced collinear subsets of S. The operation is based on the formation 
of quintuples and a binary operation specified as follows. Initial quin-
tuples are of the form ( p, q, length, 2, true), where the components are 
as follows. The first two components are the endpoints, i.e., members 

FIGURE 10-23 The all maximal equally spaced collinear points 
 problem. An illustration of three equally spaced collinear line 
segments.
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Exercises 285

of S, in an equally spaced collinear set. The third component is the 
length of segments that make up the current equally spaced collinear 
set. The fourth component is the number of input points in the equally 
spaced collinear set. The fifth component is true or false according to 
whether the first component is the first point in an equally spaced col-
linear set. The binary operation is defined by

    (a, b, c, d, u) ⊗ (e, f, g, h, v) =

    e (a, f, c, d + h − 1, u) if  b = e  and  c = g  and {a, b, f }  is collinear;

(a, b, c, d, u) otherwise,

   and in the former case, set v ← false.

   iv.  A postfix operation on the members of P is used to enumerate mem-
bers of each equally spaced collinear set of more than two points. This 
operation is based on members of P with a postfix quintuple having the 
fifth component true and the fourth component greater than 2.

      Analyze the running time of this algorithm for each of a RAM, a CREW 
PRAM of n2 processors, and a mesh of size n2. In the case of the mesh, 
assume that the members of S are initially distributed so that no processor 
has more than one member of S. Formation of the set P can thus be done on 
the mesh by appropriate row and column rotations, and/or random-access 
write operations. The details are left to the reader.

 16. In the chapter, an architecture-independent algorithm was given for solving 
the minimal-cover problem for intervals on the real line. Analyze efficient 
implementations of this algorithm for a mesh of size n and for a hypercube of 
size n, where the input is of size n.
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In this chapter, we consider some fundamental problems in image processing, an 
important and challenging area of computer science. In particular, image process-

ing, image analysis, and pattern recognition are related fields that typically fall into an 
area of computer science known as Artificial Intelligence. In this chapter, we present 
several divide-and-conquer solutions to problems in image analysis for the mesh 
 computer. In addition, we present algorithms for the RAM, as appropriate. Finally, it is 
important to note that a combination of solution strategies for the mesh and RAM 
often serve as core strategies for solving image-based problems for large images on 
clusters and multicore machines.
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288 Chapter 11  Image Processing

Preliminaries

In this chapter, we consider the input to problems to be an n × n digitized black-
and-white picture. That is, the input can be viewed as a matrix of data in which 
every data element is either a 0 or a 1, where a 0 represents a white background data 
item and a 1 represents a black foreground data item. These pieces of data are often 
referred to as “picture elements,” or pixels, where the interpretation of the image is 
that it is a black image on a white background. The set of black pixels, represented 
by the 1s, is often referred to as a digital image. The terminology and assumptions 
that we use in this chapter represent the norm in the field of image processing.

Readers must be careful to recalibrate their expectations. In most of the pre-
ceding chapters, the input consisted of n data elements, whereas in this chapter the 
input is of size n2, i.e., an n × n image. Therefore, a linear time sequential algo-
rithm will run in Θ(n2) time, not in Θ(n) time. If the input data is to be sorted on a 
RAM, then an optimal worst-case comparison-based sequential sorting algorithm 
will run in Θ(n2 log n2) = Θ(n2 log n) time, not in Θ(n log  n) time.

Since we want to map the n × n image directly onto a mesh of size n2, we 
assume that pixel pi, j resides in mesh processor Pi, j. Again, we need to recalibrate. 
Given a mesh of size n2, the communication diameter is Θ(n). So, for any problem 
that might require pixels at opposite ends of the mesh to be combined in some way, 
a lower bound for the running time of an algorithm to solve the problem is Ω(n). 
Note that the bisection width is also Θ(n).

Transitive Closure of a Binary Matrix

There is an important result that we will use in this chapter concerned with deter-
mining the transitive closure of a matrix. Let G be a directed graph with n vertices, 
represented by an adjacency matrix A. That is, A(i,  j) = 1 if and only if there is a 
directed edge in G from vertex i to vertex j. Otherwise, A(i, j) = 0. The transitive 
closure of A, which is written as A*, is an n × n matrix such that A*(i, j) = 1 if and 
only if there is a directed path in G from vertex i to vertex j. A*(i, j) = 0 otherwise.

It is important to note that both A and A* are binary matrices. That is, A and 
A* are matrices in which all entries are either 0 or 1. Consider the effect of “mul-
tiplying” matrix A by itself in order to obtain the matrix we denote as A2, where the 
usual method of matrix multiplication is modified by replacing addition (+) with 
OR (∨) and multiplication (× ) with AND ( ∧). Notice that an entry A2(i, j) = 1 if 
and only if either

• A(i, j) = 1 or

• A(i, k) = 1 AND A(k, j) = 1 for some k.

That is, A2(i, j) = 1 if and only if there exists a path of length no more than two 
from vertex i to vertex j. Now, consider the matrix A3, which can be computed in a 
similar fashion from A2 and A. Notice that A3(i, j) = 1 if and only if there exists a 
path from vertex i to vertex j that consists of three or fewer edges. Continuing this 
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Transitive Closure of a Binary Matrix 289

line of thought, notice that the matrix An is such that An(i, j) = 1 if and only if there 
exists a path from vertex i to vertex j that consists of n or fewer edges (see 
Exercises). That is, An contains information about the existence of a directed path 
in the graph G from vertex i to vertex j, for every pair of vertices (i,  j). The matrix 
An, which is often referred to as the connectivity matrix, represents the transitive 
closure of A. That is, An = A*.

Consider a sequential solution to the problem of determining the transitive clo-
sure of an n × n matrix A. Based on the preceding discussion, it is clear that the 
transitive closure can be determined by multiplying A by itself n times. Since the 
traditional matrix multiplication algorithm for two n × n matrices runs in Θ(n3) time, 
we know that the transitive closure of A can be determined in O(n × n3) = O(n4) 
time. So the question is, within the context of a traditional Θ(n3) time matrix multi-
plication algorithm, can we do better?

Consider matrix A2. Once A2 has been determined, we can multiply it by A to 
arrive at A3. Alternately, we can multiply A2 × A2 in order to obtain A4. Since a 
matrix multiplication runs in Θ(n3) time, then both A2 × A and A2 × A2 can be 
determined in Θ(n3) time. Therefore, if our interest is in determining An using the 
least number of matrix multiplications, it makes more sense to determine 
A2 × A2 = A4 rather than A2 × A = A3. Continuing along this path of matrix multi-
plication doubling, we will either determine or overshoot An after Θ(log n) such 
matrix multiplications. It is important to note that it does not matter if we overshoot 
An as An+c = An for any positive integer c (see Exercises). Therefore, if we perform 
Θ(log n) matrix multiplication operations, each time squaring the most recently 
obtained matrix, we can determine the transitive closure in Θ(n3 log n) time.

In fact, we can produce the matrix An even more efficiently, as follows. Define 
a binary matrix Ak so that Ak(i,  j) = 1 if and only if there is a path from vertex i to 
vertex j using no intermediate vertex with label greater than k. Given the matrix A, 
an algorithm can be designed that will iteratively transform A0 = A to An = An = A* 
through a series of intermediate matrix computations of Ak, 0 < k < n.

We define Ak(i,  j) = 1 if and only if

• there is a path from vertex i to vertex j using no intermediate vertex greater 
than k − 1, or

• there is a path from vertex i to vertex k using no intermediate vertex greater 
than k − 1 and there is a path from vertex k to vertex j using no intermediate 
vertex greater than k − 1.

We now present Warshall’s algorithm to determine the transitive closure of a 
Boolean matrix.

for k = 1 to n, do
 for i = 1 to n, do
  for j = 1 to n, do
   Ak(i, j) = Ak−1(i, j)∨ 3Ak−1(i,k)∧ Ak−1(k,j)4
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290 Chapter 11  Image Processing

While the running time of Warshall’s algorithm on a RAM is Θ(n3), notice that 
the algorithm utilizes Θ(n2) additional memory. This is due to the fact that at the kth 
iteration of the outermost loop, the previous iteration’s matrix Ak−1 is retained 
in memory.

F.L. Van Scoy has shown that given an n × n adjacency matrix A mapped onto 
a mesh of size n2 such that A(i,  j) is mapped to processor Pi, j, the transitive closure 
of A can be determined in optimal Θ(n) time. Details of this algorithm are  presented 
in Chapter 12.

Notes on Terminology: Since pixels are mapped to processors of a  fine-grained 
mesh in a natural fashion, we tend to think about pixels and processors as coupled 
when designing mesh algorithms. Therefore, when there is no confusion, we will 
use the terms “pixel” and “processor” interchangeably in describing  fine-grained 
mesh algorithms.

Component Labeling

In this section, we consider the problem of uniquely labeling every maximally con-
nected component in an image. The solution to this component labeling problem is 
critical to being able to perform image analysis tasks such as recognizing shapes 
and developing relationships among objects.

Specifically, given a digitized black-and-white picture, viewed as a black 
image on a white background, we consider the problem of uniquely labeling each 
of the distinct figures, i.e., black components, in the picture.

It is often convenient to recast the component-labeling problem in graph 
 theoretic terms. Consider every black pixel to be a vertex. Consider that an edge 
exists between every pair of vertices represented by neighboring black pixels. We 
say that pixels x and y are neighbors if and only if x is directly above, below, left of, 
or right of y. This 4-adjacency notion of neighbors means that pixels that are 
 diagonally adjacent are not considered neighbors for the purpose of this problem. 
However, if one does consider diagonally adjacent pixels as neighbors, the 
 asymptotic running time of our component-labeling algorithms would not be 
affected.

The goal of a component-labeling algorithm is to label uniquely every maxi-
mally connected set of pixels/vertices. Although the unique label chosen for every 
component is irrelevant, in this book we will choose to label every component 
with the minimum label over any pixel (vertex) in the figure (component). This is 
a fairly standard means of labeling components (see Figure 11-1).

RAM

Initially, let’s consider a sequential algorithm to label the maximally connected 
components of an n × n digitized black-and-white picture. Suppose we use a 
straightforward propagation-based algorithm.
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Component Labeling 291

Initialize the component label for every pixel to null. Initialize the vertex label 
for every pixel to the concatenation of its row and column indices. Now traverse 
the image in row-major order. When a black pixel is encountered for which the 
component label is null, assign that pixel’s vertex label as its component label. 
Next, use a backtracking procedure to propagate this component label to all of the 
pixel’s black neighbors, which recursively propagate this label to all of their black 
neighbors, and so on.

Let’s consider the running time of this simple propagation algorithm. Every 
pixel is visited once during the row-major scan. Now consider the backtracking 
phase of the algorithm, in which both black and white pixels can be visited. The 
black pixels can be visited as the propagation continues and the white pixels serve 
as stopping points to the backtracking. Fortunately, every component is only labeled 
once, and if backtracking is done properly, every black pixel is only visited a fixed 
number of times during a given backtracking/propagation phase. That is, when a 
black pixel p is visited, no more than three of its neighbors need to be considered 
(why?) and in the recursion, control returns to the pixel p three times before it 
returns control to its parent pixel, i.e., the black pixel visited immediately prior to 
visiting p for the first time. A white pixel can only be visited by four of its neighbors 
during some propagation phase, each time returning control immediately. Therefore, 
the running time of the algorithm is linear in the number of pixels, which is Θ(n2).

Mesh

Now, let’s consider a mesh algorithm to solve the component-labeling problem. 
Assume that we are given an n × n digitized black-and-white picture mapped in a 
natural fashion onto a mesh of size n2 so that pixel pi, j is mapped to processor Pi, j. 
The first algorithm we might consider is a direct implementation of the sequential 

1 4 

12 

12 6 

6 

6 

6 

(a) (b)

FIGURE 11-1 (a) A digitized 4 × 4 picture. The interpreta-
tion is that the picture represents a black image on a 
white background. (b) The same 4 × 4 picture with its 
maximally connected components labeled under 
4-adjacency definition of connectedness. Every 
 component is labeled with the minimum label of any pixel 
in its component. In this example, the pixel labels are 
given by their row-major indices, with values 1, . . . ,16.
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292 Chapter 11  Image Processing

propagation algorithm. A straightforward implementation of a propagation algo-
rithm will yield a Θ(n2) time algorithm, which is unacceptable for this architecture.

We now consider the natural parallel variant of a propagation-type algorithm. 
That is, every processor that maintains a black pixel continually exchanges its cur-
rent component label with each of its, at most four, black neighbors. During each 
such exchange, a processor accepts the minimum of its current label and that of its 
black neighbors as its new component label. The effect is that the minimum vertex/
processor label in a component is propagated throughout the component in the 
minimum time required, i.e., using the minimum number of communication links 
required, assuming that all messages must remain within a component. In fact, this 
label reaches every processor in its component in the minimum time necessary to 
broadcast the label between them, assuming that all messages must remain within 
the component.

Therefore, if all the maximally connected components are relatively small, this 
mesh propagation algorithm is efficient. Notice that “relatively small” refers to the 
internal diameter of a figure, i.e., the maximum of the minimum distance between 
any two black pixels in a figure when one is only allowed to consider distance 
between neighboring pixels. In fact, if every figure is enclosed in some k × k 
region, then the running time of the algorithm is O(k2). This is efficient if k2 = O(n). 
So, if we regard k as constant, then the running time is Θ(1) (see Figure 11-2).

FIGURE 11-2 Every connected component is confined to a 3 × 3 
region. In such situations, the mesh propagation algorithm will 
run in Θ(1) time.
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Component Labeling 293

Now, let’s consider the worst-case running time of this parallel propagation 
algorithm. Suppose we have a picture that consists of a single  figure. Further, sup-
pose that the internal diameter, i.e., the maximum distance between two black pix-
els, assuming that one travels only between pixels that are members of the figure, 
is large. For example, consider Figure 11-3, which includes a “spiral” on the left 
and a “snake” on the right.

FIGURE 11-3 Two problematic figures. A “spiral” is shown on the left 
and a “snake” is shown on the right.

We see that it is easy to construct a figure that has an internal diameter of 
Θ(n2). This propagation algorithm will run in Θ(n2) time for such a  figure. So, our 
parallel propagation algorithm has a running time of Ω(1) and O(n2). For many 
situations, we might be willing to accept such an algorithm if we know that these 
troublesome situations, i.e., those that result in the worst-case running time, will 
rarely occur. There may be situations in which, even if such an image might occur, 
we know that no figure of interest could have such characteristics, and we could 
then modify the algorithm so that it terminates after some more reasonable prede-
termined amount of time. However, there are many situations in which we care 
about minimizing the general worst-case running time.

We now consider a divide-and-conquer solution to the general component-
labeling problem on a mesh. This divide-and-conquer algorithm should feel famil-
iar in its implementation and has the feature of exhibiting an asymptotically 
optimal worst-case running time.

 1. Divide the problem into 4 subproblems, each of size (n/2) × (n/2).

 2. Recursively label each of the independent subproblems.

 3. Stitch the partial solutions together to obtain a labeled image.

As with many divide-and-conquer algorithms, the Stitch step is crucial. Notice 
that once each (n/2) × (n/2) subproblem has been solved, there are only O(n) pixels 
in each such submesh, those on the submesh border, that might have a neighbor 
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294 Chapter 11  Image Processing

with a different label. Thus, for every local component, i.e., a component com-
pletely contained within its (n/2) × (n/2) region, the recursive label must be cor-
rect. Only those global components, i.e., components of one of the (n/2) × (n/2) 
regions with at least one pixel on an edge between neighboring submeshes, might 
need to be relabeled (see Figure 11-4). Therefore, while the initial problem had 
Θ(n2) pieces of data (pixels), after the recursive solutions were obtained, there are 
only O(n) critical pieces of information necessary to resolve the problem. We can 
stitch the partial results together as follows.

First, each processor P containing a black pixel on the border of one of the 
(n/2) × (n/2) regions examines its neighbors that are located in a distinct 
(n/2) × (n/2) region. For each such border processor P, there are either one or two 
such neighbors. For each neighboring black pixel in a different region, processor P 
generates a record containing the identity and current component label of both P 

FIGURE 11-4 An 8 × 8 image after labeling each of 
its 4 × 4 quadrants. Notice that the component 
labels come from the shuffled row-major indexing 
scheme, starting the numbering of the processors 
with 1. The local components that are  completely 
contained in a quadrant, i.e., components labeled 
4 and 20, do not need to be considered further. The 
remaining  components have pixels on the border 
between  quadrants and are considered during the 
global  relabeling procedure.
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Convex Hull 295

and the neighboring pixel. Notice that there are at most two records generated by 
any processor containing a border vertex. However, also notice that for every 
record generated by one processor, a “mirror image” record is generated by its 
neighboring processor. Next, compress these O(n) records into an n1/2 × n1/2 region 
within the n × n mesh. In the n1/2 × n1/2 region, use these O(n) unordered edge 
records to solve the component-labeling problem on the underlying graph.

Notice that the stitch step can perform the compression operation by sorting 
the necessary records in Θ(n) time. Once the critical data is compressed to an 
n1/2 × n1/2 region, we can perform a logarithmic number of iterations to merge 
components together until they are maximally connected. Each such iteration 
involves a fixed number of sort-based operations, including concurrent reads 
and writes. Therefore, each iteration is performed in Θ(n1/2) time. Hence, the 
time required for computing maximally connected components within the 
n1/2 × n1/2 region is Θ(n1/2 log n). Completing the stitch step involves a complete 
Θ(n) time concurrent read so that every pixel in the image can determine its new 
label. Since the compression and concurrent read steps dominate the running 
time of the Stitch routine, the running time of the algorithm is given by 
T(n2) = T(n2/4) + Θ(n), which sums to T(n2) = Θ(n). It should be noted that the 
solution to this recurrence can be obtained by substituting N for n2 and applying 
the Master Theorem. Notice that this is a time-optimal algorithm for a mesh of 
size n2. However, the total cost of such an algorithm is Θ(n3), while the problem 
has a lower bound of Ω(n2) total cost.

We now consider an interesting alternative to the stitch step. In the approach 
that we presented, we reduced the amount of data from Θ(n2) to O(n), compressed 
the O(n) data, and then spent time leisurely working on it. Instead, we can con-
sider creating a cross-product with the reduced amount of critical data. That is, 
once we have reduced the data to O(n) critical pieces, representing an undirected 
graph, we can create an adjacency matrix. Notice that the adjacency matrix will 
easily fit into the n × n mesh. Once the adjacency matrix is created, we can per-
form the Θ(n) time transitive closure algorithm of Van Scoy mentioned at 
the beginning of the chapter in order to determine maximally connected compo-
nents. The minimum vertex label can be chosen as the label of each connected 
component, and a concurrent read by all pixels can be used for the final relabel-
ing. Although the running time of this algorithm remains at Θ(n), it is instructive 
to show different approaches to dealing with a situation in which one can drasti-
cally reduce the size of the set of data under consideration.

Convex Hull

In this section, we consider the problem of marking the extreme points of the con-
vex hull for each labeled set of pixels in a given image. Notice that a labeled set of 
pixels need not be a connected component. In fact, the sets might be intertwined 
and their convex hulls might overlap, as shown in Figure 11-5.
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296 Chapter 11  Image Processing

FIGURE 11-5 An illustration of overlapping 
 convex hulls of, not necessarily connected, 
labeled sets of pixels.

For this problem, it is useful to order the processors of a mesh by snake-
like indexing. This indexing uses a labeling of the processors that follows the pat-
tern on the right side of Figure 11-3. So, the top-left processor in the mesh is 
labeled 1. The rightmost processor on the first row is labeled n. The rightmost 
processor on the second row is labeled n + 1. The leftmost processor on the sec-
ond row is labeled 2n, and so forth. That is, the first row is labeled 1. . . n in a left 
to right fashion, the second row is labeled n + 1. . . 2n in a right to left fashion, and 
so on. In general, rows with odd indices have processors numbered from left to 
right, and rows with even indices have processors number from right to left. See 
Figure 11-6.

Suppose that we have a mesh of size n2 and that we associate every proces-
sor Pi, j with the lattice point (i, j). Suppose that every processor contains a label 
in the range of 0 . . . n2, where the interpretation is that 0 represents the back-
ground and that values 1 . . . n2 represent labels of foreground pixels. Finally, 
assume that we want to determine the convex hull for every distinctly labeled 
set of points.

We have discussed the general convex hull problem for a variety of models in 
a preceding chapter. Clearly, the image input considered in this section can be sim-
ply and efficiently converted to the more general form of 2-dimensional point data 
input. From such input, the algorithms of the previous chapter can be invoked in a 
straightforward fashion. Our goal in this section, however, is to introduce some 
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Convex Hull 297

new techniques, which will result in a greatly simplified routine for a lattice of 
labeled points imposed on a mesh.

Initially, we determine the extreme points for each labeled set as restricted to 
each row. Once this is done, we note that there are no more than 2 possible extreme 
points in any row for any labeled set. Within each such set, every row-restricted 
extreme point can consider all other row-restricted extreme points of its set and 
determine whether or not it is contained in some triangle formed by the remaining 
points, in which case it is not an extreme point. Further, if no such triangle can be 
found, then it is an extreme point. The algorithm follows.

Initially in every row, we wish to identify the extreme points for every labeled 
set as restricted to the row. So, in a given row, the extreme points of a set are sim-
ply the, at most two, outermost nonzero points of the set. This identification can be 
done by a simple row rotation, simultaneously for all rows, so that every processor 
Pi, j can view all of the data within its row and decide whether or not its point at 
(i, j) is a row-restricted extreme point for its labeled set.

Next, sort all of these row-restricted extreme points by label so that after the 
sort is complete, elements with the same label are stored in consecutively indexed 
processors according to the snake-like indexing. Although there are O(n2) such 
points, it is important to note that for any label, there are at most 2n such points, 
i.e., at most two points per each row. Since we use snake-like indexing of the pro-
cessors, all of the row-restricted extreme points for a given set are now in a set of 
consecutively indexed processors. Therefore, we can perform rotations within such 
ordered intervals. These rotations are similar to row and column rotations but work 
within intervals that might cover fractions of one or more rows. Thus, simultane-
ously for all intervals, i.e., labeled sets, rotate the set of row-restricted extreme 
points. During the rotation, suppose a processor is responsible for lattice point X. 

FIGURE 11-6 Snake-like indexing of the 
 processors of a mesh, shown for a mesh 
of size 16. Processors are  numbered 
 consecutively in consecutive rows, with 
the direction of the  numbering alternating 
by row.

9 10 1

1 2 3 4

8 7 6 5

1 12

16 15 14 13
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298 Chapter 11  Image Processing

Then as a new lattice point Y arrives, the processor responsible for X performs the 
following operations.

• If no other point is stored in the processor, then the processor stores Y.

• Suppose the processor has previously stored one other point, say, U. Then the 
processor will store Y. However, if X, Y, and U are on the same line, then the 
processor eliminates the interior point of these three.

• Suppose the processor has previously stored two other points, U and V, before 
Y arrives.

■ If X is in the triangle determined by U, V, and Y, then the processor deter-
mines that X is not an extreme point.

■ Otherwise, if Y is on a line segment determined by X and either U or V, 
then of the three collinear points, X is not interior. This is because if X 
were interior, the previous case would apply. Discard the interior of the 
three collinear points.

■ Otherwise, the processor should eliminate whichever of U, V, and Y is 
inside the angle formed by X and the other two, with X as the vertex of the 
angle. Note the “eliminated” point is not eliminated as a possible extreme 
point, just as a determiner of whether X is an extreme point.

If after the rotation, the processor responsible for row-restricted extreme 
point X has not determined that X should be eliminated, then X is an extreme point.

A final concurrent read can be used to send the row-restricted extreme points 
back to their originating processors and the extreme points can then be marked for 
every labeled set of pixels.

Running Time

The analysis of running time is straightforward since we need not solve a recursive 
relation. The algorithm consists of a fixed number of Θ(n) time rotations and sort-
based operations. Therefore, the running time of this algorithm is Θ(n). Notice that 
the cost of the algorithm is Θ(n3) and we know that the problem can be solved 
sequentially in Θ(n2 log n) time by the traditional convex hull algorithm on arbi-
trary point data.

Distance Problems

In this section, we consider problems of determining distances between labeled 
sets of pixels. Specifically, we consider the following.

 1. Given a labeled set of, not necessarily connected, pixels, determine for every 
labeled set, a nearest distinctly labeled set.

 2. Given two labeled sets of, not necessarily connected, pixels, determine the dis-
tance between the two sets using the Hausdorff metric as the distance measure.
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Distance Problems 299

All-Nearest Neighbor between Labeled Sets

In this section, we consider the all-nearest neighbor between labeled sets problem. 
Assume that the input consists of a labeled set of pixels. That is, assume that every 
processor Pi, j is associated with the lattice point (i,  j) on a mesh of size n2. As we 
did in a previous section, assume that every processor contains a label in the range 
of 0 . . . n2, where the interpretation is that 0 represents the background and that 
values in the range of 1 . . . n2 represent labels of foreground pixels. Recall pixels in 
the same labeled set are not necessarily connected.

The problem we are concerned with is that of determining for every labeled 
set of pixels, the label of a nearest distinctly labeled set of pixels. We first deter-
mine, for every pixel, the label and distance to a nearest distinctly labeled pixel. 
We then determine the minimum of these pixels’ nearest-pixel distances over all 
pixels within a labeled set. Details of the algorithm follow.

The first step is to find, for every labeled processor P, a nearest distinctly 
labeled processor to P. To do this, we take advantage of the fact that the pixels 
are laid out on a grid and that we are using the Euclidean distance as a metric. 
Suppose that p and q are labeled pixels that are in the same column. Further, 
let r be a nearest distinctly labeled pixel to p in the same row as p, as shown in 
Figure 11-7. Since we have made no assumption about the labels of p and q, i.e., 
they could be identical or distinct, then with respect to p’s row, either p or r is a 
 nearest distinctly labeled pixel to q. We refer to this observation as “work-
reducing.” An algorithm to solve the all-nearest neighbor between labeled sets 
problem follows.

FIGURE 11-7 The all-nearest neighbor-between-
labeled-sets problem. Suppose p, q, and r are 
labeled pixels. If r is a closest distinctly labeled 
pixel in row two to p, then either p or r is a closest 
distinctly labeled pixel to q among those in row 2.

p r 

q 
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300 Chapter 11  Image Processing

 1. Perform row rotations simultaneously in every row so that every processor Pi,  j 
finds at most two distinctly labeled nearest processors in its row, if they exist. 
With respect to processor Pi,  j, we denote these nearest distinctly labeled proces-
sors as Pi, j1

 and Pi, j2
, where either j1 or j2 is equal to j if Pi,  j is a labeled proces-

sor. We need two such processors if the row has foreground pixels with distinct 
labels, as one of them may have the same label as a processor in column  j.

 2. Perform parallel column rotations simultaneously in every column, where 
every processor Pi,  j circulates its information, labels and positions, and the 
information associated with its row-restricted nearest distinctly labeled proces-
sors Pi, j1

 and Pi, j2
. During the rotations, every processor is able to determine its 

nearest distinctly labeled processor, using the work-reducing observation.

 3. Sort all of the near neighbor information by initial pixel label.

 4. Within every labeled set of data, perform a semigroup operation, using the 
operation of minimum as applied to the nearest distinct label distances, and a 
broadcast so that every pixel knows the label of a nearest distinctly labeled set 
to its set.

 5. Finally, use a concurrent read so that each labeled pixel can bring the final 
result back to its initial processor.

Running Time

The algorithm just presented is dominated by a row rotation, column rotation, semi-
group operation, and sort-based operations. Therefore, given an n × n mesh, the run-
ning time of this algorithm is Θ(n). Notice that the cost of this algorithm is Θ(n3), 
which is suboptimal, as the problem can be solved in O(n2 log n) time on a RAM.

Hausdorff Metric for Digital Images

Let A and B be nonempty, closed, bounded subsets of a Euclidean space � k. The 
Hausdorff metric, H(A, B), is used to measure how well each of these sets approxi-
mates the other. In general, the Hausdorff metric has the following properties.

• H(A, B) is small if every point of A is close to some point of B and every point 
of B is close to some point of A.

• H(A, B) is large if some point of A is far from every point of B, or some point 
of B is far from every point of A.

Formally, we can define the Hausdorff metric as follows. Let d be the Euclidean 
metric for � k. For x ∈ � k, φ ≠ Y � � k, define d(x, Y) = min{d(x, y) 0 y ∈ Y}. Let 
H*(A, B) =  max{d(a, B) 0 a ∈ A}, where H*(A, B) is called the “one-way” or “non-
symmetric” Hausdorff distance. Note that H*(A, B) is not truly a “distance” in the 
sense of a metric function. The Hausdorff metric, which is indeed a metric func-
tion when applied to sets A and B that are nonempty, bounded, and closed, is 
defined by H(A, B) = max{H*(A, B), H*(B, A)}. This definition is equivalent to the 
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Distance Problems 301

statement that H(A, B) = ε  if ε  is the minimum of all positive numbers r for 
which each of A and B is contained in the r-neighborhood of the other, where the 
r-neighborhood of Y in � k is the set of all points in � k that are less than r distant 
from some point in Y. See Figure 11-8 for an example of H(A, B).

FIGURE 11-8 An example of the Hausdorff metric. 
The distances x and y respectively mark a furthest 
member of A from B and a furthest member of B 
from A. H(A, B) = max{x, y}.

y 

x B 

A 

Suppose that A and B are finite sets of points in �2 or �3. Further, suppose that 
these points represent black pixels corresponding to digital images. That is, sup-
pose A and B represent distinct digital images in the same dimensional space. Then 
in order to determine whether or not the probability is high that A and B represent 
the same physical object, one might consider the result of applying a rigid motion 
M, e.g., translation, rotation, and/or reflection, to B and evaluating the result of 
H(A, M(B)). If for some M, H(A, M(B)) is small, then in certain situations, there is 
a good chance that A and B represent the same physical object. However, if no 
rigid motion translates B close to A in the Hausdorff sense, it is unlikely that A and 
B represent the same object. Of course, in some contexts a generalization provides 
a more satisfying conclusion. That is, instead of trying to approximate A by M(B), 
we might try approximating a magnification or shrinking S(A) by M(B) with 
respect to the Hausdorff metric.

It is interesting to note that two sets in a Euclidean space can occupy approxi-
mately the same space and yet have very different geometric features. Although 
better image recognition might result from a metric that reflects geometric as well 
as positional similarity, such metrics are often much more difficult to work with, 
both conceptually and computationally.

A simple, although inefficient, algorithm for computing the Hausdorff metric 
for two digital images A and B, each contained in an n × n digital picture, is 
described below. The algorithm is a straightforward implementation of the 
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302 Chapter 11  Image Processing

definition of the Hausdorff metric as applied to digital images. As we outline a 
more efficient algorithm in the Exercises, we will only discuss the current algo-
rithm’s implementation for a RAM.

 1. For every black pixel a ∈ A, compute the distance d(a, b) from a to every point 
b ∈ B and compute d(a, B) = min{d(a, b) 0 b ∈ B}. For a RAM, this step runs in 
O(n4) time, since each of the O(n2) black pixels of A is compared with each of 
the O(n2) black pixels of B.

 2. Compute H*(A, B) = max{d(a, B) 0 a ∈ A} by a semigroup operation. This step 
runs in Θ(n2) time on a RAM.

 3. Interchange the roles of A and B and repeat steps 1 and 2 to compute H*(B, A).

 4. Compute H(A, B) = max{H*(A, B), H*(B, A)}. This step runs in Θ(1) time.

The algorithm above has a running time dominated by its first step, which runs 
in O(n4) time on a RAM. Clearly, the running time of the algorithm leaves much to 
be desired. Indeed, a simple and more efficient algorithm for computing the 
Hausdorff metric between two digital images on a RAM can be given using tech-
niques presented in this chapter. This problem appears in the Exercises.

Image Processing on a Cluster

Clusters are typically targeted at solving problems involving large data and/or 
large computation. In general, compared to the storage and computation available, 
problems involving images are often relatively small. That is, it typically does not 
make sense to solve problems on a cluster for an individual image in terms of 
spreading the image across a cluster and using the cluster to solve a problem in 
parallel. The reason for this is that the communication time significantly domi-
nates the computation time, rendering such a solution strategy unreasonable. 
However, a cluster would make sense given a situation where one is interested in 
using a cluster as a high-throughput network of processors in order to solve prob-
lems simultaneously on multiple images.

In terms of utilizing parallel computing to solve problems for individual images, 
it often makes sense to use a computing system that involves an individual proces-
sor, i.e., a standard multi-core processor, with an attached computational unit. For 
example, experimentation shows that it is often effective to solve a series of prob-
lems on an individual image on a single processor system with an attached GPGPU 
(General Purpose Graphics Processing Unit). Therefore, an efficient solution to 
many an image processing problem requires a combination of medium-grained and 
fine-grained processing. That is, a combination of computing on the multi-core sys-
tem combined with fine-grained SIMD computing on the GPGPU. Note that the 
GPGPU typically contains several orders of magnitude more processors, where 
each of the processors is quite simple, but where groups or blocks of such simple 
processors can operate in a synchronous fashion.
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Summary

In this chapter, we examine several fundamental problems involving digitized 
 pictures. These problems typically fall into the broad field of image processing. 
Problems examined include component labeling, determining the convex hulls of 
figures, and problems of distances between sets of pixels, including that of com-
puting the Hausdorff distance between two digital images, a tool for image pattern 
matching. We present both RAM and mesh solutions in this chapter. In particular, 
the mesh is a natural architecture for implementing efficient algorithms on images 
because of the natural mapping of an image to a mesh.

Chapter Notes

This chapter focuses on fundamental problems in image analysis for the RAM 
and mesh. These problems make up a nice vehicle to present interesting para-
digms. Many of the mesh algorithms presented in this chapter are derived from 
algorithms presented by R. Miller & Q.F. Stout in Parallel Algorithms for Regular 
Architectures (The MIT Press, 1996). These algorithms include the component-
labeling algorithm, the all-nearest-neighbor-between-labeled-sets algorithm, and 
the minimum internal distance within connected components algorithm. The book 
by R. Miller and Q.F. Stout also contains details of some of the data movement 
operations that were presented and utilized in this chapter, including rotation 
operations based on ordered intervals and so on. The ingenious algorithm used 
to compute the transitive closure of an n × n matrix on a RAM was devised by 
S. Warshall in his paper “A theorem on Boolean matrices,” in the Journal of the 
ACM 9 (1962), 11–12. Further, in 1980, F.L. Van Scoy (“The parallel recognition 
of classes of graphs,” IEEE Transactions on Computers 29 (1980), 563–570) 
showed that the transitive closure of an n × n matrix could be computed in Θ(n) 
time on an n × n mesh.

A classic reference concerning the Hausdorff metric is Hyperspaces of Sets, 
by S.B. Nadler, Jr. (Marcel Dekker, New York, 1978).

The paper that introduced the notion of digitally continuous functions (used in 
the exercises) is A. Rosenfeld, “‘Continuous’ functions on digital pictures” in 
Pattern Recognition Letters 4 (1986), 177–184.

Exercises

 1. Given an n × n digitized image, give an efficient algorithm to determine both 
i) the number of black pixels in the image, and ii) the number of white pixels 
in the image. Present an algorithm and analysis for both the RAM and mesh.

 2. Let A be the adjacency matrix of a graph G with n vertices. For integer k > 0, 
let Ak be the kth power of A, as discussed in the chapter.
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304 Chapter 11  Image Processing

  a.  Prove that for i ≠ j, Ak(i,  j) = 1 if and only if there is a path in G from vertex 
i to vertex j that has at most k edges, for 1 ≤ k ≤ n.

  b.   Prove that An+c = An for any positive integer c.

 3. Given an n × n digitized image in which each pixel is associated with a numer-
ical value, provide an efficient algorithm that will set to zero (0) all of the pixel 
values that are below the median pixel value of the image. Present analysis for 
both the RAM and mesh.

 4. Given an n × n digitized image for which each pixel is associated with a real 
number, give an efficient algorithm that will compute for each pixel the aver-
age of its number and those of its eight (8) nearest neighbors. Present analysis 
for both the RAM and mesh.

 5. Given a labeled n × n digitized image, give an efficient algorithm to count the 
number of connected components in the image. Present analysis for both the 
RAM and mesh.

 6. Given a labeled n × n digitized image and a single “marked” pixel somewhere 
in the image, give an efficient algorithm that will mark all other pixels in the 
same connected component as the “marked” pixel. Present analysis for both 
the RAM and mesh.

 7. Given a labeled n × n digitized image, give an efficient algorithm to determine 
the number of pixels in every connected component. Present analysis for both 
the RAM and mesh.

 8. Given a labeled n × n digitized image and one “marked” pixel per component, 
give an efficient algorithm for every pixel to determine its distance to its 
marked pixel. Present analysis for both the RAM and mesh.

 9. Given a labeled n × n digitized image, give an efficient algorithm to determine 
a minimum-enclosing box of every connected component. Present analysis for 
both the RAM and mesh.

 10. Give an efficient algorithm for computing H(A, B), the Hausdorff metric 
between A and B, where each of A and B is an n × n digital image. Hint: the 
algorithm presented in the text may be improved upon by using row and 
 column rotations similar to those that appeared in our algorithm for the all-
nearest-neighbor-between-labeled-sets problem, modified to allow that a pixel 
could belong to both A and B. Show that your algorithm can be implemented 
to run in worst-case Θ(n2) time on the RAM and in worst-case Θ(n) time on 
the mesh.

 11. Suppose A and B are sets of black pixels for distinct n × n digital pictures. Let 
f : A → B be a function, i.e., for every (black) pixel a ∈ A, f (a) is a (black) 
pixel in B. Using the 4-adjacency notion of neighboring pixels, we say f is 
(digitally) continuous if for every pair of neighboring pixels a0, a1 ∈ A, either 
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f (a0) = f (a1) or f (a0) and f (a1) are neighbors in B. Prove that the following 
are equivalent:

   • f : A → B is a digitally continuous function.

   •  For every connected subset A0 of A, the image f (A0) is a connected subset 
of B.

   •  Using the Euclidean metric (in which 4-connected neighboring pixels are 
at distance one apart and non-neighboring pixels are at distance greater 
than one), for every a0 ∈ A and every ε ≥ 1, there is a d ≥ 1 such that if 
a1 ∈ A and d(a0, a1) ≤ d, then d[ f (a0), f (a1)] ≤ ε .

 12. Refer to the previous exercise. Let A and B be sets of black pixels within 
respective n × n digital pictures. Let f : A → B be a function. Suppose the 
value of f (a) can be computed in Θ(1) time for every a ∈ A. Present an algo-
rithm to determine whether or not the function f is digitally continuous. In the 
case of the mesh, the algorithm should let every processor know the result of 
this determination. Give your analysis for the RAM and for the n × n mesh. 
Your algorithm should run in Θ(n2) time on the RAM and Θ(n) time on an 
n × n mesh.

 13. Conway’s Game of Life can be regarded as a population simulation that is 
implemented on an n × n digitized picture A. The focus of the “game” is the 
transition between a “parent generation” and a “child generation.” The child 
generation becomes the parent generation for the next transition. In one ver-
sion of the game, the transition proceeds as follows:

   •  If in the parent generation A[i,  j] is a black pixel and exactly two or three of 
its nearest 8-neighbors are black, then in the child generation A[i,  j] is a 
black pixel. This simulates life propagated under favorable living condi-
tions. However, if in the parent generation A[i,  j] is a black pixel with less 
than two black 8-neighbors or more than three black 8-neighbors, then in 
the child generation A[i,  j] is a white pixel. This simulates life not propa-
gated due to isolation or overcrowding, respectively.

   •  If in the parent generation A[i,  j] is a white pixel, then in the child generation 
A[i,  j] is a black pixel if and only if exactly three of its nearest 8-neighbors 
are black. As above, this simulates life propagated or not propagated accord-
ing to whether conditions are favorable.

  Present and analyze an algorithm to compute the child generation matrix A 
from the parent generation matrix for one transition, for the RAM and the 
mesh. Your algorithm should run in Θ(n2) time for the RAM and in Θ(1) time 
for the mesh.
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In this chapter, we focus on algorithms and paradigms to solve fundamental problems 
in graph theory, where the input consists of data representing sets of vertices and 

edges. We present efficient solutions to traditional problems from graph theory, 
 including determining the connected components of a graph, constructing a minimal-
cost spanning tree of a connected graph, and determining shortest paths between 
 vertices in a connected graph. The algorithms will be presented for the RAM, the 
PRAM, and the mesh.

Many important problems can be expressed in terms of graphs, including prob-
lems involving power grids, water flow, line-of-sight coverage, relationships between 
objects, as well as problems involving communication, including telephone land lines, 
cellular phones and towers, and satellite communications, to name a few. In addition, 
problems involving general scheduling and routing that are critical to a variety of 
industrial and  governmental concerns can be expressed in terms of graphs, including 
land and air transport, local and global delivery services, Internet- and cable-based 
services, and so forth. Tasks for which graphs are often used include the following.

• Given a set of locations, determine the cost between locations, where the cost can 
be distance, time, or money, to name a few metrics.

• Given a set of objects, determine connectivity between the objects. The resulting 
graph can represent a network that is internal to devices such as computer chips, 
cell phones, and gaming systems. Such a graph can also represent networks involv-
ing telephone, cable, and satellites, among more macroscopic interconnections.

• Given a set of objects and the network flow between a subset of pairs of the objects, 
determine the network flow capacity between the objects. This is an important prob-
lem in a variety of industries, including those involving water, gas, electric, cable, 
and Internet.

• Determine an ordered list of tasks. For example, one might create an ordered list 
of the tasks necessary to build a guitar.
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308 Chapter 12  Graph Algorithms

Terminology

Let G = (V, E) be a graph consisting of a set V of vertices and a set E of edges. The 
edges, which connect members of V, can either all be directed or all undirected, 
resulting in either a directed graph or an undirected graph, respectively. That is, 
given a directed graph G = (V, E), an edge (a, b) ∈ E represents a directed connec-
tion from vertex a to vertex b, where both a, b ∈ V . Given an undirected graph, an 
edge (a, b) ∈ E represents an undirected connection, or bidirectional connection, 
between vertices a and b. Problems in graph theory typically do not include i) self-
edges, in which an edge connects a vertex to itself, or ii) multiple occurrences of 
an edge. See Figure 12-1 for examples of directed and undirected graphs.

FIGURE 12-1 Four sample graphs. (a) shows a complete undirected graph of 
5 vertices. (b) is a directed graph with pairs of vertices (u, v) such that the graph 
has no directed path from u to v. (c) is an undirected tree with 7 vertices. (d) is an 
undirected mesh of 9 vertices.

(a) (b) 

(c) (d) 

The number of vertices in G = (V, E) is written as 0V 0  and the number of edges 
is written as 0E 0 . However, for convenience, whenever the number of vertices or 
number of edges is represented inside of asymptotic notation, we will typically 
avoid using the absolute value signs since there is no ambiguity. For example, an 
algorithm that runs in time linear in the sum of the vertices and edges will be said 
to run in Θ(V + E) time.
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Terminology 309

In any description of a graph, we assume that there are unique representations 
of all vertices and edges. That is, no vertex will have more than one identity and no 
edge will be represented more than once. Given a directed graph, the maximum 
number of edges is 0V 0 ( 0V 0 − 1), while for an undirected graph, the maximum 
number of unique edges is 0V 0 ( 0V 0 − 1)/2. Therefore, the number of edges in a 
graph G = (V, E) is such that 0E 0 = O(V 2).

A complete graph G = (V, E) is one in which all possible edges are present. 
That is, in a complete graph, there is an edge between every pair of distinct verti-
ces. A sparse graph is one in which there are “relatively few” edges, while a dense 
graph is one in which a “high percentage of possible edges” is present. Alternately, 
a graph may be termed sparse if 0E 0 / 0V 0 2 is “small,” while a graph may be referred 
to as dense if 0E 0 / 0V 0 2 is at least of “moderate” size.

Vertex b is said to be adjacent to vertex a if and only if (a, b) ∈ E. At times, 
adjacent vertices will be described as neighbors. An edge (a, b) ∈ E is said to be 
incident on vertices a and b. In a weighted graph, every edge (a, b) ∈ E will have 
an associated weight or cost (see Figure 12-2).

FIGURE 12-2 An undirected weighted graph is given in (a) that consists of 
8 pairs of adjacent vertices. Notice in (a) that the entire graph is connected 
since there is a path between every pair of vertices. A directed weighted graph 
is given in (b), in which paths are not formed between every pair of vertices. 
In fact, notice that vertex e is isolated in that e does not serve as the source of 
any nontrivial path. Notice in (a) that a minimum-weight path from a to e is 8a, c, d, e9 , which has a total weight of 3, while in (b) minimum-weight paths 
from a to e are 8a, d, e9  and 8a, b, f, d, e9 .

(a)
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b
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4
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1 1

3
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(b)
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d

c
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b

2

4

11

1 1

3

1

e

A path in a graph G = (V, E) is a sequence of vertices v1, v2, . . . , vk such that 
(vi, vi+1) ∈ E for all 1 ≤ i ≤ k − 1. The length of such a path is defined to be the 
number of edges in the path, which in this case is k − 1. A simple path is a path in 
which all vertices are unique. A cycle is a path of length 3 or more in which v1 = vk. 
A graph is acyclic if it has no cycles. Note that a tree in which all edges point away 
from the root is a directed acyclic graph.
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310 Chapter 12  Graph Algorithms

An undirected graph is connected if and only if there is at least one path from 
every vertex to every other vertex. Given a graph G = (V, E), a subgraph S of G is 
a pair S = (V ', E'), where V ' � V  and E ' is a subset of those edges in E that contain 
vertices only in V '. The connected components of an undirected graph G = (V, E) 
are the maximally connected subgraphs of G (see Figure 12-3).

FIGURE 12-3 An undirected graph with three 
 connected components.

A directed graph is called strongly connected if and only if there is at least one 
path from every vertex to every other vertex. If a directed graph is not strongly 
connected but the underlying graph in which all directed edges are replaced by 
undirected edges is connected, then the original directed graph is called weakly 
connected (see Figure 12-4).

FIGURE 12-4 A directed graph with three weakly 
 connected components and seven strongly 
 connected components.

Let G = (V, E) be a connected graph. We say e ∈ E is a bridge edge of G if the 
graph Ge = (V, E �{e}) is disconnected. It is easy to see that if G represents a traffic 
system, its bridge edges represent potential bottlenecks. We define an articulation 
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Terminology 311

point of G to be a vertex v ∈ V  with the property that its removal would leave the 
resulting graph disconnected. That is, v is an articulation point of G if and only if 
the graph Gv = (V �{v}, Ev), where Ev = {e ∈ E 0 e is not incident on v}, is a discon-
nected graph. Thus, an articulation point plays a role among vertices analogous to 
that of a bridge edge among edges. See Figure 12-5 for examples of bridge edges 
and articulation points.

FIGURE 12-5 In this graph, (x, y) and ( y, z) are bridge 
edges. The vertices y and z are articulation points.

x z

y

In an undirected graph, the degree of a vertex is the number of edges incident 
on the vertex, and the degree of the graph is the maximum degree of any vertex in 
the graph. In a directed graph, the in-degree of a vertex is the number of edges that 
terminate at the vertex and the out-degree of a vertex is the number of edges that 
originate at the vertex (see Figure 12-6).

FIGURE 12-6 A directed graph. The in-degree of 8a, b, c, d, e9 is 82,0,1,2,29 , respectively, and the out-
degree of 8a, b, c, d, e9 is 81,1,2,1,29 , respectively.

a 

b c 

d e 

For some problems in graph theory, it makes sense to assign weights to the 
edges or vertices of a graph. A graph G = (V, E) is edge-weighted if there is a 
weight W(vi, vj) associated with every edge (vi, vj) ∈ E. In the case of edge-weighted 
graphs, the distance, or minimal-weight path, between vertices vi and vj is the sum 
over the edge weights in a path from vi to vj of minimum total weight. The diame-
ter of such a graph is the maximum of the distances between all pairs of vertices. 
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312 Chapter 12  Graph Algorithms

For many applications, it makes sense to consider all edges in an unweighted graph 
as having a weight of 1.

Representations

There are several ways to represent a graph. In this book, we will consider three of 
the most common, namely, i) a set of adjacency lists, ii) an adjacency matrix, and 
iii) a set of arbitrarily distributed edges. It is important to note that in some cases, 
the user may have a choice of representations and can therefore choose a represen-
tation for which the computational resources may be optimized. In other situa-
tions, the user may be given the graph in a particular form and may need to design 
and implement efficient algorithms to solve problems on the structure.

Adjacency Lists

The adjacency-list representation of a graph G = (V, E) typically consists of 0V 0  
lists, one corresponding to each vertex vi ∈ V . For each such vertex vi, its list con-
tains an entry for every edge (vi, vj) ∈ E. To navigate efficiently through a graph, 
the headers of the 0V 0  lists are typically stored in an array or linked list, which we 
call Adj, as shown in Figure 12-7. In this chapter, unless otherwise specified, we 
will assume an array implementation of Adj so that we can refer to the adjacency 
list associated with vertex vi ∈ V  as Adj(vi). It is important to note that we do not 
assume the adjacency lists are ordered.

FIGURE 12-7 A directed graph and its adjacency-list representation.

1 Adj

2 
3 
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4 
5 
3 

3 

5 

1 4 

2 3 

4 5 

1 

If the graph G = (V, E) is a directed graph, then the total number of entries in all 
adjacency lists is 0E 0 , since every edge (vi, vj) ∈ E is represented only in Adj(vi). 
However, if the graph G = (V, E) is an undirected graph, then the total number of 
entries in all adjacency lists is 2 0E 0 , since every edge (vi, vj) ∈ E is represented in 
both Adj(vi) and Adj(vj). Notice that, regardless of the type of graph, an adjacency-
list representation has the feature that the space required to store the graph is Θ(V + E). 
Assuming that one must store some information about every vertex and about every 
edge in the graph, this is an optimal representation with respect to the space used.

Suppose the graph G = (V, E) is weighted. Then the elements in the individual 
adjacency lists can be modified to store the weight of every edge or vertex, as 
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Representations 313

appropriate. For example, given an edge-weighted graph, an entry in Adj(vi) cor-
responding to edge (vi, vj) ∈ E can store the identity of vj, a pointer to Adj(vj), the 
weight W(vi, vj), other miscellaneous fields required for necessary operations, and 
a pointer to the next record in the list, all in Θ(1) space.

While the adjacency-list representation is robust, in that it can be modified to sup-
port a wide variety of graphs and is asymptotically efficient in storage, it does have 
the drawback of not allowing quick detection of whether or not an edge (vi, vj) exists. 
In the next section, we consider a representation that will overcome this deficiency.

Adjacency Matrix

An adjacency matrix is presented in Figure 12-8 that corresponds to the adjacency 
list presented in Figure 12-7. For a graph G = (V, E), the adjacency matrix A is a 0V 0 × 0V 0  matrix in which entry A(i, j) = 1 if (vi, vj) ∈ E and A(i, j) = 0 if (vi, vj) ∉ E. 
Thus, row i of the adjacency matrix contains all information in Adj(vi) of the 
 corresponding adjacency list. Notice that the matrix contains a single bit at each of 
the Θ(V 2) positions. Further, if the graph is undirected and i ≠ j, there is no need to 
store both A(i, j) and A( j, i), since A(i, j) = A( j, i). That is, for an undirected graph, 
one only needs to maintain either the upper triangular or lower  triangular portion 
of the adjacency matrix. More generally, for an edge-weight graph, each entry 
A(i, j) will be set to the weight of edge (vi, vj) if the edge exists and will be set to 0 
otherwise. Given either a weighted or unweighted graph that is either directed or 
undirected, the total space required by an adjacency matrix is Θ(V 2).

FIGURE 12-8 An adjacency matrix representation 
of the graph presented in Figure 12-7.
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The adjacency matrix has the advantage of providing direct access to informa-
tion concerning the existence or absence of an edge. Given a dense graph, the 
adjacency matrix also has the advantage that it requires only one bit per entry, as 
opposed to the additional pointers required by the adjacency-list representation. 
However, for relatively sparse graphs, the adjacency list has the advantage of 
requiring less space and providing a relatively simplistic manner in which to tra-
verse a graph. For an algorithm that requires the examination of all vertices and all 
edges, an adjacency-list implementation can provide a sequential algorithm with 
running time of Ω(V + E), while an adjacency matrix representation would result 
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314 Chapter 12  Graph Algorithms

in a sequential running time of Ω(V 2). Thus, the algorithm based on the adjacency 
list might be significantly more efficient.

Unordered Edges

A third form of input that we mention is that of unordered edges, which provides 
the least amount of information and structure. Given a graph G = (V, E), unordered 
edge input is such that the 0E 0  edges are distributed in an arbitrary fashion through-
out the memory of the machine. On a sequential computer, one will typically 
restructure this information in order to create adjacency-list or adjacency-matrix 
input. However, on parallel machines, it is not always economical or feasible to 
perform such a conversion.

Fundamental Algorithms

In this section, we consider fundamental algorithms for traversing and manipulat-
ing graphs. It is often useful to be able to visit the vertices of a graph in some well-
defined order based on the graph’s topology. We first consider sequential approaches 
to this concept of graph traversal. The two major techniques we consider, breadth-
first search and depth-first search, both have the property that they begin with a 
specified vertex and then visit all other vertices in a deterministic fashion. In the 
presentation of both of these algorithms, the reader will notice that we keep track of 
the vertices as they are visited. Following the presentations of fundamental sequen-
tial traversal methods, we will review the fundamental problem of computing the 
transitive closure of a binary matrix, for the RAM, PRAM, and mesh.

Breadth-First Search

The first algorithm we consider for traversing a graph is called breadth-first search 
(BFS). The general flow of a BFS traversal is first to visit a predetermined “root” 
vertex r, then visit all vertices at distance 1 from r, then visit all vertices at dis-
tance 2 from r, and so on. This is a standard technique for traversing a graph 
G = (V, E). On a RAM, the search procedure is as follows.

• Start the search at a root vertex r ∈ V .

• Add all neighboring vertices of the vertex under consideration to a queue.

• Process the queue in a standard first-in, first-out (FIFO) order.

So, initially all vertices v ∈ V  are marked as unvisited, and the queue is initial-
ized to contain only a root vertex r ∈ V . The algorithm proceeds by removing the 
root from the queue, leaving us with an empty queue, determining all neighbors of 
this root vertex just removed from the queue, and placing every neighbor of the root 
into the queue. In general, each iteration of the algorithm consists of the following.

• Remove the next vertex v ∈ V  from the queue.

• Examine all neighbors of v in G in order to determine those that have not yet 
been visited during the search.
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traversals

(c) This tree is associated with a traversal 
<10, 9, 12, 11, 3, 17, 7, 13, 14, 15, 16,
2, 1, 5, 18, 8, 6, 4, 19> of G, though 
the traversals of G would also yield this tree.

• Mark each of these previously unvisited neighbors as visited.

• Enter these previously unvisited neighbors of v into the queue.

This process of removing an element from the queue and entering its unvisited 
neighbors into the queue continues until the queue is empty and the last vertex 
removed from the queue has no unvisited neighbors. Once the queue is empty at 
the conclusion of a remove-explore-enter step, all vertices reachable from the root 
vertex r ∈ V , i.e., all vertices in the same component of G as r, have been visited. 
Further, if the vertices are output as they are removed from the queue, the resulting 
list corresponds to a breadth-first search tree over the graph G = (V, E) with root 
r ∈ V  (see Figure 12-9).

FIGURE 12-9 An example of a breadth-first search traversal. Depending on the 
order in which the vertices of a graph are stored, a breadth-first search could 
yield a variety of breadth-first search trees. 
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(a) A given graph G.
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(b) This tree is associated with a traversal
<10, 3, 12, 11, 9, 5, 17, 16, 2, 1, 15, 13, 14,
7, 4, 6, 18, 8, 19> of G, though other
traversals of G would also yield this tree.
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316 Chapter 12  Graph Algorithms

We now present an algorithm for the RAM that will implement a breadth-first 
search of a graph and record the distance from the root to every reachable vertex 
(see Figure 12-10). That is, every vertex that can be reached by a path from the 
root. The reader should note that our algorithm is presented as a graph traversal. 
That is, this procedure will visit every vertex of the root’s component. Such a pro-
cedure is easily modified to solve the query problem by returning to the calling 
routine with the appropriate information when a vertex is reached that is associ-
ated with the requested key.

BFSroutine (G, r)
CreateEmptyQueue(Q) {Initialize the queue}
For all vertices v ∈  V, do
 visited(v) ← false {Initialize vertices to 
 “unvisited”}
 dist(v) ← ∞ {Initialize all distances}
 parent(v) ← null {Initialize parents of 
 all vertices}
End For

{*} visited(r) ← true {Initialize root vertex — it
   dist(r) ← 0 is visited, it has distance 0

PlaceInQueue(Q, r) from itself, and it goes into 
 the queue}
While NotEmptyQueue(Q), do
 v ← RemoveFromQueue(Q) {Take first element from 
 queue: v}
 For all vertices w ∈ Adj(v), do {Examine all neighbors 
 of v}
  If not visited(w) then {Process unvisited neighbors}
    visited(w) ← true {Mark neighbor as visited}
    parent(w) ← v {The BFS parent of w is v}
    dist(w) ← dist(v) + 1 {Dist. fr. w to r is 1 more
 than distance from its 
 parent, v, to r}
   PlaceInQueue (Q, w) {Place w at end of queue}
  End If
 End For
End While

Notice that the steps that compute the parent of a vertex v and the distance of v 
from the root are not necessary to the graph traversal. We have included these steps 
as they are useful to other problems we discuss below. Also note that what we have 
described as “v ← RemoveFromQueue(Q)” may involve not only dequeuing a node 
from the queue, but also processing the node as required by the graph traversal.
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Fundamental Algorithms 317

Given a connected undirected graph G = (V, E), a call to BFSroutine(G, r) for 
any r ∈ V  will visit every vertex and every edge. In fact, a careful examination 
shows that every edge will be visited exactly twice and that every vertex will be 
considered at least once. Further, each vertex is visited only once. Every other 
consideration of a vertex is part of the consideration of an edge incident on the 
vertex. Therefore, assuming that entering and removing items from a queue are 
performed in Θ(1) time, the sequential running time for this BFSroutine on a con-
nected undirected graph is Θ(V + E).

Now, suppose that the undirected graph G = (V, E) is not necessarily con-
nected. We can extend the BFSroutine in order to visit all vertices of G. See 
Figure 12-11 while considering the algorithm below.

BFS-all-undirected (G = (V, E))
CreateEmptyQueue(Q) {Initialize the queue}
For all vertices v ∈  V, do
 visited(v) ← false {Initialize vertex to “unvisited”}
 dist(v) ← ∞ {Initialize distance}
 parent(v) ← nil {Initialize parent}
End For
For all v ∈ V, do {Consider all vertices in the graph}
 If not visited(v), then
  BFSroutine(G, v) at line {*} {Perform a BFS starting
 at every vertex not previously 
 visited—call BFSroutine, but jump 
 immediately to line {*}}
End For

FIGURE 12-10 An undirected connected graph with distances from the root vertex r 
recorded next to the vertices. One possible traversal of the vertices in this graph by 
a breadth-first search is 8r, c, b, a, e, f, d, i, j, g, h, k, l, m, n, o9 .
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318 Chapter 12  Graph Algorithms

Analysis similar to that given above for BFSroutine yields that given an undi-
rected graph G = (V, E), the procedure BFS-all-undirected will visit all vertices 
and traverse all edges in the graph in Θ(V + E) time on a sequential machine.

Depth-First Search

The second algorithm we consider for traversing a graph is called depth-first 
search (DFS). The philosophy of DFS is to start at a predetermined “root” vertex r 
and recursively visit a previously unvisited neighbor v of r. These vertices are vis-
ited one by one, until all neighbors of r have been visited. As we remarked earlier, 
BFS and DFS are standard techniques for traversing or presenting a graph. 
Algorithmically, the DFS procedure on a RAM follows.

 1. Start at a root vertex r ∈ V .

 2. Determine a previously unvisited neighbor v of r.

 3. Recursively visit v. That is, consider v as r when performing step 1 of the 
recursion.

 4. If not all neighbors of v have been visited, then go to step 2.

The algorithm is recursive in nature. A more detailed description follows. 
Given a graph G = (V, E), choose an initial vertex r ∈ V , which we again call the 
root, and mark r as visited. Next, find a previously unvisited neighbor of r, say, v. 
Recursively perform a depth-first search on v and then return to consider any other 
neighbors of r that have not been visited (see Figure 12-12). A simple recursive 
presentation of this algorithm is given below.

FIGURE 12-11 An undirected graph that 
is not connected. The two connected 
components can be labeled in time  linear 
in the number of vertices plus the  number 
of edges by a simple  extrapolation of the 
breadth-first search algorithm.
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Fundamental Algorithms 319

{Assume that visited(v) ← false
for all v ∈ V prior to this routine being called}

DFSroutine(G,r)
visited(r) ← true {Mark r as being visited.}
For all vertices v ∈ Adj(r), do {Consider all 
 neighbors of r in turn.}
 If not visited(v) do {If a given neighbor has 
 not been visited, mark its
  parent(v) ← r parent as r and recursively
 visit this neighbor. Note
  DFSroutine (G, v) the recursive step causes v 
 to be marked visited.}
 End If
End For

FIGURE 12-12 An example of a depth-first search traversal. Notice that the graph 
given in (a) is identical to the graph G utilized in Figure 12-9a. 
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(a) A given graph G.

traversals of G w

(c) This tree is associated with a traversal
<10, 12, 16, 3, 17, 9, 11, 7, 18, 19, 6, 5, 
4, 8, 1, 2, 15, 14, 13> of G, though
other traversals of G would also yield this tree.
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(b) This tree is associated with a traversal
<10, 3, 1, 2, 15, 12, 13, 14, 16, 5, 4, 6, 19,
18, 7, 8, 9, 11, 17> of G, though other
traversals of G would also yield this tree.
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320 Chapter 12  Graph Algorithms

As in the breadth-first search graph traversal, the step that computes the parent 
of a vertex is not necessary to perform a depth-first search graph traversal, but it is 
included for its usefulness in a number of related problems. The step we have 
described as “visited(r) ← true” is typically preceded or followed by steps that 
process the vertex r as required by the graph traversal. Also, as with a breadth-first 
search, we have presented depth-first search as a graph traversal algorithm that can 
be modified by the insertion of a conditional exit instruction if a traditional search 
is desired that stops upon realizing success.

The RAM implementation of depth-first search, as presented, is an example of 
a “backtracking” algorithm. That is, when considering a given vertex v, the algo-
rithm considers all of v’s “descendants” before backtracking to the parent of v in 
order to allow its parent to continue with the traversal. Now, consider the analysis 
of DFSroutine on a sequential platform. Notice that every vertex is initialized to 
unvisited and that every vertex is visited exactly once during the search. Also, 
notice that every directed edge in a graph is considered exactly once. Note that 
every undirected edge would be considered twice, once from the point of view of 
each incident vertex. Therefore, the running time of DFSroutine on a graph 
G = (V, E) is Θ(V + E), which is the same as the running time of BFSroutine.

Discussion of Depth-First and Breadth-First Search

A depth-first search tree T = (V, E ') of a graph G = (V, E) is formed during a depth-
first search of the graph G, as follows. An edge (u, v) ∈ E is a member of E ' if and 
only if one of its vertices is the parent of the other vertex. Given a depth-first 
search tree T = (V, E ') of G, it should be noted that if an edge (u, v) ∈ E is not in E ', 
then either

• u is a descendant of v in T and v is not the parent of u, or

• v is a descendant of u in T and u is not the parent of v. See Figure 12-13.

FIGURE 12-13 A depth-first search tree T = (V, E ') of a graph G = (V, E). An edge 
(u, v) ∈ E is a member of E ' if and only if one of its vertices is the parent of the 
other vertex. Edge (u, x) ∈ E is not in E ', corresponding to the fact that one of its 
vertices is an ancestor but not the parent of the other.
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Computing the Transitive Closure of an Adjacency Matrix 321

Each vertex v in a depth-first search tree of G can be given a time stamp corres-
ponding to when the vertex was first encountered and another time stamp corre-
sponding to when the search finished examining all of v’s neighbors. These time 
stamps can be used in higher-level graph algorithms to solve interesting and impor-
tant problems. Problems typically solved through a depth-first search include label-
ing the strongly connected components of a directed graph, performing a topological 
sort of a directed graph, determining articulation points and biconnected compo-
nents, and labeling connected components of undirected graphs, to name a few.

A breadth-first search tree is similarly formed from the edges joining parent 
and child vertices in a BFS of a graph G = (V, E). Given a breadth-first search tree 
T = (V, E ') of G, it should be noted that if an edge (u, v) ∈ E is not in E ', then u is 
not a descendant of v in T and v is not a descendant of u in T (see Figure 12-14).

FIGURE 12-14 A breadth-first search tree 
T = (V, E ') of G = (V, E). If an edge (u, v) ∈ E is 
not in E ', then u is not a descendant of v in T 
and v is not a descendant of u in T.
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(a) G=(V, E ) (b) T=(V, E ')
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The vertices in a breadth-first search tree T = (V, E ') of G = (V, E) are at mini-
mum distance from the root r ∈ V  of the tree. That is, the distance of u ∈ V  in T 
from r is the length of a shortest path in G from u to r. This is a useful property 
when we consider certain minimal path-length problems, including the single-
source shortest-path problem. Such searches, however, are not useful when one is 
considering weighted paths, which occurs, e.g., when solving the minimal weight 
spanning tree problem. A breadth-first search of a graph can be used to solve a 
number of problems, including determining whether or not a graph is bipartite.

Computing the Transitive Closure 
of an Adjacency Matrix

In this section, we review both the sequential and mesh implementations of a tran-
sitive closure algorithm. The algorithm to compute the transitive closure of a 
matrix is a critical component in terms of developing efficient algorithms to solve 
a variety of fundamental graph problems. We assume that we are given a directed 
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322 Chapter 12  Graph Algorithms

graph G = (V, E), where n = 0V 0 , represented by an n × n adjacency matrix. In such 
a representation, A(i, j) = 1 if and only if there is an edge from vi to vj in E. 
Otherwise, A(i, j) = 0.

The transitive closure of A is represented as a binary matrix A*n×n in which 
A*(i, j) = 1 if and only if there is a path in G from vi to vj. Therefore, A*(i, j) = 0 if 
no such path exists. As we have previously discussed, one way to obtain the transi-
tive closure of an adjacency matrix A is to multiply A by itself n times. This is not 
very efficient, however. Alternatively, one could perform ⎡log2 n⎤  operations of 
squaring the matrix. That is, we could perform the computations A × A = A2, 
A2 × A2 = A4, and so on until a matrix Am is obtained, where m ≥ n. Sequentially, 
this squaring procedure would result in a Θ(n3 log n) time algorithm, while on a 
mesh of size n2, the procedure would run in Θ(n log n) time.

Consider the binary matrix Ak(i, j) representing G, with the interpretation that 
Ak(i, j) = 1 if and only if there is a path from vi to vj that only uses {v1, . . . , vk} as 
intermediate vertices. Notice that A0 = A and that An = A*. Further, notice that there 
is a path from vi to vj using intermediate vertices {v1, . . . , vk} if and only if either 
there is a path from vi to vj using intermediate vertices {v1, . . . , vk−1} or there is a path 
from vi to vk using intermediate vertices {v1, . . . , vk−1} and a path from vk to vj also 
using only intermediate vertices {v1, . . . , vk−1}. This observation forms the founda-
tion of Warshall’s algorithm, which can be used to compute the transitive closure of 
A on a sequential machine in Θ(n3) time. The sequential algorithm follows.

For k = 1 to n, do
 For i = 1 to n, do
  For j = 1 to n, do
   Ak(i, j) ← Ak−1(i, j)∨ 3Ak−1(i, k)∧ Ak−1(k, j)4
  End For j
 End For i
End For k

Now, consider an implementation of Warshall’s algorithm on a mesh computer. 
Suppose A is stored in an n × n mesh such that processor Pi, j stores entry A(i, j). 
Further, suppose that at the end of the algorithm processor Pi, j is required to store 
entry A*(i, j) = An(i, j). This can be accomplished with some interesting movement 
of data that adheres to the following conditions.

 1. Entry Ak(i, j) is computed in processor Pi, j at time 3k + 0 k − i 0 + 0 k − j 0 − 2.

 2. For all k and i, the value of Ak(i, k) moves in a horizontal lock-step fashion in 
row i away from processor Pi, k.

 3. For all k and j, the value of Ak(k, j) moves in a vertical lock-step fashion in 
column j away from processor Pk, j.

See Figure 12-15 for an illustration of this data movement. Notice from condi-
tion 1 that the algorithm runs in Θ(n) time. The reader is advised to spend some 
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Connected Component Labeling 323

time with small examples of the mesh implementation of Warshall’s algorithm in 
order to be comfortable with the fact that the appropriate items arrive at the appro-
priate processors at the precise time that they are required. Therefore, there is no 
congestion or bottleneck in any of the rows or columns.

FIGURE 12-15 Data movement of van Scoy’s implementation of Warshall’s 
 transitive closure algorithm on a mesh. Ak(k, k) is computed at time t = 3k − 2, in 
processor Pk, k. During the next time step, this value is transmitted to processors 
Pk, k+1, Pk, k−1, Pk+1, k, and Pk−1, k, as shown in (a). At time t + 1 = 3k − 1, the values 
Ak(k − 1, k), Ak(k, k + 1), Ak(k + 1, k), and Ak(k, k − 1) are computed in processors 
Pk−1, k, Pk, k+1, Pk+1, k, and Pk, k−1, respectively, as shown in (b). The arrows 
 displaying data movement in (b) show the direction that this  information begins 
to move during time step t + 2 = 3k.

Ak(k,k) 

(a) At time t = 3k – 2, Ak(k, k)
is computed in processor Pk, k.

(b) The values Ak(k – 1, k), Ak(k, k + 1),
Ak(k + 1, k), and Ak(k, k – 1) are
computed in processors Pk–1, k, Pk, k+1,
Pk+1, k, and Pk, k–1, respectively.

Ak(k,k�1) 

Ak(k�1,k) 

Ak(k+1,k) 

Ak(k,k+1) 

The mesh algorithm for the generalized transitive closure can be used to solve 
the connected component labeling problem, the all-pairs shortest-path problem, 
and to determine whether or not a graph is a tree, to name a few. The first two 
algorithms will be discussed in more detail later in the chapter.

Connected Component Labeling

In this section, we consider the problem of labeling the connected components of 
an undirected graph. The labeling should be such that if vertex v is assigned a label 
label(v), then all vertices to which v is connected are assigned the same compo-
nent label of label(v).

RAM

A simple sequential algorithm can be given to label all of the vertices of an undi-
rected graph. Such an algorithm consists of applying the breadth-first search 
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324 Chapter 12  Graph Algorithms

procedure to a given vertex. During the breadth-first search, the label corresponding 
to the initial vertex is propagated. Once the breadth-first search is complete, a search 
is made for any unlabeled vertex. If one is found, then the BFS is repeated, labeling 
the next component, and so on. An algorithm follows. The reader should observe 
that this is a modification of the BFS-all-undirected algorithm presented earlier in 
the chapter.

1. Given a graph G = (V, E), where V = {v1, v2, . . . vn}.
2. Assign label(v) = null for all v ∈ V {Initialize
 labels of all vertices, 
 representing each vertex 
 as currently unvisited}
3. For i = 1 to n, do
4.  If label(vi) = null, then {If vertex hasn’t been 
 visited/labeled so far, 
 then initiate a search, 
5.    BFSroutine(G, vi) during which we set
 label(v) = i for every 
 vertex visited}
6.  End If
7.  End For

The algorithm is straightforward. Since the graph is undirected, every invoca-
tion of BFSroutine will visit and label all vertices that are connected to the given 
vertex vi. Due to the For-loop, the algorithm will consider every connected compo-
nent. The running time for the step that calls BFSroutine in aggregate is Θ(V + E) 
since every vertex and every edge in the graph is visited within the context of one 
and only one breadth-first search. Hence, the running time of the algorithm is 
Θ(V + E), which is optimal in the size of the graph.

PRAM

The problem of computing the connected components of a graph G = (V, E) is 
considered a fundamental problem in the area of graph algorithms. Unfortunately, 
an optimal parallel strategy for performing a breadth-first search or a depth-first 
search of a graph on a PRAM is not known. For this reason, a significant amount 
of effort has been applied to the development of an efficient PRAM algorithm to 
solve the graph-based connected component problem. Several efficient algorithms 
have been presented with slightly different running times and on a variety of 
PRAM models. The basic strategy of these algorithms consists of processing the 
graph for O(log V) stages. During each stage, the vertices are organized as a forest 
of directed trees, where each vertex is in one tree and has a link, i.e., a directed 

C8208_ch12.indd   324C8208_ch12.indd   324 11/16/12   12:05 PM11/16/12   12:05 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Connected Component Labeling 325

3131

2 10

12 11 15

497

148 6

5

(a) The initial undirected graph G = (V,E).

(b) The initial forest consisting of a distinct tree representing every vertex in V.

1

8

2

9

3

10

4

11

5

12

6

13

7

14 15

(c) The result of every vertex in V attaching to its minimum-labeled neighbor.
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edge or pointer, to its parent in that tree. All vertices in such a tree are in the same 
connected component of the graph. The algorithm repeatedly combines trees con-
taining vertices in the same connected component. However, until the algorithm 
terminates, there is no guarantee that every such tree represents a maximally con-
nected component.

Initially, there are 0V 0  directed trees, each consisting of a vertex pointing to 
itself. (Refer to the example presented in Figure 12-16.) During the i th stage of 
the algorithm, trees from stage i − 1 are hooked or grafted together and com-
pressed by a pointer-jumping operation so that the trees do not become unwieldy. 
Each such compressed tree is referred to as a supervertex. When the algorithm 
terminates, each supervertex corresponds to a maximally connected component 
in the graph and takes the form of a star, i.e., a directed tree in which all vertices 
point directly to the root vertex. It is the implementation of hooking that is critical 
to designing an algorithm that runs in O(log V ) stages. We will present an algo-
rithm for an arbitrary CRCW PRAM that runs in O(log V ) time using Θ(V + E) 
processors.
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326 Chapter 12  Graph Algorithms

Define index(vi) = i to be the index of vertex vi. Define root(vi) as a pointer to 
the root of the tree, or supervertex, that vi is a currently a member of. Then we can 
define the hooking operation hook(vi, vj) as an operation that attaches root(vi) to 
root(vj), as shown in Figure 12-17.

We can determine, for each vertex vi ∈ V, whether or not vi belongs to a star, 
by the following procedure.

 1.  Determine the Boolean function star(vi) for all 
vi ∈ V, as follows.

 2. For all vertices vi, do in parallel
 3.   star(vi) ← true
 4.   If root(vi) ≠ root(root(vi)), then
 5.    star(vi) ← false
 6.    star(root(vi)) ← false
 7.    star(root(root(vi))) ← false
 8.   End If
 9.   star(vi) ← star(root(vi))
10. End For

FIGURE 12-16 A general description of a parallel component labeling algorithm. 
Note that when we present  supervertices, the first vertex in the list will serve as the 
label for the supervertex.

(d) The four disjoint subgraphs resulting from the compression given in (c).

< 1, 4, 5, 6, 9, 13> < 2, 3, 10, 12 > < 7, 8, 14 > < 11, 15 >

(e) The result from each of these four supervertices choosing its
minimum-labeled neighbor.

< 1, 4, 5, 6, 9, 13 >

< 2, 3, 10, 12 > < 7, 8, 14 >

< 11, 15 >

(f) The final stage of the algorithm in which all vertices in the connected
graph have been compressed into a single supervertex.

< 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 >
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(c) The two supervertices are merged.

parent(vi 
)

root(
 
parent(vi 

))

vi

root(
 
parent(vi 

))

(b) The supervertex that v
i
 is a member of chooses to

hook to the supervertex containing parent(v
i
) since

since root( parent(v
i
)) is a minimum label over

all of the supervertices to which members of the
supervertex labeled root(v

i
) are connected.

root(vi 
)

vi

parent(vi 
)

(a) v
i
 and parent(v

i
) are in different supervertices.

root(vi 
)

vi parent(vi 
)

root(
 
parent(vi 

))

FIGURE 12-17 A demonstration of the hooking 
operation. 

See Figure 12-18 for an example that shows the necessity of Step 9. It is easily 
seen that this procedure runs in Θ(1) time.

The basic component labeling algorithm follows.

• The goal is to label the connected components of an undirected graph 
G = (V, E).

• Assume that every edge between vertices vi and vj is represented by a pair of 
unordered edges (vi, vj) and (vj, vi).

• Recall that we assume an arbitrary CRCW PRAM. That is, if there is a write 
conflict, one of the writes will arbitrarily succeed.
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328 Chapter 12  Graph Algorithms

For all vi ∈ V, set root(vi) = vi {Initialize 
 supervertices.}
For all (vi, vj) ∈ E, do {Loop uses arbitrary 
 CRCW property}
 If index(vi) > index(vj), then hook(vi, vj) 
 {Hook larger indexed vertices into 
 smaller indexed vertices.}
End For all (vi, vj) ∈ E
Repeat
  Determine star(vi) for all vi ∈ V
  For all (vi, vj) ∈ E, do
   If vi is in a star and 
   index(root(vi)) > index(root(vj)), then
    hook(vi, vj) {Hook vertices in star 
 to neighbors with 
 lower-indexed roots}
  Determine star(vi) for all vi ∈ V
  For all vertices vi, do
   If vi is not in a star, then
    root(vi) ← root(root(vi)) {pointer jumping}
Until no changes are produced by the steps of the  Repeat 
loop

FIGURE 12-18 Computing the star function in 
parallel. Arrows represent root pointers. Step 3 
initializes star(vi) ← true for all vertices. 
Steps 5-7 change star(a), star(b), star(c), and 
star(d) to false. However, we require Step 9 to 
change star(e) to false.

a

eb

c

d
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While it is beyond the scope of this book, it can be shown that the algorithm 
above is correct for an arbitrary CRCW PRAM. Critical observations can be made, 
including the following.  

• At any time during the algorithm, the structure defined by the set of root point-
ers corresponds to a proper upward-directed forest, as no vertex ever has a root 
with a larger index.

• When the algorithm terminates, the forest defined by the root pointers consists 
of stars.

Given an arbitrary CRCW PRAM with Θ(V + E) processors, every computa-
tional step in the algorithm defined above runs in Θ(1) time. Therefore, we only 
need to determine the number of iterations required for the main loop before the 
algorithm naturally terminates with stars corresponding to every connected com-
ponent. It can be shown that each pass through the loop reduces the height of a 
non-star tree by a fixed fraction. Therefore, the algorithm will terminate after 
O(log V ) steps, yielding an algorithm with total cost of O((V + E) log V ), which is 
not optimal. In fact, slightly more efficient algorithms are possible, but they are 
beyond the scope of this book.

Mesh

Recall that a single step of a PRAM computation with n processors operating on a 
set of n data items can be simulated on a mesh of size n in Θ(n1/2) time by sort-based 
associative read and associative write operations. Therefore, given a graph G = (V, E) 
represented by a set of 0E 0  unordered edges, distributed arbitrarily one per proces-
sor on a mesh of size 0E 0 , the component labeling algorithm can be solved in 
Θ(E1/2 log E) time. Notice that this is at most a factor of Θ(log E) from optimal on 
a mesh of size 0E 0 . However, it is often convenient to represent a dense graph by an 
adjacency matrix. So consider the situation in which a 0V 0 × 0V 0  adjacency matrix 
is distributed in a natural fashion on a mesh of size 0V 0 2. Then, by applying the 
time-optimal transitive closure algorithm followed by a simple row or column 
 rotation, the component labeling algorithm can be solved in Θ(V ) time, which is 
optimal for this combination of architecture and graph representation.

Minimum-Cost Spanning Trees

Suppose we want to install an Internet backbone at an office park so that there is at 
least one path between every pair of buildings. Further, suppose we want to mini-
mize the total amount of “cable” that we lay. Viewing the buildings as vertices and 
the cables between buildings as edges, then this cabling problem is reduced to 
determining a spanning tree covering the buildings in which the total length of 
cable that is laid is minimized. This leads to the definition of a minimum-cost 
spanning tree. 
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Given a connected undirected graph G = (V, E), we define a spanning tree 
T = (V, E '), where E ' � E, as a connected acyclic graph. The reader should verify 
that in order for T to have the same vertex set as the connected graph G, and for T 
not to contain any cycles, T must contain exactly 0V 0 − 1 edges. Suppose that for 
every edge e ∈ E, there exists a weight w(e), where such a weight might represent, 
for example, the cost, length, or time required to traverse the edge. Then a mini-
mum-cost spanning tree T is a spanning tree over G in which the weight of the tree 
is minimized with respect to every spanning tree of G. The weight of a tree 
T = (V, E') is defined intuitively to be

w(T) = a e∈E '
w(e).

Note that a minimum-cost spanning tree is sometimes referred to as a minimal 
spanning tree, minimum-weight spanning tree, minimum spanning tree, or MST.

RAM

In this section, we consider three traditional algorithms for determining a mini-
mum-cost spanning tree of a connected, weighted, undirected graph G = (V, E) on 
a RAM. All three algorithms use a greedy approach to solving the problem by 
repeatedly making the best local choice in an effort to obtain the global solution. 
At any point during these algorithms, a set of edges E ' exists that represents a sub-
set of some minimal spanning tree of G. At each step of these algorithms, a “best” 
edge is selected from those that remain, based on certain properties, and added to 
the working minimal spanning tree. One of the critical properties of any edge that 
is added to E ' is that it is safe, i.e., that the updated edge set E ' will continue to 
represent a subset of the edges of some minimal spanning tree for G.

Kruskal’s Algorithm
The first algorithm we consider is Kruskal’s algorithm. In this greedy algorithm, 
E ' is a forest over all vertices V in G. Furthermore, this forest will always be a sub-
set of some minimum spanning tree. Initially, we set E ' = φ, which represents the 
forest of isolated vertices. We also sort the edges of the graph into increasing order 
by weight. At each step in the algorithm, the next smallest weight edge from the 
ordered list is chosen and that edge is added to E ' so long as it does not create a 
cycle. The algorithm follows.

Kruskal’s MST Algorithm
In 1956, J.B. Kruskal proposed a greedy algorithm for determining the minimal 
spanning tree of a graph. Kruskal’s approach was to assume initially that every 
vertex of a graph G = (V, E) is an independent connected component of a graph 
G ' = (V, φ), which will morph into the minimal spanning tree G' = (V, E ') by add-
ing edges to E ' in a greedy fashion. Specifically, at each iteration of the algorithm, 
an edge of minimal weight that does not create a cycle in G ' will be added to E '. 
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The algorithm terminates when there are no edges left to add to G' = (V, E '), the 
minimal spanning tree of G = (V, E).

The resources required by the algorithm are dependent on the data structures 
chosen. We choose data structures that balance i) the time to perform an operation 
to sort the edges E by weight, ii) the time to determine the component label of a 
vertex, and iii) the time to combine two components of the graph G ' as it is being 
constructed. In addition, the data structures we use to implement the graph do not 
use an unreasonable amount of space. 

The algorithm that we provide will utilize two critical data structures. The 
first data structure will provide easy access for determining the component label 
of a vertex. It takes the form of a set of upward directed trees. There is direct 
access to each node. The label of the root of a component will serve as the label 
of the component and can be determined for any vertex by following the unique 
path of upward directed links to the root of the tree. The second data structure 
will be used to keep track of the edges as they are being added to E ' to form 
the minimal spanning tree G' = (V, E '). This second data structure can be a simple 
bag, unordered list, stack, or queue, to name a few. However, since a MST algo-
rithm is typically used in the middle of a larger solution, we will use a set of adja-
cency lists to store the edges of the MST under the assumption that this will make 
these edges more easily accessible upon completion of Kruskal’s algorithm.

The input consists of a connected, weighted, undirected 
graph G = (V, E) with weight function w on the edges e ∈ E.
E' ← φ {E' will become the edge set of the MST.}
For each v ∈ V, create Component(v) = {v}. That is, every 
vertex is initially its own connected component in G'. 
This means, for each v ∈ V, set v.parent = null and 
v.vertex_count = 1. 
Sort E into nondecreasing order by the weight 
function w.
For each (u,v) ∈ E considered by sorted order, do the 
following.
 Let ru = Component(u) and rv = Component(v) be the root 
 vertices of the components of u and v, respectively.
 If ru ≠ rv then
  E' ← E' ∪ (u, v) {update the edges of the MST}
  If ru.vertex_count ≤ rv.vertex_count then 
  ru.parent ← rv and add ru.vertex_count to 
  rv.vertex_count else rv.parent ← ru and add 
  rv.vertex_count to ru.vertex_count. {This step 
 combines components of G'.}
 End If ru ≠ rv
End For
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(a) On the left, the graph G with both vertex labels and edge weights shown. In
the middle, the initial forest of G with vertices accessed through an array of pointers.
In this initial forest, each vertex is an isolated tree. We use vc for the vertex count
of a tree-like component in this graph. On the right, the initial adjacency lists in
which no edges have yet been determined for G' , the minimal spanning tree (MST)
of G. 

[1] [2] [3] [4] [5] [6]

name = 1
vc = 1

name = 2
vc = 1

name = 3
vc = 1

name = 4
vc = 1

name = 5
vc = 1

name = 6
vc = 1

1

2

3

4

5

6

[1] [2] [3] [4] [5] [6]

1

12

2

3

4

5

6

(b) The edge of G between v1 and v2 is the smallest-weight edge. It is
used to combine two components of G' and is added in the adjacency lists.

name = 1
vc = 2

name = 3
vc = 1

name = 4
vc = 1

name = 5
vc = 1

name = 6
vc = 1

[1] [2] [3] [4] [5] [6]

1

12

2

3

34

4

5

6

(c) The edge between v3 and v4 is the smallest-weight edge currently
available. It is used to combine two components of G' and is added in
the adjacency lists.

name = 1
vc = 2

name = 3
vc = 2

name = 5
vc = 1

name = 6
vc = 1

[1] [2] [3]

name = 3
vc = 2

name = 1
vc = 3

name = 6
vc = 1

[4] [5] [6]

1

5

4

3

1

2

6

5

4

3

2

1

(d) The edge between v1 and v5 is the smallest-weight edge currently
available. It is used to combine two components of G' and is added
in the adjacency lists.
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[1] [2] [3]

name = 1 
vc = 4

name = 3
vc = 2

[4] [5] [6]

6

5

4

3

1

1

2

26

5

4

3

2

1

(e) The smallest-weight edge now available, between v2 and v5, is not added
since these vertices were already in the same component of G'. Instead, the
next smallest-weight edge, between v2 and v6 is added to the adjacency lists.
Notice that in the connectivity graph to the left, the parent pointer of v6
indexes v1 rather than v2, since v1 is the root vertex of the component of G'
containing v2. 

[1] [2] [3]

name = 1 
vc = 6

[4] [5] [6]

3

5

2

3

1

6

2

4

1

26

5

4

3

2

1

(f) The next smallest-weight edge, between v2 and v3, is added to the
adjacency lists. As before, in G' the parent pointer of v3 indexes v1
rather than v2, since v1 is the root vertex in its component of G' before
the union of the components of v2 and v3. The edge between v5 and v6 
is not added, since these vertices are already in the same component of G'.

FIGURE 12-19 Our implementation of Kruskal’s algorithm involves two data structures. The 
first is an auxiliary graph that shows the connectivity of the emerging Minimal Spanning 
Tree (MST). In this graph, all components are upward-pointing trees that will eventually be 
combined into a single tree-like graph. During the algorithm, this structure is used to keep 
track of the component of each vertex at each stage of the algorithm. The second data struc-
ture is an adjacency list structure that is built up and will eventually contain the edges cor-
responding to the MST. E ', the edge set of the eventual MST, is initially empty. We add one 
edge to E ' during every stage of the algorithm, while simultaneously combining the compo-
nents of each vertex of the edge added. When there are no more edges to add, the algorithm 
is done and we have the final E ', which represents the final MST G '.
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334 Chapter 12  Graph Algorithms

Given the data structures described, the statement E ' ← w is equivalent to cre-
ating the initial graph G ', represented by empty adjacency lists in the structure that 
eventually will represent G ', the MST of G. The initialization of the adjacency lists 
and of G ' as a set of isolated vertices is performed in Θ(V ) time. Sorting the edges 
takes Θ(E log E) time. 

Suppose that edge (u, v) ∈ E is added to E ' in the algorithm given above. Let 
r1 and r2 be the root vertices of the components of G ' containing u and v, respec-
tively. Without loss of generality, assume the component rooted at r2 has fewer 
vertices than the component rooted at r1. Then the two components are combined 
by assigning r2 to point to r1, and updating the number of vertices in the combined 
component by adding together the number of vertices in the two original compo-
nents. This step is performed in Θ(1) time.

When two components of G ' are combined, the identity of the smaller of the 
two components takes on that of the larger component. Notice that every vertex is 
updated O(log V ) times since a vertex of G ' is only updated when its component 
in G ' is combined with a larger component. Further, the combine operation 
increases by at most 1 the number of edges of a vertex from the root of its compo-
nent in G '. Thus, the number of edges between any vertex and the root of its com-
ponent in G ' is O(log V ). Hence, each call of the Component function is performed 
in O(log V ) time. Since a component in G ' has connectivity properties of a tree, 
and a tree of 0V 0  vertices has Θ(V ) edges, there are Θ(V ) combine operations per-
formed in a total of Θ(V ) time. Since every edge in E generates Θ(1) calls to the 
Component function, it follows that the time to perform all Component operations 
is Θ(E log V ). Therefore, the running time of the algorithm, as described, is 
Θ(E log E), which is Θ(E log V ).

An alternative implementation to our presentation of Kruskal’s algorithm fol-
lows. Suppose that instead of initially sorting the edges into nondecreasing order 
by weight, we place the weighted edges into a heap, and that during each iteration 
of the algorithm, we simply extract the minimum weighted edge left in the heap. 
Note that such a heap can be constructed in Θ(E log E) = O(E log V) time, and a 
heap extraction can be performed in Θ(log E) = O(log V ) time. Therefore, the 
heap-based variant of this algorithm runs in O(E log V ) time to set up the initial 
heap and O(log V ) time to perform the operation required during each of the O(E) 
iterations. Therefore, a heap-based approach results in a total running time of 
O(E log V), including the operations that combine components.

Prim’s Algorithm
The second algorithm we consider is Prim’s algorithm for determining a  minimum-
cost spanning forest of a weighted, connected, undirected graph G = (E, V ), with 
edge weight function w. The approach taken in this greedy algorithm is to add 
edges continually to E ' � E so that E ' represents a tree with the property that it is 
a subtree of some minimum spanning tree of G. Initially, an arbitrary vertex r ∈ V  
is chosen to be the root of the tree that will be grown. Next, an edge (r, u) is used 
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to initialize E ', where (r, u) has minimal weight among edges incident on r. As the 
algorithm continues, an edge of minimum weight between some vertex in the cur-
rent tree, represented by E ', and some vertex not in the current tree, is chosen and 
added to E '. The algorithm follows.

Prim’s MST Algorithm
 1.   The input consists of a connected, weighted, 

 undirected graph G = (E, V) with weight function w 
on the edges e ∈ E.

 2.  Let vertex set V = {v1, v2, . . . , vn}.
 3.  Let the root of the tree be r = v1.
 4.  Initialize NotInTree = {v2, . . . , vn}. 
 5.  For all v ∈  NotInTree, initialize smalledge(v) ← ∞.
 6.  Set smalledge(r) ← 0 since r is in the tree.
 7.   Set parent(r) ← null since r is the root of the 

tree.
 8.  For all v ∈  Adj(r), do
 9.   parent(v) ← r
10.   smalledge(v) ← w(r, v)
11.  End For all v ∈  Adj(r)
12.  While NotInTree ≠ φ, do
13.   u ← ExtractMin(NotInTree) {Member of NotInTree 
 with minimal-weight edge 
 to a member of the tree}
14.    Add (u, parent(u)) to E' and remove u from 

NotInTree.
15.   For all v ∈  Adj(u) do
16.    If v o  NotInTree and w(u, v) < smalledge(v), then
 {If v is already in the tree, update}
17.     parent(v) ← u
18.     smalledge(v) ← w(u, v)
19.    End If
20.   End For
21.  End While

The structure NotInTree is most efficiently implemented as a priority queue 
since the major operations include finding a minimum weight vertex in NotInTree 
and removing it from NotInTree. Suppose that NotInTree is implemented as a heap. 
Then the heap can be initialized (lines 4-11) in Θ(V log V) time. The While-loop 
(lines 12-21) is executed 0V 0 − 1 times. Therefore, the O(log V ) time ExtractMin 
operation is invoked Θ(V ) times. Thus, the total time to perform all ExtractMin 
operations is O(V log V ).
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336 Chapter 12  Graph Algorithms

The test at line 16 can be performed in Θ(1) time. This follows from the obser-
vation that to see if a vertex is in the tree, i.e., is not in NotInTree, it suffices to 
check whether or not the parent of the vertex is null. Now consider the time 
required to perform the operations specified in lines 17 and 18. Since every edge 
in a graph is determined by two vertices, lines 17 and 18 of the procedure can be 
invoked at most twice for every edge. Therefore, these assignments are performed 
at most Θ(E) times. However, notice that line 17 requires the adjustment of an 
entry in the priority queue, which runs in O(log V ) time. Therefore, the running 
time for the entire algorithm is O(V log V + E log V ), which is O(E log V ), since 
the graph is assumed to be connected. Notice that this is the same asymptotic run-
ning time as Kruskal’s algorithm. However, by using Fibonacci heaps instead of 
traditional heaps, it should be noted that the time to perform Prim’s algorithm on a 
RAM can be reduced to Θ(E + V log V ).

Sollin’s Algorithm
Finally, we mention Sollin’s algorithm. In this greedy algorithm, E ' will always 
represent a forest over all vertices V in G. Initially, E ' = φ, which represents the for-
est of isolated vertices. At each step in the algorithm, every tree in the forest nomi-
nates one edge to be considered for inclusion in E '. Specifically, every tree 
nominates an edge of minimal weight between a vertex in its tree and a vertex in a 
distinct tree. So during the i th iteration of the algorithm, the 0V 0 − (i − 1) trees rep-
resented by E ' generate 0V 0 − (i − 1) not necessarily distinct edges to be considered 
for inclusion. The minimal weight edge will then be selected from these nominees 
for inclusion in E'. The sequential algorithm and analysis is left as an exercise.

PRAM

In this section, we consider the problem of constructing a  minimum-cost spanning 
tree for a connected graph represented by a weight matrix on a CREW PRAM. Given 
a connected graph G = (V, E), we assume that the weights of the edges are stored in 
a matrix W.  That is, entry W(i, j) corresponds to the weight of edge (i, j) ∈ E. Since 
the graph is not necessarily complete, we define W(i, j) = ∞  if the edge (i, j)o E. 
Since we assume that self-edges are not present in the input, we should note that 
W(i, i) = ∞  for all 1 ≤ i ≤ n. Notice that we use ∞  to represent nonexistent edges 
since the problem is one of determining a minimum-weight  spanning tree.

The algorithm we consider is based on Sollin’s algorithm, as previously 
described. Initially, we construct a forest of isolated vertices, which are then repet-
itively merged into trees until a single tree, i.e., a minimum spanning tree, remains. 
The procedure for merging trees at a given stage of the algorithm is to consider 
one candidate edge ei from every tree Ti. The candidate edge ei corresponds to an 
edge of minimum weight connecting a vertex of Ti to a vertex in some Tj where 
i ≠ j. All candidate edges are then added to the set of edges representing a  minimum 
weight spanning tree of G, as we have done with previously described minimum 
spanning tree algorithms. Note that some of the added edges may be removed later.
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During each of the merge steps, we must collapse every tree in the forest into 
a virtual vertex, i.e., a supervertex. Throughout the algorithm, every vertex must 
know the identity of the tree that it belongs to so that candidate edges can be cho-
sen properly during each iteration of the algorithm. We will use the component 
labeling technique, described earlier in this chapter, to accomplish this task.

Without loss of generality, we assume that every edge has a unique weight. 
Notice that in practice, ties in edge weight can be broken by appending unique 
edge labels to every weight. The basic algorithm follows.

The input consists of a connected, weighted, undirected graph G = (V, E) with 
weight function w on the edges e ∈ E. Let weight matrix W be used to store the 
weights of the edges, where W(i, j) = w(i, j)

Let vertex set V = {v1, . . . , vn}.
Let G' = (V, E') represent a minimum spanning tree 
of G that is under construction.
Initially, set E' = φ.
Initially, set the forest of trees F = {T1, . . . , Tn} 
where Ti = ({vi}, φ). That is, every vertex is its 
own tree.
While 0F 0 > 1, do
 For all Ti ∈ F, determine Candi, an edge of 
 minimum weight between a vertex in Ti and 
 a vertex in Tj  where i ≠ j.
 For all i, add Candi to E'.
  Combine all trees in F that are in the same  connected 
component with respect to the edges just added to E'. 
Assuming that r trees remain in the forest, relabel 
these virtual vertices, i.e.,  connected components, so 
that F = {T1, . . . , Tr}.

  Relabel the edges in E so that the vertices  correspond 
to the appropriate virtual vertices. This can be ac-
complished by reducing the weight matrix W so that it 
contains only information  pertaining to the r virtual 
vertices.

End While

Consider the running time of the algorithm as described. Since the graph G is 
connected, we know that every time through the While-loop, the number of trees in 
the forest will be reduced by at least half. That is, every tree in the forest will hook 
up with at least one other tree. Therefore, the number of iterations of the While-loop 
is O(log V ). The operations described inside of the While-loop can be performed 
by invoking procedures to sort edges based on vertex labels, perform parallel prefix 
in order to determine candidate edges, and apply the component-labeling  algorithm 
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338 Chapter 12  Graph Algorithms

in order to collapse connected components into virtual vertices. Since each of these 
procedures can be performed in time logarithmic in the size of the input, the run-
ning time for the entire algorithm as given is O(log2 V ).

Mesh

The mesh algorithm we discuss in this section is identical in spirit to that just pre-
sented for the PRAM. Our focus in this section is on the implementation of the 
specific steps of the algorithm. We assume that the input to the problem is a weight 
matrix W representing a graph G = (V, E), where 0V 0 = n. Initially, W(i, j), the 
weight of edge (i, j) ∈ E, is stored in mesh processor Pi, j. Again we assume that 
W(i, j) = ∞ if the edge does not exist or if i = j. We also assume, without loss of 
generality, that the edge weights are unique.

We define the forest F = {T1, . . . , Tn}, where Ti = ({vi}, φ). During each of the 
⎡log2 n⎤  iterations of the algorithm, the number of virtual vertices, i.e., superverti-
ces, in the forest is reduced by at least half. The reader might also note that at any 
point during the course of the algorithm, only a single minimum-weight edge 
needs to be maintained between any two virtual vertices. We need to discuss the 
details of reducing the forest during a generic iteration of the algorithm. Suppose 
that the forest F currently has r virtual vertices. Notice that at the start of an itera-
tion of the While-loop, as given in the previous section, every virtual vertex is 
represented by a unique row and column in an r × r weight matrix W. As shown in 
Figure 12-20, entry W(i, j), 1 ≤ i, j ≤ r, denotes the weight and identity of a mini-
mum-weight edge between virtual vertex i and virtual vertex j.

FIGURE 12-20 The r × r matrix W, as distributed one entry per processor in a 
natural fashion on an r × r submesh. Notice that each entry in processor Pi, j, 
1 ≤ i,  j ≤ r, contains the record (Wi, j,  ei, j), which represents the minimum weight 
of any edge between virtual vertices, i.e., supervertices, vi and vj, as well as 
 information about one such edge ei, j to which the weight corresponds. In this 
situation, the “edge” ei, j is actually a record containing information identifying its 
original vertices and its current virtual vertices.
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In order to determine the candidate edge for every virtual vertex vi, 1 ≤ i ≤ r, 
simply perform a row rotation simultaneously over all rows of W, where the rota-
tion is restricted to the r × r region of the mesh currently storing W. The edge in E 
that this virtual edge represents can be conveniently stored in the rightmost col-
umn of the r × r region since there is only one such edge per row, as shown in 
Figure 12-21. Based on the virtual vertex indices of these edges being added to 
E ', an adjacency matrix can be created in the r × r region that represents the con-
nections being formed between the current virtual vertices, as shown in 
Figure 12-22. Warshall’s algorithm can then be applied to this adjacency matrix 
in order to determine the connected components. That is, an application of 
Warshall’s algorithm will determine which trees in F have just been combined 
using the edges in E '. The rows of the matrix can now be sorted according to their 
new virtual vertex number. Next, in a similar fashion, the columns of the matrix 
can be sorted with respect to the new virtual vertex numbers. Now within every 
interval of rows, a minimum weight edge can be determined to every other new 
virtual vertex by a combination of row and column rotations. Finally, a concur-
rent write can be used to compress the r × r matrix to an r ' × r ' matrix, as shown 
in Figure 12-23.

Notice that each of the critical mesh operations working in an r × r region can 
be performed in O(r) time. Since the size of the matrix is reduced by at least a 
constant factor after every iteration, the running time of the algorithm is Θ(n), 

FIGURE 12-21 A sample 6 × 6 weight matrix in 
which, for simplicity’s sake, only the weights of 
the records are given. Notice that the  processors 
in the last  column also contain a minimum-weight 
edge and its identity after the row rotation.
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340 Chapter 12  Graph Algorithms

FIGURE 12-22 The 6 × 6 adjacency matrix corre-
sponding to the minimum-weight edges selected 
by the row rotations as shown in Figure 12-21.
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FIGURE 12-23 A concurrent write is used within the 
r × r region of the mesh to compress and update the r' 
rows and columns corresponding to the r' supervertices. 
This results in the creation of an r' ×  r' weight matrix in 
the upper-left regions of the r × r region so that the 
algorithm can  proceed to the next stage.
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which includes the time to perform a final concurrent read to mark all of the edges 
in the minimum spanning tree that was determined.

Shortest-Path Problems

In this section, we consider problems involving shortest paths within graphs. 
Specifically, we consider two fundamental problems, defined below.

 1. Single-Source Shortest-Path Problem: Given a weighted, directed graph 
G = (V, E), a solution to the single-source shortest-path problem requires that 
we determine a shortest, i.e., minimum-weight, path from source vertex s ∈ V  
to every other vertex v ∈ V. Notice that the notion of a minimum-weight path 
generalizes that of a shortest path in that a shortest path, i.e., a path containing 
a minimal number of edges, can be regarded as a minimum-weight path in a 
graph in which all edges have weight 1.

 2. All-Pairs Shortest-Path Problem: Given a weighted, directed graph G = (V, E), 
a solution to the all-pairs shortest-path problem requires the determination of 
a shortest, i.e., minimum weight, path between every pair of distinct vertices 
u, v ∈ V.

For problems involving shortest paths, several issues must be considered, 
such as whether or not negative weights and/or cycles are permitted in the input 
graph. It is also important to decide whether the total weight of a minimum-
weight path will be presented as the sole result or if a representation of a path that 
generates such a weight is also required. Critical details such as these, which 
often depend on the definition of the problem, have a great effect on the algo-
rithm that is to be developed and utilized. In the remainder of this section, we 
consider representative variants of shortest-path problems as ways to introduce 
critical paradigms.

Single-Source Shortest-Path RAM Algorithm

For the RAM, we will consider the single-source shortest-path problem, for 
which we need to determine the weight of a shortest path from a unique source 
vertex to every other vertex in the graph. Further, we assume that the result must 
contain a representation of an appropriate shortest path from the source vertex to 
every other vertex in the graph. Assume that we are given a weighted, directed 
graph G = (V, E), in which every edge e ∈ E has an associated weight w(e). Let 
s ∈ V  be the known source vertex. The algorithm that we present will produce a 
shortest-path tree T = (V ', E '), rooted at s, where V ' � V, E ' � E, V ' is the set of 
vertices reachable from s, and for all v ∈ V ', a simple path from s to v in T that 
is a minimum-weight path from s to v in G. It is important to emphasize that 
“shortest” paths, i.e., minimum-weight paths, are not necessarily unique and 
that shortest-path trees, i.e., trees representing minimum-weight paths, are also 
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342 Chapter 12  Graph Algorithms

not necessarily unique. See Figure 12-24, which shows two shortest path trees 
for the given graph G.

We consider Dijkstra’s algorithm for solving the single-source shortest-path 
problem on a weighted, directed graph G = (V, E) where all of the edge weights are 
nonnegative. Let s ∈ V  be the predetermined source vertex. The algorithm will cre-
ate and maintain a set V ' of vertices that, when complete, is used to represent the 
final shortest-path tree T. When a vertex v is inserted into V ', it is assumed that the 
edge (parent(v), v) is inserted into E '.

Initially, every vertex v ∈ V  is assumed to be at distance dist(v) = ∞  from the 
source vertex s, with the exception of all vertices directly connected to s by an 
edge. Let u be a neighboring vertex of s. Then, since (s, u) ∈ E, we initialize the 
distance from s to u to be dist(u) = w(s, u), the weight of the edge originating at s 
and terminating at u.

The algorithm consists of continually identifying a vertex that has not been 
added to V ', which is at minimum distance from s. Suppose the new vertex to be 
added to V ' is called x. Then after adding x to V ', all vertices t for which (x, t) ∈ E, 

FIGURE 12-24 A demonstration that shortest paths and shortest-path trees need 
not be unique. 

1

2
4

2

3 3

3
466

4

6

8

3

7
7

8

5

(a) A weighted, undirected 
graph G = (V, E).
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FIGURE 12-25 A demonstration of the progress of Dijkstra’s algorithm, through 
the iterations of its While-loop, for constructing a shortest-path tree. The vertices 
are numbered u0, u1, . . . , in the order in which they are inserted into the tree. 
Arrows represent parent pointers. Dark edges are those inserted into the tree.

are examined. If the current minimum distance from s, which is maintained in 
dist(t), can now be improved based on the fact that x is in V ', then dist(t) is updated, 
and parent(t) is set to x (see Figure 12-25).

The algorithm follows.

• The algorithm takes a weighted, directed graph G = (V, E ) as input.

• Initialize the sets of vertices and edges in the shortest-path tree T = (V ', E') 
that this algorithm produces to be empty sets. That is, set V ' ← φ  and E ' ← φ.

• Initialize the set of available vertices to be added to V ' to be the entire set of 
vertices. That is, set Avail ← V.

For every vertex v ∈ V, do
 Set dist(v) ← ∞. That is, the distance from every
 vertex to the source is initialized to be infinity.
 Set parent(v) ← null. That is, the parent of every 
 vertex is initially assumed to be nonexistent.
End For
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344 Chapter 12  Graph Algorithms

Set dist(s) ← 0. That is, the distance from the source 
to itself is 0. This step is critical to seeding the 
While-loop that follows.
GrowingTree ← true
While Avail ≠ φ and GrowingTree, do
 Determine u ∈ Avail, where dist(u) is a minimum over 
 all distances of vertices in Avail. Notice that the 
 first pass through the loop yields u = s.
 If dist(u) is finite, then
  V' ← V' ∪ {u} and Avail ← Avail\{u}. That is, add u to 
  the shortest-path tree and remove u from Avail.
  If u ≠ s, then E' ← E' ∪ 5 1parent(u), u2 6. That is, add 
  1parent(u), u2 to the edge set of T.
  For every vertex v ∈  Adj(u), do {Check to see
  if neighboring vertices
  should be updated.}
   If dist(v) > dist(u) + w(u, v), then {Update
  distance and parent information since 
  a shorter path is now possible.}
     dist(v) ← dist(u) + w(u, v)
     parent(v) ← u
   End If dist(v) > dist(u) + w(u, v)
  End For
 End If dist(u) is finite
 Else GrowingTree ← false {(V', E') is the finished 
  component of source vertex.}
End While

The algorithm is greedy in nature in that at each step the best local choice is 
taken and that choice is never undone. Dijkstra’s algorithm relies on an efficient 
implementation of a priority queue, since the set Avail of available vertices is 
continually queried in terms of minimum distance. Suppose that the priority 
queue of Avail is maintained in a simple linear array. Then a generic query to the 
priority queue will, on average, run in Θ(V ) time. Since there are Θ(V ) such que-
ries, they run in a total of Θ(V 2) time. Since each vertex is inserted into the 
shortest-path tree exactly once, this means that every edge in E is examined 
exactly twice in terms of trying to update distance information to neighboring 
vertices. Therefore, the total time to update distance and parent information is 
Θ(E). It follows that the running time of the algorithm is Θ(V 2 + E), or Θ(V 2), 
since E = O(V 2).

Notice that this algorithm is efficient for dense graphs. That is, if E = Θ(V 2), 
then the algorithm has an efficient running time of Θ(E). However, if the graph is 
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Shortest-Path Problems 345

sparse, then this implementation is not necessarily efficient. In fact, for a sparse 
graph, one might implement the priority queue as a binary heap or a Fibonacci 
heap in order to achieve a slightly more efficient running time.

All-Pairs Shortest-Path Parallel Algorithm

For the PRAM and the mesh, we consider the all-pairs shortest-path problem, 
given a weight matrix as input. Specifically, suppose we are given a weighted, 
directed graph G = (V, E) as input, where 0V 0 = n and every edge (u, v) ∈ E has an 
associated weight w(u, v). Further, assume that G is represented by an n × n weight 
matrix W, where W(u, v) = w(u, v) if (u, v) ∈ E and W(u, v) = ∞  otherwise.

Let Wk(u, v) represent the weight of a minimum-weight path from vertex u to 
vertex v, assuming that the intermediate vertices traversed on the path from u to v 
are indexed in {1, 2, . . . , k}. Then the matrix Wn will contain the final weights rep-
resenting a directed minimum-weight path between every pair of vertices. That is, 
Wn(u, v) will contain the weight of a minimum-weight directed path with source u 
and sink v, if such a path exists. Wn(u, v) will have a value of ∞  if a u → v path 
does not exist.

Notice that we have recast the all-pairs shortest-path problem as a variant of 
the transitive closure problem discussed earlier in this chapter in the section 
“Computing the Transitive Closure of an Adjacency Matrix”. Given a mesh of size 
n2 in which processor Pi, j stores weight information concerning a path from vertex 
i to vertex j, we can represent the computation of W as

Wk(i, j) =  min{Wk−1(i, j),  Wk−1(i, k) + Wk−1(k, j)}.

Therefore, we can apply van Scoy’s implementation of Warshall’s algorithm, 
as described earlier in this chapter, in order to solve the problem on a mesh of size 
n2 in optimal Θ(n) time. Notice that if the graph is dense (that is, E = Θ(V 2)), then 
the weight matrix input is an efficient representation.

On a PRAM, notice that we can also implement Warshall’s algorithm for com-
puting the transitive closure of the input matrix W. Recall that two matrices can be 
multiplied in Θ(log n) time on a PRAM containing n3/log n processors. Given an 
n × n matrix as input on a PRAM, Wn can be determined by performing Θ(log n) 
such matrix multiplications. Therefore, given an n × n weight-matrix as input, the 
running time to solve the all-pairs shortest-path problem on a PRAM with n3/log n 
processors is Θ(log2 n).

Notice that the algorithms we have presented for the all-pairs shortest-path 
problem give as output the total weight for every shortest path, but do not give 
shortest paths. Minor changes in the algorithms would enable us to have the short-
est paths as part of the output, although the algorithms would become computa-
tionally more expensive as a result of doing so.
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346 Chapter 12  Graph Algorithms

Summary

In this chapter, we study algorithms to solve a variety of problems concerned with 
graphs. We present several methods, i.e., adjacency list, adjacency matrix, and 
unordered edges, of representing a graph. We introduce efficient RAM solutions 
to fundamental problems such as breadth-first search and depth-first search. 
Warshall’s efficient algorithm for computing the transitive closure of the adjacency 
matrix is discussed for the RAM, and van Scoy’s efficient adaptation of the algo-
rithm to the mesh is also presented. Connected component labeling algorithms are 
given for several models of computation. Several sequential and parallel algo-
rithms for computing minimal-cost spanning trees are discussed. Solutions to 
shortest-path problems are given for multiple models of computation. These prob-
lems remain interesting open research problems for large-scale machines, includ-
ing NOWs, clusters, and grids.

Chapter Notes

In this chapter, we consider algorithms and paradigms to solve fundamental graph 
problems on a RAM, PRAM, and mesh computer. For a more in-depth treatment 
of sequential graph algorithms, please refer to the following sources:

• Graph Algorithms by S. Even (Computer Science Press, 1979).

• Data Structures and Network Algorithms by R.E. Tarjan (Society for Industrial 
and Applied Mathematics, 1983).

• “Basic Graph Algorithms” by S. Khuller and B. Raghavachari, in Algorithms 
and Theory of Computation Handbook, M.J. Atallah, ed., CRC Press, Boca 
Raton, FL, 1999.

For a survey of PRAM graph algorithms, complete with an extensive citation 
list, please refer to

• “A survey of parallel algorithms and shared memory machines” by R.M. Karp 
and V. Ramachandran, in the Handbook of Theoretical Computer Science: 
Algorithms and Complexity, A.J. van Leeuwen, ed. (Elsevier, New York, 1990, 
pp. 869–941).

The depth-first search procedure was developed by J.E. Hopcroft and R.E. 
Tarjan. Early citations to this work include

• “Efficient algorithms for graph manipulation” by J.E. Hopcroft and R.E. 
Tarjan, Communications of the ACM (16:372–378, 1973), and

• “Depth-first search and linear graph algorithms” by R.E. Tarjan, SIAM Journal 
on Computing, 1(2):146–160, June, 1972.

Warshall’s innovative and efficient transitive closure algorithm was first pre-
sented in “A theorem on Boolean matrices” by S. Warshall in the Journal of the 
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ACM 9, 1962, 11–12. An efficient mesh implementation of Warshall’s algorithm is 
discussed in detail in Parallel Algorithms for Regular Architectures by R. Miller 
and Q.F. Stout (The MIT Press, Cambridge, 1996).

An Introduction to Parallel Algorithms by J. Já Já (Addison Wesley, 1992), con-
tains details of PRAM algorithms for problems discussed in this chapter, including 
component labeling and minimum spanning trees. The PRAM  component-labeling 
algorithm presented in this chapter comes from a combination of the algorithms 
presented in these sources:

• “A survey of parallel algorithms and shared memory machines” by R.M. Karp 
and V. Ramachandran, cited above, and

• “Introduction to Parallel Connectivity, List Ranking, and Euler Tour 
Techniques” by S. Baase in Synthesis of Parallel Algorithms, J.H. Reif, ed. 
(Morgan Kaufmann Publishers, San Mateo, CA, 1993, pp. 61–114).

The sequential minimum spanning tree algorithm presented in this chapter 
combines techniques presented in Data Structures and Algorithms in JAVA by M.T. 
Goodrich and R. Tamassia (John Wiley & Sons, Inc., New York, 1998), with those 
presented in Introduction to Algorithms by T.H. Cormen, C.E. Leiserson, R.L. 
Rivest, and C. Stein (3rd ed.: The MIT Press, Cambridge, MA, 2009). The mini-
mum spanning tree algorithm for the PRAM was inspired by the one presented in 
An Introduction to Parallel Algorithms by J. Já Já (Addison Wesley, 1992), while 
the MST algorithm for the mesh was inspired by the one that appears in Parallel 
Algorithms for Regular Architectures by R. Miller and Q.F. Stout (The MIT Press, 
Cambridge, 1996).

For additional problems involving shortest paths, as well as techniques and 
algorithms for solving such problems, see the following sources.

• Introduction to Algorithms by T.H. Cormen, C.E. Leiserson, R.L. Rivest, and 
C. Stein (3rd ed.: The MIT Press, Cambridge, MA, 2009).

• An Introduction to Parallel Algorithms by J. Já Já (Addison Wesley, 1992).

• Parallel Algorithms for Regular Architectures by R. Miller and Q.F. Stout 
(The MIT Press, Cambridge, 1996).

Exercises

 1. Suppose a graph G is represented by unordered edges. Give an efficient algo-
rithm, as well as an analysis of its running time, to solve each of the following 
problems.

  a.  Construct an adjacency-list representation of G on a RAM. Provide an 
analysis of the running time of your algorithm.

  b.  Construct an adjacency-list representation of G on a PRAM with 0V 0 + 0E 0  
processors. Provide an analysis of the running time of your algorithm.
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348 Chapter 12  Graph Algorithms

  c.  Construct an adjacency matrix representation of G for the RAM, for a 
PRAM with Θ(V 2) processors, and for a mesh of size Θ(V 2) For the mesh, 
assume an initial distribution so that no processor has more than one edge, 
and include appropriate data movement operations in your algorithm.

 2. Give an efficient RAM algorithm, along with an analysis of its running time, 
to compute the height of a nonempty binary tree. The height of a tree is the 
maximum number of edges between the root node and any leaf node. Hint: 
consider a recursive solution to the problem.

 3. Prove that if v0 and v1 are distinct vertices of a graph G = (V, E) and a path 
exists in G from v0 to v1, then there is a simple path in G from v0 to v1.

 4. Recall that a graph G = (V, E) is complete if an edge exists between every pair 
of vertices. Given an adjacency-list representation of G, describe an efficient 
algorithm to determine whether or not G is complete. Analyze the algorithm 
for the RAM and for a CREW PRAM with n2 =  0V 0 2 processors.

 5. Suppose the graph G = (V, E) is represented by an adjacency matrix, where 
n = 0V 0 . Give an efficient algorithm to determine whether or not G is com-
plete, as defined in the previous exercise. Provide an analysis of your algo-
rithm for the RAM, for an arbitrary CRCW PRAM with n2 processors, and for 
an n × n mesh. Note for the mesh, at the end of the algorithm, every processor 
should know whether or not G is complete.

 6. Let v0 and v1 be distinct vertices of a graph G = (V, E). Suppose we want to 
determine whether or not these two vertices are in the same component of 
G. One way to answer this query is to perform a component-labeling 
 algorithm and then compare the component labels of v0 and v1. Give a 
“simple” search-based algorithm for the RAM and provide an analysis of 
its running time.

 7. The distance between two vertices of a graph is the number of edges in a 
shortest path connecting the vertices. The distance between two vertices that 
are not connected is defined to be ∞ . The diameter of a connected graph is the 
maximum distance between a pair of vertices of the graph. Give an algorithm 
to find the maximal diameter of the components of a graph. Provide an analy-
sis of the running time of your algorithm for a PRAM of size n3/log n and a 
mesh of size n2.

 8. Let G = (V, E) be a connected graph. Suppose there is a Boolean function 
hasTrait(vertex) that can be applied to any vertex of G in order to determine in 
Θ(1) time on a RAM whether or not the vertex has a certain trait.

   •  Given a graph represented by adjacency lists, describe an efficient RAM 
algorithm to determine whether or not there are adjacent vertices with the 
trait tested for by this function. Give an analysis of your algorithm.
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   •  Suppose instead that the graph is represented by an adjacency matrix. 
Describe an efficient RAM algorithm to determine whether or not there are 
adjacent vertices with the trait tested for by this function. Give an analysis 
of your algorithm.

 9. A bipartite graph is an undirected graph G = (V, E) with nonempty subsets 
V0, V1 of V such that V0 ∪ V1 = V, V0 ∩ V1 = φ, and every member of E joins a 
member of V0 to a member of V1. Let T = (V, E ') be a minimum spanning tree 
of a connected bipartite graph G. Show that T is also a bipartite graph.

 10. Suppose G is a connected graph. Give an efficient algorithm to determine 
whether or not G is a bipartite graph, as defined in the previous problem. 
Analyze the running time of the algorithm on the RAM.

 11. Let S = 5Ii = [ai, bi]6i=1
n

 be a set of intervals on the real line. An interval 
graph G = (V, E) is determined by S as follows. V = {vi}i=1

n , and for distinct 
indices i and j, there is an edge from vi to vj if and only if Ii ∩ Ij ≠ w. Give 
an efficient algorithm to construct an interval graph determined by a given 
set S of intervals and analyze the algorithm’s running time for a RAM. 
Note: there is a naïve algorithm that runs in Θ(n2) time, where n = 0V 0 . You 
should be able to give a more sophisticated algorithm that runs in 
Θ(n log n + E) time.

 12. Suppose T = (V, E) is a tree. Explain the asymptotic relationship between 0E 0  
and 0V 0 .

 13. Let G = (V, E) be a connected graph. Recall we say e ∈ E is a bridge edge of G 
if the graph Ge = (V,  E �{e}) is disconnected.

  a.  A naïve algorithm may be given to identify all bridge edges as follows. 
Every edge e is regarded as a possible bridge edge, and the graph Ge is 
tested for connectedness. Show that such an algorithm runs in O(E(V + E)) 
time on a RAM.

  b.  Let T be a minimal spanning tree for G. Show that every bridge edge of G 
must be an edge of T.

  c.  Use the result of part b to obtain an algorithm for finding all bridge edges 
of G that runs in O(V 2 + E log V ) time on a RAM. Hint: use the result of 
Exercise 12.

 14. Let G = (V, E) be a connected graph. Recall an articulation point is a ver-
tex of G with the property that its removal would leave the resulting 
graph disconnected. That is, v is an articulation point of G if and only if the 
graph Gv = (V \{v}, Ev), where Ev = {e ∈ E 0 e is not incident on v}, is a dis-
connected graph.

  a.  Suppose 0V 0 > 2. Show that at least one vertex of a bridge edge of G must 
be an articulation point of G.
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350 Chapter 12  Graph Algorithms

  b.  Let v ∈ V  be an articulation point of G. Must there be a bridge edge of G 
incident on v? If so, give a proof; if not, give an example.

  c.  Let G be a connected graph for which there is a positive number C such that 
no vertex has degree greater than C. Let v ∈ V  be a vertex of G. Give an 
algorithm to determine whether or not v is an articulation point. Discuss the 
running time of implementations of your algorithm on the RAM, CRCW 
PRAM of size 0V 0 + 0E 0 , and mesh of size 0E 0 .

 15. Let ⊗ be an associative binary operation that is commutative and that can be 
applied to data stored at the vertices of a graph G = (V, E). Assume a single 
computation of ⊗ runs in Θ(1) time. Suppose 0V 0 > 1. Suppose G is connected 
and represented in memory by unordered edges. Give an efficient RAM algo-
rithm for a semigroup computation based on ⊗, on the vertices of G. Give the 
running time of your algorithm.

 16. Suppose it is known that a graph G = (V, E) is a tree with root vertex v* ∈ V, 
but the identity of the parent vertex parent(v) is not known for v ∈ V \{v*}. 
How can every vertex v determine parent(v)? What is the running time of your 
algorithm on a RAM?

 17. Give an efficient RAM algorithm to determine the number of descendants of 
every vertex of a binary tree T = (V, E) with root vertex v* ∈ V. What is the 
running time of your algorithm?

 18. Analyze the running time of Sollin’s algorithm, as described in the text.

 19. Given a labeled n × n digitized image, and one “marked” pixel per component, 
provide an efficient algorithm to construct a minimum-distance spanning tree 
within every component with respect to using the “marked” pixel as the root. 
Present analysis for the RAM.
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With the exception of Chapter 6, “Matrix Operations,” most of this book has been 
concerned with “non-numerical” problems and algorithms. That is not to say 

that we have avoided doing arithmetic. Rather, we have concentrated on problems in 
which algorithms do not require the intensive use of floating point calculations or the 
unusual storage required for large integers or highly precise floating point numbers. It 
is important to realize that a stable, accurate, and efficient use of numerically intensive 
calculations is critical to scientific and technical computing.

As we have mentioned previously, the emerging discipline of computational 
 science and engineering is now accepted as the third science, complementing both 
theoretical science and laboratory science. Computational science and engineering is 
an interdisciplinary subject that unites computing and mathematics with disciplinary 
efforts in chemistry, biology, physics, and other scientific and engineering fields. In 
terms of computing, major components include high-end computing systems, state-of-
the art networking, high-end visualization, and high-end storage. In order for these 
systems to perform at their fullest, they require advanced paradigms, fundamental 
algorithms, middleware, and disciplinary applications. Computational science and 
engineering focuses on problems that require simulation and modeling in order to 
make significant advances to efforts in scientific and engineering fields. In this chap-
ter, we examine algorithms for some fundamental numerical problems.

In most of our previous discussions, we have used n as a measure of the size of a 
problem, in the sense of how much data is processed by an algorithm or how much 
storage is required by the data processed. This is not always the case for the problems 
discussed in this chapter. For example, the value of xn is based on a constant number of 
data items. However, the value of n will still play a role in determining the running 
time and memory usage of the algorithms discussed. The focus of this chapter is on 
RAM algorithms, but several of the exercises consider the design and analysis of paral-
lel algorithms to solve numerical problems.

We also call the reader’s attention to the fact that we make an important change in 
the focus of our analysis in this chapter. Rather than analyzing the running time of a 
RAM algorithm, we analyze the number of operations performed by an algorithm. 
That is, we consider an asymptotic evaluation of the number of high-level operations 
utilized. These operations include addition, subtraction, multiplication, division, and 
the computation of square roots. This is because for some of the problems we consider, 
we can no longer assume that these are constant-time operations. When operands are 
not restricted to representations of a fixed number of bits, the number of bits in the 
 operands impacts the running time of these operations.
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354 Chapter 13  Numerical Problems

Primality

Given an integer n > 1, suppose we want to determine whether or not n is a prime 
number. That is, we want to determine whether or not the only positive integer fac-
tors of n are 1 and n. This problem, from the area of mathematics known as Number 
Theory, was once thought to be largely of theoretical interest. However, modern 
data encryption techniques depend on factoring large integers, so there is consid-
erable practical value in the primality problem.

We recall that n is prime if and only if the only factorization n = u × v of n with 
integers 1 ≤ u ≤ v is u = 1 and v = n. This naturally suggests a RAM  algorithm in 
which we test every integer u from 2 to n − 1 to see if u is a factor of n. Such an 
algorithm utilizes O(n) operations.

We can improve the performance of the algorithm by observing that any fac-
torization n = u × v of n with integers 1 ≤ u ≤ v must satisfy 1 ≤ u ≤ n1/2. To prove 
this claim, notice that otherwise, we would have n1/2 < u < v, which implies 
n = n1/2 × n1/2 < u × u ≤ u × v = n. Therefore, we would have the contradictory con-
clusion that n < n. Thus, we obtain the following RAM algorithm.

Procedure Primality(n, nIsPrime, factor)
Input: n, an integer greater than 1.
Output: nIsPrime, true or false according to whether n is prime.
factor, the smallest prime factor of n if n is not prime.
Local variable: Root_n, integer approximation of n1/2.

Action:

 factor = 2
 Root_n = ⎣n1/2⎦p
 nIsPrime ← true
 Repeat
  If n/factor = ⎣n/factor⎦,pthen nIsPrime ← false
  Else factor ← factor + 1
 Until (not nIsPrime) or (factor >  Root_n)

This algorithm utilizes O(n1/2) operations. In fact, when n is prime, Θ(n1/2) 
operations are utilized. This asymptotic worst-case scenario also occurs if n is not 
prime and the smallest prime factor of n is Θ(n1/2), since in this case a prime factor 
is not detected until Θ(n1/2) iterations of the loop have occurred.

Notice that exploring non-prime values of factor in the algorithm above is 
unnecessary, since if n is divisible by a composite integer u × v, it follows that n is 
divisible by u. This has the following implications.

• With only minor modifications to the algorithm above, we can reduce the 
number of operations utilized by a constant factor if we consider only 2 and 
odd numbers as possible factors of n.
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Greatest Common Divisor 355

• If we have in memory a list L of the prime integers that are no greater than n1/2 
and use only these values for factor in the algorithm above, we obtain a more 
efficient algorithm. It is known that the number π(n) of prime numbers that 
are less than or equal to n satisfies π(n) = Θ(n/log  n). This follows from the 
Prime Number Theorem, which states that

lim
n→∞
c π(n)

n/ln n
d = 1.

Thus, we can modify the previous algorithm, as follows.

Procedure Primality(n, L, nIsPrime, factor)
Input: n, a positive integer.
L, a list in which consecutive entries are successive primes including all 
primes ≤ n1/2, and the next prime.
Output: nIsPrime, true or false according to whether n is prime.
factor, the smallest prime factor of n if n is not prime.
Local variables: i, an index.
Root_n, integer approximation of n1/2.

Action:

 i ← 1 {set index for first entry of prime}
 Root_n ← ⎣n1/2⎦p
 nIsPrime ← true
 Repeat
  factor ← L[i]
  If n/factor = ⎣n/factor⎦,pthen nIsPrime ← false
  Else i ← i + 1
 Until (not nIsPrime) or (L[i] > Root_n)
 Return nIsPrime, factor

In light of the asymptotic behavior of the function π(n), it is easily seen that 
this RAM algorithm utilizes O(n1/2/log  n) operations.

In the Exercises, the reader is asked to devise a parallel algorithm for the 
 primality problem.

Greatest Common Divisor

Another problem concerned with factoring integers is the greatest common divisor 
(gcd) problem. Given nonnegative integers n0 and n1, we wish to find the largest 
positive integer, denoted (n0, n1), that is a factor of both n0 and n1. We will find it 
useful to define gcd(0, n) = gcd(n, 0) = n for all positive integers n.
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356 Chapter 13  Numerical Problems

The greatest common divisor is used in the familiar process of “reducing a 
fraction to its lowest terms.” This can be important when calculations originating 
with integer quantities must compute divisions without roundoff error. For exam-
ple, we would store 1/3 as the pair (1, 3) rather than as 0.333 . . . 33. In such a repre-
sentation of real numbers, for example, we would have (5, 60) = (3, 36), since each 
of the pairs represents the fraction 1/12.

The Euclidean algorithm, a classical solution to the gcd problem, is based on 
the following observation. Suppose there are integers q and r, i.e., quotient and 
remainder, respectively, such that

n0 = q × n1 + r.

Then any common factor of n0 and n1 must also be a factor of r. Therefore, if 
n0 ≥ n1 and q = ⎣n0/n1⎦ , we have n1 > r ≥ 0 and

gcd(n0, n1) = gcd(n1, r).

These observations give us the following recursive algorithm.

Function gcd(n0, n1) {greatest common divisor of arguments}
Input: nonnegative integers n0, n1
Local variables: integer quotient, remainder

Action:

 If n0 < n1, then swap(n0, n1) {Thus, we assume n0 ≥ n1.}
 If n1 = 0, return n0
 Else
  quotient ← ⎣n0/n1⎦p
  remainder ← n0 − n1 × quotient
  return gcd(n1, remainder)
 End else

In terms of the variables discussed above, the number of operations utilized by 
this algorithm, T(n0, n1), satisfies the recursive relation

T(n0, n1) = T(n1, r) + Θ(1).

It is perhaps not immediately obvious how to solve this recursion, but we can 
make use of the following.

Lamé’s Theorem

The number of division operations needed to find gcd(n0, n1), for integers satisfy-
ing n0 ≥ n1 ≥ 0, using the Euclidean algorithm, is no more than five times the num-
ber of decimal digits of n1.
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Integral Powers 357

It follows from our solution to the primality problem that our implementation 
of the Euclidean algorithm on a RAM utilizes T(n0, n1) = O(log (min{n0, n1})) 
operations for positive integers n0, n1.

The Euclidean algorithm seems inherently sequential. In the exercises, a very 
different approach is suggested that can be parallelized efficiently.

Integral Powers

Let x be a real, i.e., floating point, number and let n be an integer. Often we con-
sider that computing xn utilizes Θ(1) operations. This is a reasonable assumption 
to make if the absolute value of n is bounded by some constant. For example, we 
might assume that the computation of xn utilizes Θ(1) operations for 0 n 0 ≤ 100. 
However, one can assume that the number of operations utilized in computing xn is 
related to the value of n.

We can easily reduce this problem to the assumption that n ≥ 0 since an algo-
rithm to compute xn for an arbitrary integer n can be constructed as follows.

 1. Compute temp = x 0n 0.
 2. If n ≥ 0, return temp else return 1/temp.

Notice that step 2 utilizes Θ(1) operations. Therefore, the number of opera-
tions utilized by the algorithm is dominated by the computation of a nonnegative 
power. Thus, without loss of generality in the analysis of the algorithm to solve this 
problem, we will assume that n ≥ 0. A standard, brute-force, algorithm is given 
below for computing a simple power function on a RAM.

Function power(x, n) {return the value of xn}
Input: x, a real number.
n, a nonnegative integer.
Output: xn.
Local variables: product, a partial result.
counter, the current power.

Action:

 product = 1
 If n > 0, then
  For counter = 1 to n, do
   product = product × x
  End For
 End If
 Return product

The reader should verify that the number of operations utilized by the RAM 
algorithm given above is Θ(n), and that this algorithm requires extra space for 
Θ(1) data items.
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358 Chapter 13  Numerical Problems

Now let’s consider computing x19 for any real value x. The brute-force algo-
rithm given above utilizes 19 multiplications. However, by exploiting the concept 
of recursive doubling that has been used throughout the book, observe that we can 
compute x19 much more efficiently, as follows.

 1. Compute and save x2 = x × x.

 2. Compute and save x4 = x2 × x2.

 3. Compute and save x8 = x4 × x4.

 4. Compute and save x16 = x8 × x8.

 5. Compute and return x19 = x16 × x2 × x.

Notice that this procedure utilizes a mere six multiplications, although we pay 
a small price in requiring extra memory.

In order to generalize from our example, we remark that the key to our recur-
sive doubling algorithm is in the repeated squaring of powers of x instead of the 
repeated multiplication by x. The general recursive doubling algorithm follows.

Function power(x, n) {return the value of xn}
Input: x, a real number.
n, a nonnegative integer.
Output: xn.
Local variables: product, a partial result.
  counter, exponent: integers.
  p30 . . . ⎣log2 n⎦4, an array used for certain powers of x.

  q3[0 . . . ⎣log2 n⎦4, an array used for powers of 2.

Action:

 product = 1
 If n > 0, then
  p[0] = x
  q[0] = 1
  For counter = 1 to ⎣log2 n⎦, do
   q[counter] = 2 × q[counter − 1] {=  2counter}
   p[counter] = 1p[counter − 1]22 {p[i] = xq[i] = x2i}
  End For
  exponent = 0
  For counter = ⎣log2 n⎦ downto 0, do
   If exponent + q[counter] ≤ n then
    exponent = exponent + q[counter]
    product = product × p[counter]
   End If exponent + q[counter] ≤ n
  End For
 End If n > 0
 Return product
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Evaluating a Polynomial 359

The reader should be able to verify that this algorithm utilizes Θ(log  n) opera-
tions on a RAM, using extra space for Θ(log  n) data items. The reader will be 
asked to consider parallelizing this RAM algorithm as an exercise.

Evaluating a Polynomial

Let f (x) be a polynomial function,

f (x) = an xn + an−1xn−1 + . . . + a1x + a0

for some set of real numbers {ai}i=0
n , with an ≠ 0 if n > 0. Then n is the degree of 

f (x). As was the case in evaluating xn, a straightforward algorithm for evaluating 
f (t), for a given real number t, does not yield optimal performance. Consider the 
following naïve algorithm.

 evaluation = 0
 For i = 0 to n, do
  If ai ≠ 0, then evaluation = evaluation + ai × xi

 Return evaluation

Notice that we could, instead, use an unconditional assignment in the body of 
the For-loop. However, the calculation of xi utilizes ω (1) operations, so it is often 
useful to omit this calculation when it isn’t necessary, i.e., when ai = 0.

It is clear that the For-loop dominates the work of the algorithm. If we use the 
naïve algorithm given above to compute xn, then the algorithm presented above for 
evaluating a polynomial utilizes

Θaa
n

i=1

ib = Θ(n2)

operations on a RAM in the worst case. Even if we use our recursive doubling 
algorithm for computing xn, this straightforward algorithm for evaluating a poly-
nomial utilizes

Θaa
n

i=1

log  ib = Θ(n log n)

operations on a RAM in the worst case. However, we can do better than this.
Let’s consider a 3rd-degree polynomial. We have

a3x3 + a2x2 + a1x + a0 = 1(a3x + a2)x + a12x + a0.

For example,

10x3 + 5x2 − 8x + 4 = 1(10x + 5)x − 82 x + 4.
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360 Chapter 13  Numerical Problems

This illustrates a general principle, that by grouping expressions appropriately, 
we can reduce the number of arithmetic operations to a number that is linear in n, 
the degree of the polynomial. This observation is the basis for Horner’s Rule and a 
corresponding algorithm, given below.

Function Evaluate(a, x)
{evaluate the polynomial represented by the coefficient array a at the input 
value x}
Input: Array of real coefficients a[0 . . . n], real number x.

Output: Value f (x) = a
n

i=0

a[i] × xi.

Local variables: i, an index variable, and result to accumulate the return value.

Action:

 result = a[n]
 If n > 0, then
  For i = n downto 1, do
   result = result × x + a[i − 1]
  End For
 End If
 Return result

The reader should verify that the algorithm given above implements Horner’s 
Rule on a RAM while utilizing Θ(n) operations. Alternately, one can construct an 
algorithm based on a parallel prefix calculation that runs in a linear number of 
operations, but also uses a linear amount of additional memory. By contrast, 
Horner’s algorithm requires only a constant amount of additional memory. In the 
Exercises, the reader is asked to consider constructing an efficient parallel algo-
rithm to evaluate a polynomial.

Approximation by Taylor Series

Recall from calculus that a function that is sufficiently differentiable may be 
approximately evaluated by using a Taylor polynomial, i.e., a Taylor series. In par-
ticular, let f (x) be continuous everywhere on a closed interval [a, b] and n times 
differentiable on the open interval (a, b) containing values x and x0. Let 5pk6k=0

n−1
 be 

the set of polynomial functions defined by

pk(x) = a
k

i=0

 
f (i)(x0)

i!
 (x − x0)i,

where f (i) denotes the ith order derivative function and i! denotes i factorial. Then 
the error term in approximating f (x) by pn−1(x) is

εn(x) = f (x) − pn−1(x) =
f (n)(τ )

n!
 (x − x0)n,

for some τ  between x and x0.
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Approximation by Taylor Series 361

The expression εn(x) is defined to be the truncation error, which is used when 
replacing an exact value of an infinite computation by the approximation obtained 
by using truncating to a finite computation. By contrast, as we mentioned in 
Chapter 6, a roundoff error occurs whenever an exact calculation yields more non-
zero decimal places than can be stored. In the remainder of this section, we will 
consider only truncation errors.

Often, we do not know the exact value of τ  in the error expression. If we knew 
the value of τ , we could compute the error and adjust our calculation by its value 
to obtain a net truncation error of 0. However, we can often obtain a useful upper 
bound on the magnitude of the error. Such a bound may provide us with informa-
tion regarding how hard we must work to obtain an acceptable approximation.

For example, we may have an error tolerance ε > 0. This means we wish to 
allow no more than ε  of error in our approximation. The value of ε  may give us a 
measure of how many operations are necessary in order to compute an acceptable 
approximation. Therefore, we may wish to express our number of operations uti-
lized as a function of ε . Notice that this is significantly different from the analysis 
of algorithms presented in previous chapters. We are used to the idea that the larger 
the value of n, the larger the number of operations performed by an algorithm. 
However, in a problem in which error tolerance determines running time, it is usu-
ally the case that the smaller the value of ε , the larger the number of operations 
performed. That is, the smaller the error we can tolerate, the more we must work to 
obtain a satisfactory approximation. It is difficult to give an analysis for large 
classes of functions. This is due to the fact that the rate of convergence of a Taylor 
series for the function f (x) that it represents depends on the nature of f (x) and 
the interval [a, b] on which the approximation is desired. Of course, the analysis 
also depends on the error tolerance. Below, we present examples to illustrate typi-
cal methods.

EXAMPLE

We show how to give a polynomial of minimal or nearly minimal degree that 
will approximate the exponential function ex to d decimal places of accuracy 
on the interval [−1, 1], for some positive integer d.

Let’s take x0 = 0 and observe that f (i)(x) = ex for all i. Our estimate of the 
truncation error then becomes

εn(x) =
eτ

n!
 xn.

Notice that ex is a positive and increasing function since its first derivative 
is always positive. Therefore, its maximum absolute value on any interval is at 
the interval’s right endpoint. Thus, on the interval [−1, 1], we have

0 εn(x) 0 ≤ e1

n!
1n =  

e

n!
<

2.8

n!
.
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362 Chapter 13  Numerical Problems

Note the choice of 2.8 as an upper bound for e is somewhat arbitrary as we 
could have used 3 or 2.72 instead. The requirement of approximation accurate 
to d decimal places means we need to have 0 εn(x) 0 ≤ 0.5 × 10−d. Therefore, it 
suffices to take

2.8

n!
≤ 0.5 × 10−d ⇔

2.8 × 10d

0.5
≤ n! ⇔

 5.6 × 10d ≤ n! (13.1)

in order that the polynomial

pn−1(x) = a
n−1

i=0

 
xi

i!

approximate ex to d decimal places of accuracy on the interval [−1, 1].
We would prefer to solve inequality (13.1) for n in terms of d, but a solu-

tion does not appear to be straightforward. However, it follows from inequality 
(13.1) that n = o(d) (see the Exercises), although for small values of d, as shown 
below, this claim may not seem to be suggested. The assertion is important 
because we know from an Exercise that on a RAM, evaluating a polynomial by 
an optimal algorithm utilizes Θ(n) operations, where n is the degree of the 
polynomial.

For a given value of d, let nd be the smallest value of n satisfying inequality 
(13.1). Simple calculations based on inequality (13.1) yield the values shown in 
Table 13-1.

Table 13-1 Values of d, i.e., decimal places, and 
nd, i.e., number of terms, for the Taylor series for 
ex expanded about x0 = 0 on [−1, 1].

d nd

1 5
2 6
3 8
4 9
5 10

Thus, if d = 3, the desired approximating polynomial for ex on [−1, 1] is

pn3−1(x) = a
7

i=0

 
xi

i!
.
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Approximation by Taylor Series 363

EXAMPLE

We show how to give a polynomial of minimal or nearly minimal degree that 
will approximate the trigonometric function sin  x to d decimal places of accu-
racy on the interval [−π , π] for some positive integer d.

Let’s take x0 = 0 and observe that f (i)(0) ∈ {−1, 0, 1} for all i. If the latter 
claim is not obvious to the reader, it is a good exercise in mathematical induc-
tion. Our estimate of the truncation error then becomes

0 εn(x) 0 ≤ ` 1
n!

 xn ` ≤ π n

n!
<

3.2n

n!
.

As in the previous example, accuracy to d decimal places implies an error 
tolerance of 0 εn(x) 0 ≤ 0.5 × 10−d. Hence, it suffices to take

3.2n

n!
 ≤ 0.5 × 10−d ⇔

 2 × 10d ≤  
n!

3.2n
. (13.2)

If we take the minimal value of n that satisfies inequality (13.2) for a given 
d, we have n = o(d) (see the Exercises), although for small values of d, this 
claim may not seem to be suggested, as shown below.

For a given value of d, let nd be the smallest value of n satisfying inequality 
(13.2). Simple calculations based on inequality (13.2) yield the values shown 
in Table 13-2.

Table 13-2 Values of d (decimal places) and 
nd terms for the Taylor series for sin x expanded 
about x0 = 0 on [–π , π ].

d nd

1 10
2 12
3 14
4 15
5 17
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364 Chapter 13  Numerical Problems

Trapezoidal Integration

A fundamental theorem of Calculus is that if F '(x) = f (x) for every x ∈ [a, b], then

∫
b

a
  f (x)dx = F(b) − F(a).

Unfortunately, for many important functions f (x), the corresponding antide-
rivative function F(x) is difficult to evaluate for a given value of x. As an example, 
consider the function f (x) = x−1 with

F (x) = ln x = ∫
x

1
 f (t)dt.

For such functions, it is important to have approximation techniques in order 
to evaluate definite integrals.

One of the best-known approximation techniques for definite integrals is 
Trapezoidal Integration, in which we use the relationship between definite inte-
grals and the area between the graph and the x-axis to approximate a slab of the 
definite integral with a trapezoid. We will not prove the following statement, as its 
derivation can be found in many Calculus or Numerical Analysis textbooks.

Theorem: Let f (x) be a function that is twice differentiable on the interval 
[a, b] and let n be a positive integer. Let

h =
b − a

n

Thus, for d = 2 we can approximate sin x on the interval [−π , π] to two 
decimal places of accuracy by the polynomial

pn2−1(x) = 0 +
1x

1!
+

0x2

2!
+

−1x3

3!
+

0x4

4!
+

1x5

5!

              +
0x6

6!
+

−1x7

7!
+

0x8

8!
+

1x9

9!
+

0x10

10!
+

−1x11

11!

        = x −
x3

6
+

x5

120
−

x7

5,040
+

x9

362,880
−

x11

39,916,800
.
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Trapezoidal Integration 365

and let xi, i ∈ {1, 2, . . . , n − 1}, be defined by xi = a + ih. Let

tn = h c f (a) + f (b)

2
+ a

n−1

i=1
  f (xi)d .

Then tn is an approximation to

∫
b

a
  f (x)dx,

with the error in the estimate given by

 εn = tn − ∫
b

a
  f (x)dx =

(b − a)3 f "(η)

12n2
, (13.3)

for some η ∈(a, b).
The reader should consider Figure 13-1 in order to recall the principles behind 

Trapezoidal Integration.

FIGURE 13-1 Trapezoidal Integration. The dashed 
lines represent the tops of the trapezoids. The area 
under each small arc is approximated by the area 
of a trapezoid. It is often much easier to compute 
the area of a trapezoid than the exact area under an 
arc. The total area of the trapezoids serves as an 
approximation to the total area under the curve.

y = f(x)

a x1 x2 xn�1 b

· · ·

The value of η in equation (13.3) is often unknown to us, but an upper bound 
for 0  f "(η) 0  is often sufficient, as what we seek is for 0 εn 0  to be small.

If we assume that for x ∈ [a, b], each value of f (x) can be computed on a 
RAM with Θ(1) operations, then it is easy to see that tn can be computed on a 
RAM with Θ(n) operations (see the Exercises). We expect that the number of oper-
ations performed by an algorithm will be a function of the quality of the approxi-
mation, much as was the case of computing the Taylor series to within a 
predetermined error.
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366 Chapter 13  Numerical Problems

If we choose the smallest value of n satisfying the inequality (13.4), we con-
clude that the number of operations performed by our approximation of ln 2, using 
Trapezoidal Integration as discussed above, is exponential in the number of deci-
mal places of accuracy, Θ(10d/2).

We remark that it is not unusual to find that the amount of work required is 
exponential in the number of decimal places of accuracy required. In these situa-
tions, Trapezoidal Integration may not be a very good technique to use for  computing 
approximations that are required to be extremely accurate. Another way of looking 
at this analysis is to observe that using an error tolerance of ε = 0.5 × 10−d, we have 
d = −log10 (2ε). Further, if we substitute this into  inequality (13.4), we conclude that 
the minimal value of n satisfying the inequality is Θ(ε −1/2).

Notice also, for example, that for d = 6, the minimum value of n to satisfy 
inequality (13.4) is n = 578. While this indicates an unreasonable amount of work 

EXAMPLE

For some positive integer d, we sketch how to compute ln  2 to d decimal places 
by using Trapezoidal Integration, and we give an analysis of the number of 
operations performed in terms of d. Recall that ln  2 is loge 2, where 
e ≈ 2.7182818 is the “Euler number.” As mentioned previously in the text, “ln” 
is typically referred to as the “natural logarithm.” Since

ln 2 = ∫
2

1
 x−1dx,

we take f (x) = x−1, f  '(x) = −x−2, f  "(x) = 2x−3, f (3)(x) = −6x−4, and [a, b] = [1, 2]. 
Notice f  "(x) > 0 on [1, 2], and f  " is a decreasing function since its derivative, 
f (3)(x), is negative for all x ∈ [1, 2]. Therefore, f  " attains its maximum abso-
lute value on [1, 2] at the left endpoint. It follows that

0 εn 0 ≤ (2 − 1)3 f  "(1)

12n2
=

1 × 2(1)−3

12n2
=

1

6n2
.

Since we wish to attain d decimal place accuracy, we want 0 εn 0 ≤ 0.5 × 10−d, 
so it suffices to take

1

6n2
≤ 0.5 × 10−d ⇔

10d

3
≤ n2 ⇔

 
10d/2

31/2
≤ n. (13.4)

We leave to the reader as an exercise the computation of ln 2 accurate to a 
desired number of decimal places by Trapezoidal Integration, as discussed above.
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Approximate Solution of an Equation 367

for a student in a calculus class using only pencil, paper, and a non-programmable 
calculator, it is still a small problem for a modern computer.

Other methods of “numerical integration” such as Simpson’s Method tend to 
converge faster to the definite integral represented by the approximation. 
Fortunately, for many purposes, only a small number of decimal places of accu-
racy are required. Also, it may be that another technique, such as using a Taylor 
series, is more efficient for computing the value of a logarithm.

Approximate Solution of an Equation

Suppose we have an equation of the form f (x) = 0, where the function f (x) is con-
tinuous on an interval [a, b] , and we wish to find a solution, or perhaps all solu-
tions to this equation, i.e., one or all values of x ∈ [a, b] that satisfy the equation. It 
is often difficult to find an exact solution, and in such a case, a sufficiently accu-
rate approximate solution will often serve our purposes well.

This problem is often made simpler if we happen to know that the function f (x) 
is monotone on [a, b], i.e., either f (x) is an increasing function on [a, b] or f (x) is a 
decreasing function on [a, b]. In the case of a monotone function, a Binary Search 
type of procedure yields an efficient sequential solution, as follows. For simplicity, we 
assume the value of f (x) can be computed in a constant number of operations for any 
x ∈ [a, b]. Notice that since f (x) is continuous and monotone on [a, b], if f (a) f (b) > 0 
then f (a) and f (b) have the same sign, and there is no solution in [a, b]. Clearly, the 
problem is trivial if f (a) = 0 or f (b) = 0. Therefore, we assume below that f (a) and 
f (b) have opposite signs, i.e., one is positive and the other is negative.

Algorithm for approximate solution of f (x) = 0 on [a, b], where f (x) is 
monotone on [a, b] and f (a) and f (b) have opposite signs.

Function Solution([a, b], ε)
Inputs: [a, b] is the interval considered.
ε > 0 is the error tolerance of the solution, i.e., if the approximate value 
returned is denoted by x0, then there is an exact solution x' such that 0 x' − x0 0 < ε .
Local variable: mid, used as the midpoint of the current interval.

Action:

 mid ←
a + b
2

 If b − a < ε or f(mid) = 0 then return mid
 Else {b − a ≥ ε and 0 ∉ {f(a),f(b),f(mid)}}
  If f(a) × f(mid) < 0 then return Solution([a,mid],ε) {*}
  Else return Solution([mid, b],ε)
 End Else {b − a ≥ ε and 0 ∉ {f(a),f(b),f(mid)}}
 End algorithm
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368 Chapter 13  Numerical Problems

It is easily seen that if the condition at the line marked {*} is true, then there is 
a solution in the interval [a, mid], and otherwise, there is a solution in the interval 
[mid, b], so in either case the algorithm performs correctly.

At each level of recursion, the length of the current interval is decreased by a 
factor of ½. It follows that the number of levels of recursion, n, before a solution is 
returned, satisfies (b − a)/2n < ε ⇒ log2 [(b − a)/ε] < n. It follows that our algo-
rithm utilizes Θ(log [(b − a)/ε]) operations.

EXAMPLE 

How many levels of recursion are necessary in using the algorithm above to 
estimate a value for 110 that is accurate to 3 decimal places?

The question isn’t entirely well defined, as we have not directed the reader 
concerning what function and what interval to use. It is reasonable to assume 
that we seek an approximate solution to the equation x2 − 10 = 0. We note that 
f (x) = x2 − 10 is an increasing function for x > 0, which is easily seen since 
f  '(x) = 2x > 0 for x > 0. Further, f (3) < 0 and f (4) > 0, so we can take our 
interval to be [3,4]. Accuracy to 3 decimal places means we can take 
ε = 0.5 × 10−3 = 5 × 10−4.

For such choices, the discussion above shows that the number of levels of 
recursion beyond the initial call upon the algorithm is

l log2 
4 − 3

5 × 10−4
 m = ⎡log2 2,000⎤ = 11.

Summary

In contrast with most previous chapters, this chapter is concerned with numerical 
computations. Many problems in computational science/scientific computing/
numerical methods perform operations in numbers that do not depend on the vol-
ume of input to be processed, which is often constant. Rather, problems in these 
areas typically rely on the values of a constant number of parameters, or, in some 
cases, on an error tolerance. Such problems come from core areas in  science and 
engineering and involve solution techniques from branches of mathematics, such 
as Algebra, Number Theory, Calculus, and Numerical Analysis or Numerical 
Methods, as well as methods from computer science. In this chapter, we consider 
prime factorization, greatest common divisor, integral powers, evaluation of a 
polynomial, approximations by using a Taylor series, Trapezoidal Integration, and 
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Chapter Notes 369

approximate solutions of equations. The solutions we present are all for the RAM, 
though readers will be asked to consider parallel models of computation in the 
Exercises.

Chapter Notes

The primality problem and the greatest common divisor problem are taken from 
Number Theory, a branch of mathematics devoted to fundamental properties of 
numbers, particularly, although not exclusively, integers.

We use the Prime Number Theorem concerning the asymptotic behavior of the 
function π(n), the number of primes less than or equal to the positive integer n. 
This theorem is discussed in the following sources.

• T.M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, New 
York, 2001.

• W. Narkiewicz, The Development of Prime Number Theory, Springer-Verlag, 
Berlin, 2000.

• K.H. Rosen, Elementary Number Theory and its Applications, Addison-
Wesley Publishing, Reading, MA, 1993.

The latter also discusses the Euclidean algorithm for the greatest common 
divisor problem and contains a proof of Lamé’s Theorem.

Other problems we discuss in this chapter are taken from Numerical Analysis, 
an area of applied mathematics and computing that is concerned with computa-
tionally intensive problems involving numerical algorithms, approximation, error 
analysis, and related issues. Problems in Numerical Analysis have applications in 
branches of mathematics that derive from Calculus, e.g., Differential Equations, 
Probability, and Statistics, as well as Linear Algebra, including matrix multiplica-
tion, solution of systems of linear equations, and linear programming, and their 
application areas. For an introduction to the field, we refer the reader to the 
following.

• N.S. Asaithambi, Numerical Analysis: Theory and Practice, Saunders College 
Publishing, Fort Worth, 1995.

• R.L. Burden and J.D. Faires, Numerical Analysis, PWS-Kent Publishing 
Company, Boston, 1993.

• R. Butt, Introduction to Numerical Analysis Using MATLAB, Infinity Science 
Press, Hingham, MA, 2008.

• S. Yakowitz and Ferenc Szidarovszky, An Introduction to Numerical 
Computations, Prentice Hall, Upper Saddle River, NJ, 1990.

We discuss approximation problems with regard to the algorithmic efficiency 
of our solutions in terms of error tolerance, sometimes expressed in terms of the 
number of decimal places of accurate calculation. It is tempting to say this is rarely 
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370 Chapter 13  Numerical Problems

important, that most calculations require only a small number of decimal places of 
accuracy. One should note, however, that there are situations in which very large 
numbers of accurate decimal places are required. As an extreme example, some 
mathematicians are interested in computing the value of π  to millions of decimal 
places. While these examples involve techniques beyond the scope of this book, 
the point is that interest exists in computations with more than “ordinary” 
accuracy.

Exercises

In several of the exercises, we ask the reader to construct a parallel version of a 
RAM algorithm presented in the chapter. Notice that the number of operations of 
a parallel algorithm is typically more than the number of operations of its sequen-
tial analog, since communications issues may come into play. When we discuss a 
parallel algorithm and its sequential analog, we are typically interested in compar-
ing running times. Rather than use an awkward ad hoc expression such as the time 
equivalent of Θ( f (n)) sequential operations, we will abbreviate with expressions 
of the form Θ( f (n)) parallel operations throughout the exercises.

 1. Devise a parallel algorithm to solve the primality problem for the positive inte-
ger n. At the end of the algorithm, every processor should know whether or not 
n is prime. Further, if n is not prime, every processor should know the smallest 
prime factor of n. Also, assume that no list of primes is initially stored in 
memory. Assuming ⎣n1/2⎦  processors, provide an analysis of the number of 
parallel operations used by your algorithm on the following.

  a. CREW PRAM

  b. EREW PRAM

  c. Mesh

  d. Hypercube

 2. Suppose we modify the previous problem so that we include the assumption 
that a list L, consisting of all the primes pi satisfying pi ≤ ⎣n1/2⎦ , is initially 
distributed one prime per processor, where pi is initially stored in processor Pi. 
Analyze the number of processors required as well as the number of parallel 
operations utilized by your algorithm for each of the following models.

  a. CREW PRAM

  b. EREW PRAM

  c. Mesh

  d. Hypercube

 3. Consider the problem of computing gcd(n0, n1) for nonnegative integers 
n0, n1, where n0 ≥ n1. Assume a list L of all primes pi satisfying pi ≤ ⎣n1/2⎦  is 
kept in memory. For a parallel model of computation, assume these primes 
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Exercises 371

are distributed one prime per processor. Devise an algorithm for computing 
gcd(n0, n1) efficiently based on finding, for each prime p ∈ L, the maximal 
nonnegative integer k such that pk is a common factor of n0 and n1. For paral-
lel machines, at the end of the algorithm, every processor should have the 
value of gcd(n0, n1). Analyze the number of parallel operations utilized by 
such an algorithm for the following.

  a. CREW PRAM

  b. EREW PRAM

  c. Mesh

  d. Hypercube

  Hint: consider using the efficient sequential algorithm for computing xn that 
was presented in the chapter.

 4. Decide whether or not the Θ(log  n)-operation algorithm for computing xn pre-
sented in the chapter is effectively parallelizable. That is, either give a version 
of this algorithm for a PRAM that utilizes o(log  n) parallel operations and 
show that it does so, or argue why it is difficult or impossible to do so.

 5. Show that a RAM algorithm to evaluate a polynomial of degree n utilizes Ω(n) 
operations, which implies that Horner’s algorithm is optimal.

 6. Devise an algorithm for evaluation of a polynomial of degree n on a PRAM. 
This will be somewhat easier on a CREW PRAM than on an EREW PRAM, 
but in either case, you should be able to achieve an algorithm that utilizes 
Θ(log  n) parallel operations using Θ(n/log  n) processors, which results in an 
optimal cost of Θ(n).

 7. Modify your algorithm from the previous exercise to run on a mesh or hyper-
cube of size n. Assume the coefficients of the polynomial are distributed Θ(1) 
per processor. Analyze the number of parallel operations for both of these 
architectures.

 8. Devise an efficient algorithm for evaluation of a polynomial of degree at 
most n on a CGM(n, q). Assume that the coefficients 5ai6i=0

n
 of the polyno-

mial f (x) are distributed Θ(n/q) per processor and the value x0, such that 
f (x0) is to be computed, is initially in just one processor. Derive an algorithm 
that utilizes Θ(n/q) parallel operations, either by modifying Horner’s 
 algorithm or by using an algorithm based on parallel prefix computation 
(Chapter 7, exercise 11).

 9. Show that for any x ∈ [−1, 1], the value of ex can be computed to within 
0.5 × 10−d for positive integer d, i.e., to d-decimal place accuracy, in o(d) 
operations on a RAM. You may use inequality (13.1).

 10. Show that inequality (13.2) implies n = o(d) and use this result to show that 
the function sin x can be computed for any x ∈ [−π , π] to d-decimal place 
accuracy by utilizing o(d) operations on a RAM.
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372 Chapter 13  Numerical Problems

 11. Show that if we assume the value of f (x) can be computed by utilizing Θ(1) 
operations for all x ∈ [a, b], the Trapezoidal Integration estimate tn can be 
computed on a RAM by utilizing Θ(n) operations.

 12. Under the same assumptions as in the previous problem, provide an asymp-
totic analysis in terms of the number of parallel operations utilized for the 
efficient computation of the Trapezoidal Integration estimate tn as a function 
of n on each of an EREW PRAM, hypercube, and mesh of size n. In addition, 
give the asymptotic number of parallel operations as a function of n and q on a 
CGM(n, q). Hint: state one parallel algorithm that can be implemented effi-
ciently on all of these architectures.

 13. Analyze the number of operations utilized by of using Trapezoidal Integration 

  to compute ∫
1

0
 e−x2 dx to d decimal places on a RAM, as an asymptotic expression

  in d. To simplify the problem, you may assume that for all x ∈ [0, 1], ex can be 
computed with sufficient accuracy in Θ(1) time.
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Appendix 1

Proof of the 
Principle of 
Mathematical 
Induction
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In this appendix, we provide a proof of the Principle of Mathematical Induction. We 
initially discuss induction in Chapter 2. We consider proofs of correctness of algo-

rithms based on induction throughout the text. Recall from Chapter 2 that a predicate 
is a statement that is true or false. Some readers might find it useful to think of a predi-
cate on the positive integers as a function P : � → {true, false}, where � is the set of 
natural numbers, i.e., the set of positive integers.
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376 Appendix 1  Proof of the Principle of Mathematical Induction

The proof we give of Mathematical Induction depends on an interesting and 
somewhat intuitive axiom, namely, the Greatest Lower Bound Axiom, given below.

Principle of Mathematical Induction: Let P(n) be a predicate, where n is an 
arbitrary positive integer. Suppose we can accomplish the following two steps.

 1. Show that P(1) is true.

 2. Show that whenever P(k) is true, it follows that P(k + 1) is also true.

If we can achieve these two goals, then it follows that P(n) is true for all posi-
tive integers n.

Greatest Lower Bound Axiom: Let X be a nonempty subset of the real num-
bers such that the members of X have a lower bound. That is, suppose there 
exists a constant C ∈ � such that for every x ∈ X , x ≥ C. Then a greatest lower 
bound for X exists. That is, there exists a constant C0 ∈ � such that C0 is a 
lower bound for the members of X and such that C0 is greater than any other 
lower bound for X.

Proof of the Principle of Mathematical Induction: The proof is “by contradic-
tion.” Suppose the Principle of Mathematical Induction is false. That is, suppose 
there exists a predicate P that yields a counterexample. Such a predicate P would 
have to satisfy the following.

 1. P(1) is true.

 2. Whenever P(n) is true, P(n + 1) is also true.

 3. For some positive integer k, P(k) is false.

Define a set

S = {n 0 n is a positive integer and P(n) = false}.

For the integer k of statement 3, k ∈ S, so S ≠ �. It follows from the Greatest 
Lower Bound Axiom that S has a greatest lower bound k0 ∈ S. It is easy to see that 
k0 must be a positive integer. That is, k0 is the first value of n such that P(n) is 
false. From statement 1, P(1) = true, so k0 > 1. Therefore, k0 − 1 is a positive inte-
ger. Notice that by choice of k0, we must have P(k0 − 1) = true. It follows from 
statement 2 that P(k0) = P((k0 − 1) + 1) = true, contrary to the fact that k0 ∈ S. 
Since the contradiction results from the assumption that the Principle is false, the 
proof is established. 
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Appendix 2

Proof of the Master 
Theorem
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In this appendix, we give a proof of the Master Theorem, which was stated in Chapter 3. 
Recall this theorem is concerned with the resolution of recurrence relations.

Master Theorem: Let a ≥ 1 and b > 1 be constants. Let f (n) be a positive func-
tion defined on the positive integers. Let T(n) be defined on the positive integers by

 T(n) = aT an
b
b + f (n), (3.1)

where we can interpret n/b as meaning either ⎣n/b⎦por ⎡n/b⎤ . Then the following 
hold.

 1. If f (n) = O(nlogb a−ε) for some constant ε > 0, then T(n) = Θ(nlogb a).

 2. If f (n) = Θ(nlogb a), then T(n) = Θ(nlogb a log n).

 3. If f (n) = Ω(nlogb a+ε) for some constant ε > 0, and there are constants c and N, 
0 < c < 1 and N > 0, such that n/b > N ⇒ af (n/b) ≤ cf (n), then T(n) = Θ( f (n)).
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380 Appendix 2  Proof of the Master Theorem

Proof of the Master Theorem

We start under the simplifying assumption that the values of n are nonnegative 
integral powers of b. The advantage of this assumption lies in the fact that at 
every level of recursion, n/b is an integer. Later, we show how to handle the gen-
eral case.

Lemma 1

Let a ≥ 1 and b > 1 be constants, and let f (n) be a nonnegative function defined on 
integral powers of b. Let T(n) be defined on integral powers of b by the 
recurrence

T(n) = eΘ(1) if n = 1;

aT(n/b) + f (n) if n = bi for some positive integer i.
Then

T(n) = Θ1nlogb a2 + a
logb n−1

k=0

ak f an

bk
b .

Remarks
We create a hypothesis of the pattern by simplifying an iterated expansion of the 
recurrence, as follows.

T(n) = f (n) + aT an
b
b = f (n) + af an

b
b + a2T an

b2
b = . . . =

f (n) + af an
b
b + a2 f a n

b2
b + . . . + alogb n−1 f a n

blogb n−1
b + alogb nT(1).

Since alogb n = nlogb a and T(1) = Θ(1), the last term in the expanded recurrence is 
Θ(nlogb a), while the initial terms yield

a
logb n−1

k=0

ak f (n/bk),

as asserted above. We provide a proof of our hypothesis by mathematical 
induction.

Proof of Lemma 1
We establish our claim by showing that

T(n) = nlogb aT(1) + a
logb n−1

k=0

ak f an

bk
b ,
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Proof of the Master Theorem 381

where we consider n = bi for nonnegative integers i. Therefore, the base case is 
i = 0, which is equivalent to n = 1. In this case, the

a
logb n−1

k=0

ak f (n/bk)

term of the assertion is an empty sum, which by convention has value 0. Therefore, 
the assertion is true since the right side of the asserted equation is

1logb aT(1) + a
logb n−1

k=0

ak f (n/bk) = T(1) + 0 = T(1).

Thus, the base case of the induction is established.
Suppose the assertion is true for integer powers i of b, where 0 ≤ i ≤ p. In par-

ticular, suppose the assertion is true for n = bp. Then, we have

T(bp) = bp logb aT(1) + a
p−1

k=0

ak f a n

bk
b = apT(1) + a

p−1

k=0

ak f (bp−k).

Now, consider n = bp+1. By the hypothesized recurrence, we have

T(bp+1) = aT(bp) + f (bp+1) =

(using the inductive hypothesis)

a capT(1) + a
p−1

k=0

ak f 1bp−k2d + f 1bp+12 =

ap+1T(1) + caa
p−1

k=0

ak f 1bp−k2 d + f 1bp+12 =

(since blogb a = a)

b( p+1)logb aT(1) + a
p

k=0

ak f (bp+1−k) = nlogb aT(1) + a
p

k=0

ak  f a n

bk
b ,

which is the desired result, since p = logb n − 1. This completes the induction proof.
Next, we give asymptotic bounds for the summation term that appears in the 

conclusion of the statement of Lemma 1.

Lemma 2

Let a ≥ 1 and b > 1 be constants, and let f (n) be a nonnegative function defined 
on nonnegative integral powers of b. Let g(n) be a function defined on integral 
powers of b by

 g(n) = a
logb n−1

k=0

ak f a n

bk
b . (3.2)
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382 Appendix 2  Proof of the Master Theorem

 1. If f (n) = O(nlogb a−ε) for some constant ε > 0, then g(n) = O(nlogb a).

 2. If f (n) = Θ(nlogb a), then g(n) = Θ(nlogb a log n).

 3. If there are positive constants c < 1 and N > 0 such that n/b > N ⇒ af (n/b) ≤
cf (n), then g(n) = Θ( f (n)).

Proof
For case 1, substituting the hypothesis of the case into the definition of the func-
tion g(n) yields

g(n) = O c a
logb n−1

k=0

aka n

bk
b logb a−ε d = O cnlogb a−ε

a
logb n−1

k=0

a abε

blogb a
b k d =

O cnlogb a−ε
a

logb n−1

k=0

(bε)k d =

(using the formula for the sum of a geometric series)

O cnlogb a−εa bε logbn − 1

bε − 1
b d = O cnlogb a−εa nε − 1

bε − 1
b d =

(since b and ε  are constants) O(nlogb a), as claimed.
For case 2, it follows from the hypothesis of the case that f (n/bk) =

Θ[(n/bk)logb a]. When we substitute the latter into (3.2), we have

g(n) = Θ c a
logb n−1

k=0

aka n

bk
b logb a d = Θ cnlogb a a

logb n−1

k=0

a a

blogb a
b k d =

Θanlogb a a
logb n−1

k=0

1b = Θ(nlogb a log n),

as claimed.
For case 3, observe that all terms of the sum in (3.2) are nonnegative, and 

the term corresponding to k = 0 is f (n). Therefore, g(n) = Ω(f (n)). The hypoth-
esis of the case, that there are constants 0 < c < 1 and N > 0 such that 
n/b > N ⇒ af (n/b) ≤ cf (n), implies by a straightforward induction argument that 
n/bk > N ⇒ ak f (n/bk) ≤ ck f (n). When we substitute the latter into (3.2), we get

g(n) = a
logb n−1

k=0

ak f a n

bk
b =

a
0≤k≤logb n−1,

ak  f an

bk
b + a

0≤k≤logb n−1,

ak  f a n

bk
b .

 n/bk≤N n/bk >N
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Proof of the Master Theorem 383

The first summation in the latter expression has a fixed number of terms, so this 

summation satisfies a
0≤k≤logb n−1,

ak  f a n

bk
b = Θ(1). Therefore, our asymptotic evaluation

 n/bk≤N

of g(n) depends on the second summation,

g(n) = Θ£ a
0≤k≤logb n−1,

ak  f a n

bk
b§ .

 n/bk>N

The summation on the right side satisfies

a
0≤k≤logb n−1,

ak f a n

bk
b ≤ a

0≤k≤logb n−1,

ck  f (n) = f (n) a
0≤k≤logb n−1,

ck .

 n/bk>N n/bk>N n/bk>N

Since the latter summation is a geometric series with decreasing terms, it follows 
that

g(n) = Oa f (n)a 1

1 − c
bb = O( f (n)).

Since we previously showed that g(n) = Ω( f (n)), it follows that g(n) = Θ( f (n)), as 
claimed.

Now we prove a version of the Master Method for the case in which n is a non-
negative integral power of b.

Lemma 3

Let a ≥ 1 and b > 1 be constants, and let f (n) be a nonnegative function defined on 
integral powers of b. Let T(n) be defined on integral powers of b by the 
recurrence

T(n) = •
Θ(1) if n = 1;

aT an

b
b + f (n) if n = bi for some positive integer i.

Then we have the following.

 1. If f (n) = O(nlogb a−ε) for some constant ε > 0, then T(n) = Θ(nlogb a).

 2. If f (n) = Θ(nlogb a), then T(n) = Θ(nlogb a log n).

 3. If f (n) = Ω(nlogb a+ε) for some constant ε > 0, and if n/b > N ⇒ a f (n/b) ≤ cf (n) 
for some positive constants c < 1 and N, then T(n) = Θ( f (n)).
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384 Appendix 2  Proof of the Master Theorem

Proof
First, we observe by Lemma 1 that T(n) = Θ(nlogb a) + g(n), where

g(n) = a
logb n−1

k=0

ak  f an

bk
b .

In case 1, it follows from case 1 of Lemma 2 that

T(n) = Θ(nlogb a) + g(n) = Θ(nlogb a + nlogb a) = Θ(nlogb a)

In case 2, it follows from case 2 of Lemma 2 that

T(n) = f (n) + g(n) = Θ(nlogb a + nlogb a log n) = Θ(nlogb a log n).

In case 3, it follows from case 3 of Lemma 2 that g(n) = Θ( f (n)), and (by Lemma 1)

T(n) = Θ1nlogb a2 + g(n) = Θ1nlogb a + f (n)2.
Since f (n) = Ω(nlogb a+ε), it follows that T(n) = Θ( f (n)).

The General Case

Lemma 3 states the Master Method for the case that n is a nonnegative integral 
power of b. Recall that the importance of this case is to guarantee that at every 
level of recursion the expression n/b is an integer. For general n, however, 
the expression n/b need not be an integer. We can therefore substitute ⎡n/b⎤  or 
⎣n/b⎦pfor n/b in the recurrence (3.1) and attempt to obtain similar results. Since

n

b
− 1 < j n

b
 k ≤ l n

b
m <

n

b
+ 1,

this will enable us to demonstrate that a small discrepancy in the value of the inde-
pendent variable often makes no difference in asymptotic evaluation. In the fol-
lowing, we develop a version of the Master Method using the expression ⎡n/b⎤  for 
n/b in the recurrence (3.1). A similar argument can be given if, instead, we use 
⎣n/b⎦pfor n/b in (3.1).

Consider the sequences defined by the recursive equations

mi = •
n if i = 0;

jmi−1

b
k if i > 0,

and

ni = •
n if i = 0;

l ni−1

b
m if i > 0.
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Proof of the Master Theorem 385

Since b > 1, these are nonincreasing sequences of integers. We have

m0 = n0 = n,

n

b
− 1 < m1 ≤ n1 <

n

b
+ 1,

n

b2
−

1

b
− 1 < m2 ≤ n2 <

n

b2
+

1

b
+ 1,

and more generally, based on simple inductive arguments for the lower bound for 
mi and the upper bound for ni,

n

bi
−

b

b − 1
=

n

bi
− a

∞

k=0

 
1

bk
<

n

bi
− a

i−1

k=0

 
1

bk
< mi ≤ ni <

n

bi
+ a

i−1

k=0

 
1

bk
<

n

bi
+ a

∞

k=0

 
1

bk
=

n

bi
+

b

b − 1
.

Thus,

i ≥ ⎡logb n⎤ ⇒ bi ≥ n ⇒ ni < 1 +
b

b − 1
.

Since ni is integer-valued, we have

i ≥ ⎡logb n⎤ ⇒ mi ≤ ni ≤ j1 +
b

b − 1
k = Θ(1).

Suppose, then, that we use the recurrence

 T(n) = aTan
b
b + f (n) (3.3)

and expand this recurrence iteratively in order to obtain

T(n) = f (n0) + aT(n1) = f (n0) + af (n1) + a2T(n2) = . . .

The reader can prove by induction that for 0 ≤ i ≤ ⎡logb n⎤ − 1,

T(n) = ca
i

k=0
 ak  f (nk) d + ai+1T(ni+1).

In particular, for i = ⎡logb n⎤ − 1,

T(n) = a⎡logb n⎤T1n⎡logb n⎤2 + a
⎡logb n⎤−1

k=0

ak  f (nk).
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386 Appendix 2  Proof of the Master Theorem

Now,

alogb n ≤ a⎡logb n⎤ < aalogb n ⇒ a⎡logb n⎤ = Θ1alogb n2 = Θ1nlogb a2.
Since n⎡logb n⎤ = Θ(1), we have T1n⎡logb n⎤2 = Θ(1). Substituting these last two results 
into the last equation for T(n), we have

T(n) = Θ(nlogb a) + a
⎡logb n⎤−1

k=0

ak  f (nk).

This is an equation much like that of the conclusion of Lemma 1.
Similarly, if we modify (3.3) to obtain the recurrence

 T '(n) = aT 'a j n
b
k b + f (n), (3.4)

then we similarly obtain

T '(n) = Θ(nlogb a) + a
⎡logb n⎤−1

k=0

ak  f (mk).

Let

g(n) = a
⎡logb n⎤−1

k=0

ak f (nk),

g'(n) = a
⎡logb n⎤−1

k=0

ak f (mk).

We wish to evaluate g(n) and g'(n) asymptotically.
In case 1, we have the hypothesis that f (n) = O(nlogb a−ε) for some constant 

ε > 0. Without loss of generality, we have logb a − ε ≥ 0. There is a constant c > 0 
such that for sufficiently large nk > N ,

f (nk) ≤ cnk
logb a−ε ≤ ca n

bk
+

b

b − 1
b logb a−ε

= c c a n

bk
b a1 +

bk

n
×

b

b − 1
b d logb a−ε

= ca nlogb a−ε

akb−kε b c1 + a bk

n
×

b

b − 1
b d logb a−ε

≤ ca nlogb a−ε

ak
b a1 +

b

b − 1
b logb a−ε

=
dnlogb abkε

ak
,

where

d = ca1 +
b

b + 1
b logb a−ε

is a constant.
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Proof of the Master Theorem 387

For such k, ak f (nk) ≤ dnlogb abkε. It follows that

g(n) = a
k∈{0, . . . ,⎡logb n⎤−1},

ak f (nk)       + a
k∈{0, . . . ,⎡logb n⎤−1},

ak f (nk)

 nk≤N nk>N 

≤ Θ(1) a
k∈{0, . . . ,⎡logb n⎤−1},

ak          +           dnlogb a−ε a
k∈{0, . . . ,⎡logb n⎤−1},

bε k .

 nk≤N nk>N 
The former summation, a geometric series, is O(alogb n) = O(nlogb a). In the latter 

summation, there are Θ(1) terms, as nk > N  corresponds to small values of k. It 
follows that

g(n) ≤ O1nlogb a2 + dnlogb a−εΘ(1) = O1nlogb a2.
Hence, T(n) = Θ(nlogb a) + g(n) = Θ(nlogb a), as desired. A similar argument shows 
T '(n) = Θ(nlogb a).

In case 2, the hypothesis that f (n) = Θ(nlogb a) implies there are positive con-
stants c and C such that for sufficiently large mk and nk, say, mk, nk > N ,

f (nk) ≤ cnk
logb a ≤ ca n

bk
+

b

b − 1
b logb a

= ca nlogb a

ak
b c1 + a bk

n
×

b

b − 1
b d logb a

≤ ca nlogb a

ak
b a1 +

b

b − 1
b logb a

=
dnlogb a

ak
,

where d = ca1 +
b

b − 1
b logb a

 is a constant, and similarly, there is a constant D > 0 

such that

f (mk) ≥
Dnlogb a

ak
.

Therefore, for such k, ak f (nk) ≤ dnlogb a and ak f (mk) > Dnlogb a. So,

g(n) = a
k∈{0, . . . ,⎡logb n⎤−1},

ak f (nk)        + a
k∈{0, . . . ,⎡logb n⎤−1},

ak f (nk).

 nk≤N nk>N 

In the first summation, the values of f (nk) are bounded, since nk ≤ N . Thus, the 
summation is bounded asymptotically by the geometric series

a
⎡logb n⎤−1

k=0

ak = O1alogb n2 = O1nlogb a2.
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388 Appendix 2  Proof of the Master Theorem

The second summation in the expansion of g(n) is simplified as

a
k∈{0, . . . ,⎡logb n⎤−1},

ak f (nk) ≤ a
⎡logb n⎤−1

k=0

dnlogb a = O1nlogb a log n2.
 nk>N 

Substituting these into the previous equation for g(n), we obtain

g(n) = O(nlogb a) + O(nlogb a log n) = O(nlogb a log n).

Hence, T(n) = O(nlogb a log n). Similarly,

g'(n) = a
k∈{0, . . . ,⎡logb n⎤−1},

ak f (mk) + a
k∈{0, . . . ,⎡logb n⎤−1},

ak f (mk)

 nk≤N nk>N

= Ω(1) + Ω1nlogb a log n2 = Ω1nlogb a log n2.
Notice that

5(mk ≤ nk) and 3  f (n) = Θ1nlogb a246⇒

a
k∈{0, . . . ,⎡logb n⎤−1},

ak f (mk) = O° a
k∈{0, . . . ,⎡logb n⎤−1},

ak f (nk)¢.

 mk>N nk>N

Therefore,

g'(n) = a
k∈{0, . . . ,⎡logb n⎤−1},

ak f (mk) + a
k∈{0, . . . ,⎡logb n⎤−1},

ak f (mk)

 nk≤N nk>N

= Oa a
⎡logb n⎤−1

k=0

akb + O° a
k∈{0,1, . . . ⎡logb n⎤−1},

ak f (nk)¢ = O(g(n)).

 nk>N

It follows that g(n) = Θ(nlogb a log n) and g'(n) = Θ(nlogb a log n). Therefore,

T(n) = Θ(nlogb a log n) and T '(n) = Θ(nlogb a log n).

In case 3, an analysis similar to that given for case 3 of Lemma 2 shows 
g(n) = Θ( f (n)), as follows. Recall the hypotheses of this case: f (n) = Ω(nlogb a+ε) 
for some constant ε > 0, and there are constants 0 < c < 1 and N > 0 such that 
n/b > N ⇒ af (n/b) ≤ cf (n). As above, it follows by a simple induction argument 
that for

n

bk
 > N, or, equivalently, k < jlogbanNb k ,
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Proof of the Master Theorem 389

we have

ak f a n

bk
b ≤ ck f (n).

Therefore,

g(n) = a
⎣logb (n/N)⎦

k=0

ak f a n

bk
b + a

⎡logb n⎤−1

k=⎣logb (n/N)⎦+1

ak f an

bk
b ≤

f (n) a
⎣logb(n/N)⎦

k=0

ck + a⎡logb n⎤−1(logb N)  max
k≥⎣logb (n/N)⎦+1

f a n

bk
b <

f (n) 
1

1 − c
 + Θ1alogb n2 = O1 f (n) + alogb n2.

Since f (n) = Ω(nlogb a+ε) and alogb n = nlogb a, we have g(n) = O( f (n)), and therefore 
T(n) = Θ(nlogb a + g(n)) = O( f (n)).

Since equation (3.3) implies T(n) = Ω( f (n)), it follows that T(n) = Θ( f (n)), as 
desired. A similar argument shows T '(n) = Θ( f (n)).

Thus, in all cases, whether we use ⎡n/b⎤  or ⎣n/b⎦pas our interpretation of n/b 
in (3.1), we have obtained the results asserted in the statement of the Master 
Theorem. Therefore, the proof of the Master Theorem is complete.
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In this appendix, we present algorithms to implement gather and scatter operations 
efficiently on coarse-grained parallel computers. These operations were discussed in 

Chapter 4. Typically, a gather operation collects data that is distributed across a group 
of processors. The data is typically moved to one of the processors of the group where 
it is reassembled. A scatter operation is typically used to partition data in one proces-
sor of a group and send one partition to each of the remaining processors in the group. 
Think of the gather as a group-based read by a distinguished processor in the group 
and a scatter as a group-based write from a distinguished processor in the group.

For example, we showed in Chapter 4 that using gather and scatter operations, an 
efficient algorithm to perform a semigroup operation over a set X of values on a 
CGM (n, q) can be performed as follows.

 1. In parallel, every processor Pj computes a partial result mj by sequentially comput-
ing a semigroup operation on the processor’s portion of X.

 2. Gather the set of partial results S = 5mj6j=0

q−1
 to processor P0.

 3. Processor P0 performs a sequential version of the semigroup operation on S.

 4. Processor P0 writes the result of the semigroup calculation into a record associated 
with each of the q members of S.

 5. Scatter the q members of S, so the result of the semigroup operation is sent to 
their original processors.  
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392 Appendix 3  Efficient Gather and Scatter Operations

Building a Tree of Processors

Efficient gather and scatter operations can be implemented by making use of a 
logical tree rooted at processor P0 in the graph of processors of a parallel com-
puter. Often, such a tree is known or easily determined. For example, in a mesh, we 
might use all the row edges and, among the column edges, only those of the col-
umn containing P0. If it is necessary to determine such a tree, we can do so using 
the algorithm described below. This algorithm can be used for a parallel computer 
of arbitrarily many processors. However, we have in mind its use on a CGM(n, q), 
where q represents the number of processors. Thus, the problem can be stated as 
follows. Given a parallel computer C, regarded as a connected graph of processors, 
and a particular processor R, determine the edges representing a tree T rooted at R 
by identifying, for each processor in C, its parent and its children in T.

The algorithm we give may be regarded as a parallel breadth-first search (see 
Chapter 12).

Algorithm for determining the edges of a tree T rooted at R containing 
all processors as vertices
Input: Each processor knows its neighboring processors.
Output: Each processor knows its parent and its children in a tree rooted at R.

Action:

1.  In parallel, each processor creates an ID record 
with the following.
a. A field for the processor’s ID.
b.  A field for the ID of the parent processor that 

is initially null.
c. An initially empty list of children processors.
This step runs in Θ(1) time.

2.  R sends its ID record to all its neighbors. In the 
worst case, this requires R to send messages 
 sequentially to individual neighbors. Thus, the 
time for this step is O(q).

3.  In parallel, each processor P does the following.
a. If P ≠ R, then perform the following.

  i.  Receive a neighbor’s ID record. This  requires 
some time to wait for the first neighbor’s 
message to arrive, as well as Θ(1) time to 
read the first neighbor’s  message. The wait 
time will be discussed below.

 ii.  Set the processor’s parent component equal 
to the processor ID contained in the first 
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Building a Tree of Processors 393

message received from a neighbor. This step 
runs in Θ(1) time.

End If
b.  Send the processor’s own ID record to each 

neighboring processor. This step runs in O(q) 
time. Note that except for R, no  processor sends 
its ID record until it has marked its own 
 parent.

c.  From every neighboring processor Q such that Q 
is not the parent of P, receive the ID record of 
Q. If Q’s parent has been marked as P then P 
adds Q to its list of children. As in step a.i. 
above, there is some wait time, in  addition to 
the O(q) time to read the neighbors’ messages.

End of algorithm

If we can show that the wait time mentioned above is O(q), it will follow that 
the algorithm’s running time is O(q). Note that this analysis is somewhat difficult, 
and perhaps should be skimmed or skipped by readers who do not have a deep 
mathematical background.

A processor other than R waits for a message from its parent, i.e., the first 
neighbor from which a message is received, and all processors wait for messages 
from their non-parental neighbors. First, let’s analyze the time that a processor 
waits until it receives its parent’s record. Note that if P and Q are neighboring 
 processors, then their distances from R in the graph C, dP and dQ, respectively, 
satisfy

 0 dP − dQ 0 ≤ 1. (1)

Let

dmax = max{dP 0P ∈ V(C)},

where V(C) is the vertex set, i.e., the set of processors, of C. For 
i ∈ {−2, −1, 0, 1, . . . ,dmax + 1}, let

Ai = {P ∈ V(C) 0 dP = i}.

Notice A−2 = A−1 = Admax+1 = � and

 a
dmax+1

i=−2

0Ai 0 = q. (2)
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394 Appendix 3  Efficient Gather and Scatter Operations

Let’s call the time required for a processor to send its ID record to a neighbor a unit 
time step. For i > 0, let ni be the maximum number of unit time steps until a mem-
ber of Ai receives its parent’s ID record, and let n0 = 0. We will show that for 
i ∈ {0, 1, . . . , dmax},

 ni ≤ 3aa
i−2

j= −2

0Aj 0b + 2 0Ai−1 0 + 0Ai 0 . (3)

Inequality (3) is trivial for i = 0. Suppose, for some integer k such that 0 ≤ k < dmax, 
inequality (3) is true for i ≤ k. Let P ∈ Ak+1. There exists Q ∈ Ak such that P and Q 
are neighbors in C. Then the number of unit time steps until P receives its message 
from its parent is less than or equal to the number of unit time steps until P receives 
its message from Q. From inequality (1), all neighbors of Q belong to 
Ak−1 ∪ Ak ∪ Ak+1. In the worst case, P is the last neighbor of Q to receive a mes-
sage from Q. It follows that

nk+1 ≤ nk + 0Ak−1 0 + 0Ak 0 + 0Ak+1 0 ≤
(by the inductive hypothesis)

3aa
k−1

j= −2

0Ai 0 b + 2 0Ak 0 + 0Ak+1 0 ,
as desired. This completes the induction.

From equation (2) and inequality (3), ni ≤ 3q. Thus, the waiting time for all 
processors to receive their parents’ ID records is O(q).

We determine the time spent by a processor P waiting for messages from non-
parental neighbors as follows. Suppose Q is a neighbor of P. After P receives its 
parent’s ID record, P sends its own ID record to all its neighbors. In the worst case, 
Q is the last of the neighbors of P to receive the ID record from P. Therefore, Q 
will wait for O(q) time steps. Similarly, in the worst case, P is then the last neigh-
bor of Q to receive the ID record from Q, waiting another O(q) unit time steps. 
Thus, in O(q) unit time steps, P and Q exchange their ID records. Taking the maxi-
mum over all neighbors Q of P, we conclude that P waits O(q) unit time steps 
between receiving the first and the last of its neighbors’ ID records.

Therefore, we can conclude that the algorithm performs in O(q) time.
In order to obtain a lower bound for the running time of our algorithm, con-

sider a linear array implementation of a CGM(n, q), for which it is easily seen that 
the running time is Ω(q). Therefore, our time estimate of O(q) yields optimal Θ(q) 
running time in the worst case.

Gather and Scatter Algorithms

We can now derive efficient gather and scatter algorithms for a set S of data 
items distributed among the processors of a CGM(n, q), as follows. Note we 
limit S to size N = O(n/q) since we must be able to fit S into a single processor. 
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Gather and Scatter Algorithms 395

Assume the processors are numbered 0, . . . ,q − 1. We use, in each processor, an 
array from[0, . . . ,q − 1] in order to route data efficiently in a scatter. In every pro-
cessor Pi, the entries of this array will be defined by

from[ j] = k if data originating in Pj reached Pi from the latter’s neighbor Pk.

By keeping track of which neighbor a data item came from, we can execute a 
scatter by reversing the flow of data used by a gather.

Algorithms for Gather and Scatter
Input: A set S of N data items distributed among the processors of a 
CGM(n, q) G, where N = Ω(q) and N = O(n/q), and each processor knowing 
whether it is the processor R to which S is gathered.

Gather Algorithm
Output: A copy of each member of S in processor R.

Action:

1.  In parallel, each processor Pi sets its from[i] = i. 
This step runs in Θ(1) time.

2.  In parallel, each processor Pi tags each of its 
 members s of S by s.processorOrigin = i. This step 
runs in O(N) time.

3.  If a spanning tree for G with R as the root isn’t 
 already known, use the algorithm above to determine 
a spanning tree T of G so that R is the root 
 processor and every processor P knows its parent 
 processor parent(P) and its child processors in T. 
This step runs in O(q) time.

4.  In parallel, each processor P sends members of S to 
parent(P) and receives members of S from its child 
processors until there are no members of S for P to 
send. As P receives s ∈ S from a neighbor Pk, P 
makes the assignment

from[s.processorOrigin] = k.

 Each processor handles O(N) data with O(N + q) 
 waiting time, so this step runs in O(N + q) = O(N) 
time.

End gather

Clearly, this algorithm runs in O(N) time.
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396 Appendix 3  Efficient Gather and Scatter Operations

Scatter algorithm

Action:

1.  The root processor R does the following. For each 
s ∈ S, if s.processorOrigin is not R then send s to 
the neighboring processor Pfrom[s.processorO rigin]. This 
step runs in O(N) time.

2.  All other processors Pi in parallel do the following. 
For at most N members s of S, receive s from 
parent(Pi). If s.processorOrigin ≠ i then send s to 
Pfrom[s.processorOrigin]. Since waiting for data to arrive 
from the parent processor requires a total of 
O(N + q) = O(N) time, this step runs in O(N) time.

End scatter

Clearly, our scatter algorithm runs in O(N ) time.
Note we presented our scatter algorithm above with the assumption that the 

appropriate values of each processor’s from array are known. Thus, our presenta-
tion assumes that the scatter operation has been preceded by a gather operation. 
Sometimes, however, it is necessary to perform a scatter operation that has not 
been preceded by a gather operation. When this is the case, we can precede the 
first step listed in the scatter algorithm above by a gather of dummy records, one 
from each processor, to the root processor R, in order to establish the entries of 
each processor’s from array. We know that such a gather operation runs in 
Θ(q) = O(N) time, so this additional step does not change the asymptotic analysis 
of our scatter algorithm.

In the worst case, our gather and scatter algorithms run in Ω(N) time. This is 
because in the worst case, the root processor must sequentially receive, for a gather, 
or send, for a scatter, N data items. Therefore, our algorithms run in worst case 
optimal Θ(N) time.

Appendix Notes

Gather and scatter operations have been presented in Parallel Algorithms for 
Regular Architectures: Meshes and Pyramids by R. Miller and Q.F. Stout (The 
MIT Press, Cambridge, Mass., 1996), and in “Coarse Grained Gather and Scatter 
Operations with Applications,” by L. Boxer and R. Miller, Journal of Parallel and 
Distributed Computing, 64 (2004), 1297–1320. These presentations are not 
entirely consistent; we have followed the latter presentation. The algorithms 
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Appendix Notes 397

presented here are taken from the Boxer and Miller paper. (There is an error in this 
paper that is corrected in “Efficient Coarse Grained Data Distributions and String 
Pattern Matching,” by L. Boxer and R. Miller, International Journal of Information 
and Systems Sciences 6 (4) (2010), 424–434; the error does not affect the material 
presented here.)
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In this appendix, we consider the expected-case running time of Quicksort. The anal-
ysis is intricate and is suitable only for a reader who has a solid mathematical back-

ground. We will make a variety of assumptions, most of which serve only to simplify 
the analysis. Our first major assumption is that we consider Quicksort on an array that 
consists of n distinct keys, randomly distributed. In terms of fundamental notation, 
we let k(i) be the expected number of key comparisons required to sort i items. 
Quicksort is a comparison-based sort, and our analysis will focus on determining the 
number of times Quicksort compares two elements during the sorting procedure. The 
reader should note that k(0) = 0, k(1) = 0, and k(2) = 3.5. That is, an array with no 
more than one element is already sorted and does not require any keys to be compared. 
An array of size 2 requires 3.5 comparisons, on average, to be sorted by the array ver-
sion of Quicksort that we have presented. The reader can verify this by considering the 
code as applied to two options for an array of size 2. Recall that the keys are distinct. 
Therefore, the options for an array of size two are a smaller key followed by a larger 
key and a larger key followed by a smaller key.

We now consider some assumptions that apply to the partition routine. Assume 
that we are required to sort A[1 . . . n].

• According to the partition routine, we will use A[1] as the partition element.

• Since we assume distinct keys, if this partition element represents the i th largest of 
the n elements in A[1 . . . n] and i > 1, then at the end of the partition routine, the 
smallest i − 1 elements will be stored in A[1 . . . i − 1]. We will assume that a simple 
modification is made to the code so that at the end of the partition routine, the 
splitter is placed in position i, and partitionIndex is set to i. Notice that this modi-
fication to the partition routine increases the running time of the routine by Θ(1).

• Therefore, notice that it suffices to have the recursive calls performed on 
A[1 . . . i − 1] and A[i + 1 . . . n].

Consider the number of comparisons that are made in the partition routine.

• Notice that it takes Θ(n) comparisons to partition the n elements.

• Based on our notation and the recursive nature of Quicksort, we note that, on aver-
age, it takes at most k(i − 1) and k(n − i) comparisons to sort A[1 . . . i − 1] and 
A[i + 1 . . . n], respectively.

We should point out that since we assume unique input elements and that all 
arrangements of the input data are equally likely, then it is equally likely that the parti-
tionIndex returned is any of the elements of {1, . . . ,n}. That is, the partitionIndex will 
wind up with any value in the range of [1 . . . n] with probability 1/n. Finally, we present 
details for determining the expected-case running time of Quicksort.
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400 Appendix 4  Expected-Case Running Time of Quicksort

Notice that the definition provides that 

k(n) = (n + 1) +
1
n

 a
n

i=1

[k(i − 1) + k(n − i)], where

• k(n) is the expected number of key comparisons,

• (n + 1) is the number of comparisons required to partition n data items, assum-
ing that Partition is modified in such a way to prevent i and j from crossing,

• 1/n is the probability of the input A[ j] being the i-th largest entry of A, 
j ∈ {1, . . . n},

• k(i − 1) is the expected number of key comparisons to sort A[1 . . . i − 1], and

• k(n − i) is the expected number of key comparisons to sort A[i + 1 . . . n].

So, k(n) = (n + 1) +
1
n

 a
n

i=1

[k(i − 1) + k (n − i)]

= n + 1 +
1
n

 D  k(0) + k(n − 1)

+ k (1) + k(n − 2)

+  . . .   

+ k(n − 1) + k(0)

T
= n + 1 +

2
n

 a
n−1

i=1

k(i).

(Note that we used the fact that k(0) = 0.)
Therefore, we now have

k(n) = n + 1 +
2
n

 [k (n − 1) + k (n − 2) + k(n − 3) +  . . . + k(1)].

This gives us

k(n − 1) = n +
2

n − 1
 [k(n − 2) + k(n − 3) +  . . . + k(1)].

In order to simplify the equation for k(n), let’s define

S = [k(n − 2) + k(n − 3) +  . . . + k(1)].

By substituting into the previous equations for k(n) and k(n − 1), we obtain

k(n) = n + 1 +
2
n

 [k(n − 1) + S]  and

k(n − 1) = n +
2

n − 1
 S.
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Appendix 4  Expected-Case Running Time of Quicksort 401

Therefore, S =
n − 1

2
 [k(n − 1) − n].

So,

k(n) = n + 1 +
2
n
c k(n − 1) +

n − 1

2
 (k(n − 1) − n) d

=
n + 1

n
 k(n − 1) + 2.

Hence, 
k(n)

n + 1
=

2

n + 1
+

k(n − 1)
n

.

In order to simplify, let’s define

X(n) =
k(n)

n + 1
.

Therefore,

k(n − 1)
n

= X(n − 1).

So,

X(n) =
2

n + 1
+ X(n − 1) =  

2

n + 1
+

2
n

+ X(n − 2) =
2

n + 1
+

2
n

+
2

n − 1
+ X(n − 3) =  . . . .

An induction argument can be used to show that

X(n) =
2

n + 1
+

2
n

+
2

n − 1
+  . . . +

2

4
+ X(2) = 2a 1

4
+

1

5
+  . . . +

1

n + 1
b + C

awhere  C = X(2)  (a constant) =
k(2)

3
=

3.5

3
=

7

6
b

= C + 2a
n+1

i=4

1

i
= Θ(log n).

So, k(n) = (n + 1)X(n) = Θ(n log n) expected-case number of comparisons.
It is easily seen that the expected-case number of data moves, i.e., swaps, is 

O(n log n), as the number of data moves is no more than the number of compari-
sons. Therefore, the expected-case running time of the array version of Quicksort 
is Θ(n log n). The argument given above requires little modification to show that 
our queue-based implementation of Quicksort also has an expected-case running 
time of Θ(n log n).
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= (equal sign), variable 
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assignment, 10
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adjacency list representations of 

graphs, 312–313
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algorithms. See also specific 
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definition of, 5
parallel, 5
principles of analysis for, 6
recursive. See recursion
sequential, 5

all-nearest neighbor between 
labeled sets problem, 299–300

all-nearest neighbor problem, 
271–273

all-pairs shortest-path 
problem, 345

Amdahl’s Law, 128
approximate solution of equations, 

367–368
approximation by Taylor series, 

360–364
arbitrary CW model of 

PRAM, 73
arithmetic operations, running time 

of, 21
array(s)

linear. See linear arrays
PRAM algorithms to perform 

fundamental operations on, 
76–84

Quicksort algorithm and, 
226–230, 398–401

static, partitioning element of, 
226

array packing, 186–188
on CREW PRAM, 187–188
on network models, 188
on RAM, 186–187

articulation points, 311
associative operations, 329

binary, 77
associative read/write, 243–245
asymptotic analysis, 2–31

asymptotic relationships and, 
12–20, 29
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29–30

limitations of, 28–29
notation and terminology 

for, 5–11
rules for, 21–27

asymptotic notation, 7–10, 9
asymptotic relationships, 12–20, 29

asymptotic analysis and limits 
and, 12–15

summations and integrals and, 
15–20

B
back substitution phase of Gaussian 

elimination, 164, 165
base case

for MergeSort algorithm, 53–55
n! and, 42

Batcher, Ken, 135, 146–147
BFS (breadth-first-search) 

 algorithm, 314–318, 320–321
bidirectional communication 

links, 88
big oh (O) notation, 7, 8, 9
big omega (Ω), 8
binary associative operations, 77, 

174, 204, 350
binary associative operator, 174
binary matrices, transitive closure 

of, 288–290
binary search(es), 46–48, 55
BinarySearch algorithm, 46–48

recurrence equation for, 55
BinSort routine, 25–27
bisection width

of hypercubes, 113
of interconnection networks, 87
of linear arrays, 89
of meshes, 100
of meshes-of-trees, 108
of pyramids, 106
of rings, 97–98
of trees, 104

Bitonic Merge algorithm, 140–143
Merge Sort compared with, 141
Quicksort compared with, 141

bitonic merge networks, 138–140
Bitonic Merge Unit, 136
bitonic sequences, 137

sorting into monotonic 
order, 138

Bitonic Sort algorithm, 113, 
143–146
on cluster/cloud/NOW, 242–243
on medium-grained hypercube, 

236–237
on mesh computer, 237–241
on parallel computers, 146–147

bitwise operations, running time 
of, 21

blackboard, PRAM algorithm 
memory treatment as, 70–71

Boolean matrix, transitive closure 
of, 288–290

bounding summations, 15–17, 
18–19

branch operations, running time 
of, 21

breadth-first-search (BFS) 
 algorithm, 314–318, 320–321

bridge edge, 310

C
capital omega (Ω), 8 
ceiling functions, 10
CGM (Coarse-Grained 

Multicomputer), 117–118
CGM(n2, q), matrix 

 multiplication on, 157–161
parallel prefix on, 183

cloud, 124–125
Bitonic Sort algorithm on, 

242–243
clusters, 120–122

Bitonic Sort algorithm on, 
242–243

computational geometry 
on, 279

divide-and-conquer method with 
Merge Sort algorithm on, 
213–214

elements of, 120–121
image processing on, 302
NOWs compared with, 122
parallel prefix on, 196
reasons for emergence of, 

121–122
coarse-grained machines, 

126, 127
Coarse-Grained Multicomputer 

(CGM), 117–118
CGM(n2, q), matrix 

 multiplication on, 157–161
parallel prefix on, 183
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coarse-grained multiprocessors, 
116–118
algorithm development strategy 

for, 116–117
gather and scatter operations 

and, 117–118
coarse-grained parallel 

computers, 116
combinational circuits, 134–148

Bitonic Merge algorithm and, 
140–143

Bitonic Sort algorithm and, 135, 
143–147

definition of, 136
sorting networks and, 136–139

combine routine in convex hull 
algorithm on PRAM, 266–268

combining CW model of PRAM, 73
commodity-off-the-shelf systems 

(COTSs), 121
common CW model of PRAM, 73
communication diameter

of hypercubes, 112–113
of interconnection networks, 

86–87
as limiting factor in running 

time, 88
of linear arrays, 89, 91
of meshes, 99
of meshes-of-trees, 107–108
of pyramids, 106
of rings, 87
of trees, 103

commutative operations, 101
comparison elements, of sorting 

networks, 137
comparison operators, running time 

of, 21
comparison-exchange 

operations, 146
comparitors, of Bitonic Sort 

 algorithm, 144–145
complete graphs, 309
component label, 291
component labeling problem, 

290–295
on mesh, 291–295
on RAM, 290–291

computation, models of. See models 
of computation

computational geometry, 190, 
250–282
all-nearest neighbor problem and, 

271–273
convex hull and. See convex hull 

problem
line intersection problems and, 

273–278

on NOW, clusters, and grids, 279
smallest enclosing box and, 

268–271
computational science and 

 engineering (CS&E), 151, 353
compute clusters, 120–122

elements of, 120–121
reasons for emergence of, 

121–122
compute phase of algorithms

PRAM and, 71
RAM and, 69

computer architecture taxonomy of 
Flynn, 125–126

concatenation step in Quicksort 
algorithm, 227

concurrent read, concurrent write 
(CRCW) PRAM, 74
algorithm to search an ordered 

array on, 74
concurrent read, exclusive write 

(CREW) PRAM, 74
array packing on, 187–188
maximum sum subsequence on, 

184–186
overlapping line segments on, 

194–195
parallel prefix on, 175–178
point domination query 

on, 192
concurrent read (CR) 

PRAM, 72
Gaussian elimination on, 166
matrix multiplication on, 

153–154
concurrent read/write, 175, 295, 

298, 300, 339, 340, 341
divide-and-conquer method and, 

243–245
on mesh, 245
on PRAM, 243–245

conditional instructions, 86
conditional operations, running 

time of, 21
Condor system, 120
connected component labeling

on meshes, 329
on PRAM, 324–329
on RAM, 323–324

connected components of 
graphs, 310
labeling, 323–329

connectivity matrix, 289
constant time, 30
convex, definition of, 252
convex hull, extreme points of, 

252, 253
marking, 295–298

convex hull problem, 252–268
definitions relevant to, 252–253
divide-and-conquer solutions to, 

260–268
Graham’s Scan procedure and, 

254–259
Jarvis’ March algorithm 

and, 259
sorting and, 253–254

cost(s)
of Counting Sort algorithm, 109
of CRCW PRAM algorithm to 

search an ordered array, 
83–84

of linked lists on PRAM, 204
of matrix multiplication on mesh, 

156–157
of maximum sum subsequence 

on CREW PRAM, 185
of maximum sum subsequence 

on mesh computer, 186
of overlapping line segment 

computation on mesh, 195
of parallel prefix algorithm, 176
of parallel prefix on hypercube, 

181, 183
of parallel prefix on mesh, 

179–180
of parallel prefix problem, 205
of PRAM Minimum algorithm, 

80, 82
of security, minimizing, 275
of summation of dot product 

terms, 153–154
cost/work, 127
COTS (commodity-off-the-shelf 

system), 121
Counting Sort algorithm, 108–110

array packing and, 187
on network models, 188

coverage query problem, 275
CR (concurrent read) PRAM, 72

Gaussian elimination on, 166
matrix multiplication on, 

153–154
CRCW (concurrent read, concurrent 

write) PRAM, 74
algorithm to search an ordered 

array on, 82–84
CREW (concurrent read, exclusive 

write) PRAM, 74
array packing on, 187–188
maximum sum subsequence on, 

184–186
overlapping line segments on, 

194–195
parallel prefix on, 175–178
point domination query on, 192
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CS&E (computational science and 
engineering), 151, 353

CW (concurrent write) PRAM, 73
cycles in graphs, 309

D
data access conflicts with PRAM, 72
data streams, 125, 126
data structures, modifying 

 algorithms to accommodate, 25
degrees

of graphs, 311
of hypercubes, 112
of interconnection networks, 86
of meshes-of-trees, 106–107
of vertices, 311

dense graphs, 309
depth-first-search (DFS) algorithm, 

318–321
diameter of graphs, 311
digital images, 288

all-nearest neighbor between 
labeled sets, 209–300

component labeling, 290–295
convex hull, 295
Hausdorff metric for, 298, 

300–302
image processing on a 

cluster, 302
transitive closure of a binary 

matrix, 288–290
Dijkstra’s algorithm, 342–345
directed graphs, 308
distance problems, 298–302
distributed-memory machines, 85

interconnection networks and, 
85–87

network models and. See network 
models

divide-and-conquer algorithm for 
matrix multiplication, 153

divide-and-conquer method, 
208–268
Bitonic Sort algorithm and, 

236–243
concurrent read/write and, 

243–245
divide-and-conquer solutions to 

convex hull problem, 260–268
Merge Sort algorithm and, 

210–214
Quicksort algorithm and, 

220–235
Quicksort modification for 

parallel models and, 235–236
selection problem and, 214–220

dot product, 152
summation of terms of, 153

E
easy split, hard join algorithms, 226
edge(s)

bridge edge, 310
definition of, 252
of hulls, 252
incident, 309
k-dimensional, of hypercubes, 113

edge-weighted graphs, 311
efficiency of algorithms, 30, 128
eight-connected meshes, 98
elementary functions, running time 

for evaluation of, 21
elementary row operations, 161–162
equal sign (=), variable assignment 

and, 10
equations, approximate solution of, 

367–368
ER (exclusive read) PRAM, 72

Gaussian elimination on, 166
EREW (exclusive read, exclusive 

write) PRAM, 74
error

roundoff, in approximation by 
Taylor series, 361

roundoff, with Gaussian 
 elimination, 168

truncation, in approximation by 
Taylor series, 361

error term in approximation by 
Taylor series, 360

error tolerance in approximation by 
Taylor series, 361

Euclidean algorithm, 356
EW (exclusive write) PRAM, 73

Gaussian elimination on, 166
exclusive read, exclusive write 

(EREW) PRAM, 74
exclusive read (ER) PRAM, 72

Gaussian elimination on, 166
exclusive write (EW) PRAM, 73

Gaussian elimination on, 166
execution

of PRAM, 71–72
of RAM, 69

extreme points of convex hull
definition of, 252, 253
marking, 295–298

F
 f (n)

expressed as sum of simpler 
functions, 15–16

relationship between g(n) and, 
12–15

using logarithms, example of, 
14–15

factorial function, 42–43

recursive algorithm for 
 computing, 43

fan-in and fan-out, combinational 
circuits and, 136

fine-grained machines, 127
floor functions, 10
Flynn, M. J., taxonomy defined by, 

125–126
four-connected meshes, 98–103
function(s)

ceiling, 10
floor, 10
growth rate of, in asymptotic 

 analysis, 6–7
relationships among, 12
set-valued, 9

Function Evaluate algorithm, 360
Function power algorithm, 357–359
fundamental operations

comparing time required to 
 perform, 87

PRAM algorithms to perform on 
arrays, 76–84

running time of, 21

G
gather operations, 390–397

algorithms for, 394–396
building trees of processors and, 

392–394
coarse-grained multiprocessors 

and, 117–118
definition of, 391

Gaussian elimination, 161–168
augmented matrix and, 162, 164
back substitution phase of, 

164, 165
Gaussian elimination phase of, 

163–165
on mesh of size n2, 167–168
on parallel models, 166
on PRAM of n2 processors, 

166–167
on RAM, 166

General Purpose Graphic 
Processing Units (GPGPUs), 
116, 122, 242–243, 302

geometric progression, 63–64
geometry, computational. See 

computational geometry; convex 
hull problem

GPGPUs (General Purpose Graphic 
Processing Units), 116, 122, 
242–243, 302

Graham, Ron, 254
Graham’s Scan procedure, 254–259

parallel implementations of, 259
on RAM, 258–259
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granularity, 126–127
graph(s)

acyclic, 309
adjacency list representations of, 

312–313
adjacency matrix representations 

of, 313–314
adjacent vertices of, 309
complete, 309
connected components of, 310
degrees of, 311
dense, 309
diameter of, 311
directed, 308
edge-weighted, 311
incident edges of, 309
sparse, 309
strongly connected, 310
undirected, 308
weighted, 309

graph algorithms, 306–347
breadth-first search algorithm, 

314–318, 320–321
connected component labeling 

and, 323–329
depth-first search algorithm, 

318–321
minimum-cost spanning trees 

and, 329–341
shortest-path problems and, 

341–345
terminology relevant to, 308–312
transitive closure of adjacency 

matrix and, 321–323
graph traversal, 314
greatest common divisor problem, 

355–357
Lamé’s Theorem and, 356–357

Greatest Lower Bound Axiom, 376
greedy algorithms, 275–276, 

330–336
grids, 122–124

applications of, 123
cloud as, 125
computational geometry on, 279
parallel prefix on, 196
schematic representation of, 

122, 123
growth rate, in asymptotic analysis, 

6–7, 9

H
hard split, easy join algorithms, 226
hardware platforms, 5–6
Hausdorff metric, 298, 300–302
head nodes of computer 

clusters, 120
hexagonal meshes, 98

high-order constants, hiding of, 
28–29

Hoare, C. A. R., 220
Horner’s Rule, 360
hull edges, definition of, 252
hypercubes, 111–116

bisection width of, 113
Bitonic Sort algorithm and, 147
communication diameter of, 

112–113
degree of, 112
dimension of, 112
k-dimensional edge of, 113
medium-grained, Bitonic Sort 

algorithm on, 236–237
parallel prefix on, 180–183

Hyperquicksort algorithm, 235–236

I
identity matrices, 161
illegal instructions, 72
image processing, 286–303

on clusters, 302
component labeling and, 

290–295
convex hull problem and, 

295–298
distance problems and, 298–302
transitive closure of binary 

matrix and, 288–290
in-degree of vertices, 311
induction, 37, 38–41

examples of, 38–41
principle of, 38, 374–376
recursion compared with, 42

Inductive Hypothesis, 38
input operations, running time 

of, 21
input-based linear arrays, 92–94
input/output (I/O) bandwidth, of 

interconnection networks, 87
Insertion Sort algorithm, 22–25

efficient implementation of, 24
recurrence equation for, 55

instruction streams, 125–126
integral bounding principles, 16–17, 

18–19
integral powers, 357–359
integration, determining asymptotic 

analysis of summation by, 16–20
interconnection networks, 85–87

bisection width of, 87
communication diameter of, 

86–87
of computer clusters, 121
degree of, 86
I/O bandwidth of, 87
running time of, 87

Internet as cloud, 125
intersection query, 273–274
intersection reporting, 273–274, 275
interval broadcasting, 189–190
inverse of a matrix, 161
invertible matrices, 161
I/O (input/output) bandwidth, of 

interconnection networks, 87

J
Jarvis, R. A., 259
Jarvis’ March algorithm, 259

K
k-dimensional edge of hypercubes, 

113
Kruskal, J. B., 330
Kruskal’s algorithm, 330
Kruskal’s MST algorithm, 330–334

L
labeling of connected components 

of graphs, 323–329
on meshes, 329
on PRAM, 324–329
on RAM, 323–324

laboratory science, 151
Lamé’s Theorem, 356–357
left arrow (← ), variable assignment 

and, 10
limits of quotient, determining 

asymptotic relationships based on 
taking, 13–15

line intersection problems, 
273–278
intersection query, 273–274
intersection reporting, 273–274, 

275
overlapping line segments, 

275–278
line segments, overlapping, 

192–196
on CREW PRAM, 194–195
maximal overlapping point 

and, 195
on mesh computer, 195
on RAM, 193–194

Linear Algebra, fundamentals for 
Gaussian elimination from, 
161–162

linear arrays, 88–97
divide-and-conquer method with 

Merge Sort algorithm on, 
210–213

input-based, 92–94
linear speedup, 127
linear time, 30, 288
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linked lists. See also pointer 
jumping
Quicksort on, 221–222

lists
linked. See linked lists; pointer 

jumping
list ranking and, 202–204
merging, 49–52
ordered, searches and, 48
unordered, searches and, 48

little oh (o) notation, 8, 9
little omega (ω ) notation, 9
Livny, Myron, 120
logarithm(s), functions using, 

example of, 14–15
logarithmic notation, 14
logarithmic time, 30
logical operators, running time 

of, 21
loops, time required to execute, 21
lower bounds

Counting Sort algorithm on 
network models and, 188

of linear arrays, 89–90
parallel prefix and, 174, 183

low-order terms, hiding of, 28–29

M
Master Method, 60–65

Master Theorem summarizing, 
63–65, 378–389

master record, 243, 244
Master Theorem, 63–65

general case of, 384–389
Lemma 1 of, 380–381
Lemma 2 of, 381–383
Lemma 3 of, 383–384
proof of, 378–389

mathematical induction, 37, 
38–41
examples of, 38–41
principle of, 38, 374–376
recursion compared with, 42

matrix(ces), 150–169
augmented, 162, 164
binary, transitive closure of, 

288–290
connectivity, 289
elementary row operations and, 

161–162
finding inverse of, 161–168
Gaussian elimination and, 

161–168
identity, 161
invertible, 161
matrix multiplication and. See 

matrix multiplication 
roundoff error and, 168

matrix multiplication, 152–161
on CGM(n2, q), 157–161
on CR PRAM, 153–154
divide-and-conquer algorithm 

for, 153
on mesh computers, 155–157
on RAM, 153
in Θ(prq) time, 152–153

maximal overlapping point, 195
maximal overlapping point 

problem, 275
maximum sum subsequence, 

183–186
on CREW PRAM, 184–186
on mesh computer, 186
on RAM, 183–184

medium-grained machines, 127
memory

of PRAM, 70
of RAM, 68

memory access of PRAM, 72
memory access unit

of PRAM, 70
of RAM, 69

Merge algorithm, 51–52
Merge Sort algorithm, 53–55, 234

Bitonic Merge algorithm 
 compared with, 141

divide-and-conquer method and, 
210–214

Quicksort algorithm versus, 
225–226

recurrence equation for, 55
recursion tree for, 62

merging. See also Merge Sort 
algorithm
Bitonic Merge algorithm and, 

140–143
of ordered lists, 49–52

Mesh Broadcast algorithm, 
102–103

mesh computers, 98–103
Bitonic Sort algorithm on, 

237–241
broadcasting data on, 102–103
component labeling problem on, 

291–295
concurrent read/write on, 245
connected component labeling 

on, 329
divide-and-conquer convex hull 

algorithm on, 264–265
eight-connected, 98
four-connected, 98–103
fundamental operations of, 

100–101
Gaussian elimination on, 

167–168
hexagonal, 98

matrix multiplication on, 
155–157

maximum sum subsequence 
on, 186

minimum-cost spanning trees 
on, 338–341

overlapping line segments on, 
195

parallel prefix on, 178–180
smallest enclosing box on, 

270–271
Mesh Semigroup algorithm, 

101–102
meshes-of-trees, 106–110
Message Passing Interface (MPI), 

121–122
Miller, R., 121
MIMD (multiple instruction stream, 

multiple data stream) 
machines, 126

minimal-weight path, 311
Minimum algorithm, on PRAM, 

77–82
minimum element on linear arrays, 

determining, 90–91
minimum-cost spanning trees, 

329–341
on meshes, 338–341
on PRAM, 336–338
on RAM, 330–336

MISD (multiple instruction 
stream, single data stream) 
machines, 126

modeling. See also models of 
computation; network models
in computational science and 

engineering, 151
Gaussian elimination on parallel 

models and, 166
prominence in modern science 

and engineering, 4
models of computation, 66–130

Amdahl’s Law and, 128
coarse-grained multiprocessors. 

See coarse-grained 
multiprocessors

cost/work and, 127
distributed-memory vs. 

 shared-memory machines, 
84–85

efficiency and, 128
Flynn’s taxonomy and, 125–126
granularity and, 126–127
interconnection networks, 

85–87
network models. See network 

models
PRAM. See PRAM (parallel 

random-access machine)
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RAM. See RAM (random access 
machine)

scalability and, 128
speedup and, 127–128
throughput and, 127

molecular structure, Shake-and-
Bake algorithm for determining, 
119–120

monotonic sequences, 138
MPI (Message Passing Interface), 

121–122
multiple instruction stream, 

 multiple data stream (MIMD) 
machines, 126

multiple instruction stream, single 
data stream (MISD) 
machines, 126

multiplication, matrix. See matrix 
multiplication

multiprocessor machines, 84

N
n!, 42–43
n positive integer

to denote data set size, 5
floor and ceiling functions 

and, 10
neighbors, 88, 309
network(s), interconnection, 

85–87
bisection width of, 87
communication diameter of, 

86–87
of computer clusters, 121
degree of, 86
I/O bandwidth of, 87

network models, 67, 88–116
array packing on, 188
characteristics of, 88
hypercubes, 111–116
linear arrays, 88–97
meshes, 98–103
meshes-of-trees, 106–110
point domination query 

on, 192
pyramids, 104–106
rings, 97–98
terminology related to, 88
trees, 103–104

network of workstations (NOW), 
118–120
Bitonic Sort algorithm on, 

242–243
computational geometry on, 279
compute clusters compared 

with, 122
parallel prefix on, 196

next field, merging lists and, 50
NOW (network of workstations), 

118–120
Bitonic Sort algorithm on, 

242–243
computational geometry on, 279
compute clusters compared 

with, 122
parallel prefix on, 196

Number Theory, 354
numerical problems, 352–370

approximate solution of 
 equations, 367–368

approximation by Taylor series, 
360–364

evaluating polynomials, 
359–360

greatest common divisor, 
355–357

integral powers, 357–359
primality, 354–355
Trapezoidal Integration, 

364–367

O
O (big oh) notation, 7, 8, 9
o (little oh) notation, 8, 9
Odd-Even Merge Sort 

algorithm, 135
omega (Ω) notation, 8, 9
operations

arithmetic, running time of, 21
associative, binary, 77
bitwise, running time of, 21
branch, running time of, 21
commutative, 101
comparison-exchange, 146
conditional, running time of, 21
elementary row, 161–162
fundamental. See fundamental 

operations
gather. See gather operations
input, running time of, 21
output, running time of, 21
parallel postfix, 191
permutation exchange, 157–161
scan, 174
scatter. See scatter operations
semigroup. See semigroup 

operations
sweep, 174

operators
binary associative, 174
comparison, running time of, 21
logical, running time of, 21

optimal time, 30
optimality, 30

ordered arrays, searching on 
PRAMs, 82–84

out-degree of vertices, 311
output operations, running time 

of, 21
output-sensitive running time, 275
overlapping line segments, 192–

196, 275–278
on CREW PRAM, 194–195
maximal overlapping point 

and, 195
on mesh computer, 195
on RAM, 193–194

P
package wrapping technique, 259
parallel algorithms, 174

definition of, 5
parallel models, Gaussian 

 elimination on, 166
parallel postfix maximum, 185
parallel postfix operation, 191
parallel prefix problem, 172–197, 

204–205
array packing and, 186–188
on cluster, 196
on coarse-grained multicomputer, 

183
on CREW PRAM, 175–178
definition of, 174
on grid, 196
on hypercube computer, 

180–183
interval broadcasting and, 

189–190
maximum sum subsequence 

application of, 183–186
on mesh computer, 178–180
on NOW, 196
overlapping line segments and, 

192–196
parallel algorithms and, 174
point domination query and, 

190–192
parallel random-access machine. 

See PRAM (parallel 
 random-access machine)

partition routine in Quicksort 
 algorithm, 227–230

partition sort. See Quicksort 
algorithm

Partition subprogram, 228–229
partitioning in convex hull 

 algorithm on PRAM, 265
paths

in graphs, 309
minimal-weight, 311
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permutation exchange operations, 
157–161

PEs (processing elements), 86
pivot row, 167
pivoting, 167
pixels, 288

labeled set of, 295
processors and, 290

plane sweep operation, 274
point domination query, 190–192

on CREW PRAM, 192
on network models, 192
on RAM, 192

pointer jumping, 200–206
list ranking and, 202–204
parallel prefix problem and, 

204–205
polylogarithmic time, 30
polynomial(s)

evaluating, 359–360
Taylor, 360

polynomial time, 30
positive integers to denote data set 

size, 5
PRAM (parallel random-access 

machine), 67, 70–84
all-pairs shortest-path problem 

on, 345
Bitonic Sort algorithm and, 147
characteristics of, 70
concurrent read/write and, 

243–245
connected component labeling 

on, 324–329
CR. See CR PRAM
CRCW, 74
CREW. See CREW PRAM
CW, 73
divide-and-conquer convex hull 

algorithm on, 265–268
divide-and-conquer method 

with selection problem on, 
219–220

ER, 72, 166
EREW, 74
EW, 73
linked lists on, 201
list ranking on, 202–204
matrix multiplication on, 

153–154
Minimum algorithm on, 77–81
minimum-cost spanning trees on, 

336–338
of n2 processors, Gaussian 

 elimination on, 166–167
parallel prefix problem on, 

204–205
read conflicts and, 72

searching ordered arrays on, 
82–84

smallest enclosing box on, 270
write conflicts and, 73

PRAM Broadcast algorithm, 77
PRAM Matrix Product algorithm 

using Θ(n3/ log n) processors, 154
PRAM Minimum algorithm, 77–82
Primality algorithm, 354–355
primality problem, 354–355
Prim’s MST algorithm, 335–336
Principle of Mathematical 

Induction, 38
proof of, 374–376
priority CW model of PRAM, 73
processing elements (PEs), 86
processors, 86. See also 

 coarse-grained multiprocessors
multiprocessor machines and, 84
pixels and, 290
of PRAM, 70
PRAM Matrix Product algorithm 

using Θ(n3/ log n), 154
of RAM, 68–69
trees of, building, 392–394

pyramids, 104–106

Q
quadratic time, 30
Quicksort algorithm

array implementation of, 
226–230

array packing and, 187
Bitonic Merge algorithm 

 compared with, 141
divide-and-conquer method and, 

220–235
expected-case running time of, 

398–401
improving, 233–235
Merge Sort algorithm versus, 

225–226
modification for parallel models, 

235–236
space used by array version of, 

231–233
time required to run, 231

quotients, determining asymptotic 
relationships based on taking 
limits of, 13–15

R
rack units, 120
RAM (random access machine), 67, 

68–70
array packing on, 186–187

characteristics of, 68–70
component labeling problem on, 

290–291
connected component labeling 

on, 323–324
divide-and-conquer convex hull 

algorithm on, 263–264
divide-and-conquer method with 

Merge Sort algorithm on, 210
divide-and-conquer method with 

selection problem on, 215–219
Gaussian elimination on, 166
Graham’s Scan on, 258–259
linked lists on, 201
matrix multiplication on, 153
maximum sum subsequence on, 

183–184
minimum-cost spanning trees on, 

330–336
overlapping line segments on, 

193–194
point domination query on, 192
single-source shortest-path 

RAM algorithm on, 341–345
smallest enclosing box on, 270
uniform analysis variant of, 70

read conflicts, PRAM and, 72
read phase of algorithms

PRAM and, 71
RAM and, 69

recurrence equations, 55
recursion, 37, 41–44

binary searches and, 46–48
depth-first-search algorithm and, 

318
induction compared with, 42
infinite, avoiding, 42
Master Method and, 60–65
mathematical proof and, 44
merging and merge sort and, 

49–55
properties defining recursive 

behavior and, 41
recursion trees, 62, 210, 211
recursive doubling procedure, 76, 

213
recursive relations, 43
Remote Procedure Call (RPC), 119
request record, 243, 244
rings, 97–98
rotation of meshes, 100–101
roundoff error

in approximation by Taylor 
series, 361

with Gaussian elimination, 168
row-major data distribution, 101
row-major ordering, 178, 242
RPC (Remote Procedure Call), 119
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running times. See also specific 
times
constant, 30
of fundamental operations, 21
importance of, 4
for InsertionSort routine, 22–25
of interconnection networks, 87
linear, 30
logarithmic, 30
lower bound on. See lower 

bounds
for MergeSort algorithm, 54–55
optimal, 30
polylogarithmic, 30
polynomial, 30
of PRAM, 72
quadratic, 30
of RAM, 69–70
of recursive sort, 49
sublinear, 30
sublogarithmic, 30

S
scalability, 128
scan operations, 174
scatter operations, 390–397

algorithms for, 394–396
building trees of processors and, 

392–394
coarse-grained multiprocessors 

and, 117–118
definition of, 391

searches 
binary, 46–48, 55
breadth first search (BFS), 

314–318, 320–321
depth first search (DFS), 

318–321 
sequential, 44–46, 48

selection problem, divide-and-
conquer method and, 214–220

semigroup operations, 77
meshes and, 101–102
meshes-of-trees and, 108
on pyramids, 106
on trees, 104

sequences. See also maximum sum 
subsequence
bitonic, 137, 138
monotonic, 138
of operations, 21

sequential algorithms, definition 
of, 5

sequential searches, 44–46, 48
SequentialSearch algorithm, 45–46

recurrence equation for, 55

Shake-and-Bake algorithm, 
119–120

shared-memory machines, 84–85
shortest-path problems, 341–345
all-pairs shortest-path parallel 

algorithm and, 345
single-source shortest-path RAM 

algorithm and, 341–345
SIMD (single instruction stream, 

multiple data stream) 
machines, 126

simple paths in graphs, 309
Simpson’s Method, 367
simulation

in computational science and 
engineering, 151

prominence in modern science 
and engineering, 4

single instruction stream, multiple 
data stream (SIMD) 
machines, 126

single instruction stream, single 
data stream (SISD) 
machines, 126

single-program multiple-data 
(SPMD) programming style, 126

single-source shortest-path problem, 
321, 341–345

SISD (single instruction 
stream, single data stream) 
machines, 126

smallest enclosing box, 268–271
on mesh, 270–271
on PRAM, 270
on RAM, 270

snake-like indexing, 296
software as a service, 124–125
software platforms, 5–6
Sollin’s algorithm, 336
sorting, convex hull problem and, 

253–254
sorting algorithms. See also 

Bitonic Sort algorithm; 
Counting Sort algorithm; 
Merge Sort algorithm; Quicksort 
algorithm
Bitonic Sort algorithm and, 

143–146
comparison-based, 25
Hyperquicksort algorithm, 

235–236
Insertion Sort algorithm and, 

22–25
for linear arrays, 95–97
Odd-Even Merge Sort 

algorithm, 135
running times for, 25–26

sorting networks, 136–139
comparison element of, 137

sortkey field, merging lists and, 
50, 51

spanning trees, 330. See also 
 minimum-cost spanning trees

sparse graphs, 309
speedup, 127–128
Split algorithm, 52–53
splitList subprogram, 224
SPMD (single-program 

 multiple-data) programming 
style, 126

Stitch step
in component labeling problem, 

293–294
in divide-and-conquer method, 

209, 210, 211
in Quicksort algorithm, 221, 

226,  227
storage system of computer 

clusters, 121
Strassen, V., 153
strongly connected graphs, 310
sublinear time, 30
sublogarithmic time, 30
successors, 276, 277
summation

bounding, 15–17, 18–19
determining asymptotic analysis 

by integration, 16–20
Sun workstations, 119
supervertex(ices), 325
sweep operations, 174

T
Taylor polynomials, 360
Taylor series, 360–364
theoretical science, 151
Θ notation, 7, 9, 44
throughput, 127
tractor-tread algorithms, 94–95
transitive closure

of adjacency matrix 
 representations, 321–323

of binary matrix, 288–290
Trapezoidal Integration, 

364–367
Tree Traversal algorithm, 

 recurrence equation for, 55
trees of processors, 103–104, 309

building, 392–394
truncation error in approximation 

by Taylor series, 361
T(n) See also running times

definition of, 5
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U
undirected graphs, 308
uniform access model for PRAM 

memory access, 72
uniform analysis variant of RAM, 70
Unix workstations, 118–119
unordered edge input, 314
update records, 244

V
values, assignment to variables, 10
Van Scoy, F. L., 290, 295, 323
variables, assignment of values 

to, 10

vertex(ices)
adjacent, of graphs, 309
degree of, 311

vertex label in component labeling 
problem, 291

virtualization, required by cloud, 
125

Voronoi Diagram, 271

W
Wagar, Bruce, 235, 236
Warshall’s algorithm, 289–290, 

322–323, 339, 345
weakly connected graphs, 310

weighted graphs, 309
worker nodes of computer 

clusters, 120
workstations, network of (NOW), 

118–120
Bitonic Sort algorithm on, 

242–243
computational geometry on, 279
compute clusters compared 

with, 122
parallel prefix on, 196

write conflicts, PRAM and, 73
write phase of algorithms

PRAM and, 71–72
RAM and, 69
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