
C8208_fm.indd iiC8208_fm.indd ii 11/15/12 7:01 AM11/15/12 7:01 AM

Algorithms
Sequential and Parallel:

A Unified Approach

C8208_fm.indd iC8208_fm.indd i 11/15/12 7:01 AM11/15/12 7:01 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C8208_fm.indd iiC8208_fm.indd ii 11/15/12 7:01 AM11/15/12 7:01 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Algorithms
Sequential and Parallel:

A Unified Approach

Third Edition

Russ Miller
Laurence Boxer

Australia • Brazil • Japan • Korea • Mexico • Singapore • Spain • United Kingdom • United States

C8208_fm.indd iiiC8208_fm.indd iii 11/15/12 7:01 AM11/15/12 7:01 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C8208_fm.indd iiC8208_fm.indd ii 11/15/12 7:01 AM11/15/12 7:01 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

 This is an electronic version of the print textbook. Due to electronic rights restrictions,
some third party content may be suppressed. Editorial review has deemed that any suppressed
content does not materially affect the overall learning experience. The publisher reserves the right
to remove content from this title at any time if subsequent rights restrictions require it. For
valuable information on pricing, previous editions, changes to current editions, and alternate
formats, please visit www.cengage.com/highered to search by ISBN#, author, title, or keyword for
materials in your areas of interest.

© 2013, 2005 Cengage Learning

ALL RIGHTS RESERVED. No part of this work covered by the copyright
herein may be reproduced, transmitted, stored, or used in any form or by
any means graphic, electronic, or mechanical, including but not limited to
photocopying, recording, scanning, digitizing, taping, Web distribution,
information networks, or information storage and retrieval systems, except
as permitted under Section 107 or 108 of the 1976 United States Copyright
Act, without the prior written permission of the publisher.

Library of Congress Control Number: 2012947455

ISBN-13: 978-1-133-36680-5
ISBN-10: 1-133-36680-5

Cengage Learning
20 Channel Center Street
Boston, MA 02210
USA

Cengage Learning is a leading provider of customized learning solutions with
offi ce locations around the globe, including Singapore, the United Kingdom,
Australia, Mexico, Brazil and Japan. Locate your local offi ce at
international.cengage.com/region

Cengage Learning products are represented in Canada by
Nelson Education, Ltd.

For your course and learning solutions, visit www.cengage.com
Purchase any of our products at your local college store or at our preferred
online store www.cengagebrain.com
Instructors: Please visit login.cengage.com and log in to access instructor-
specifi c resources.

Algorithms Sequential and Parallel:
A Unifi ed Approach, Third Edition
Russ Miller and Laurence Boxer

Editor-in-Chief: Marie Lee

Senior Product Manager: Alyssa Pratt

Associate Product Manager Stephanie Lorenz

Art and Design Direction, Production
Management, and Composition:
Integra Software Services Pvt. Ltd.

Senior Print Buyer: Julio Esperas

Cover Image: ©Spectral-Design/Shutterstock

For product information and technology assistance, contact us at
Cengage Learning Customer & Sales Support, 1-800-354-9706

For permission to use material from this text or product,
submit all requests online at www.cengage.com/permissions

Further permissions questions can be e-mailed to
permissionrequest@cengage.com

Printed in the United States of America
1 2 3 4 5 6 17 16 15 14 13 12

C8208_fm.indd ivC8208_fm.indd iv 11/15/12 7:01 AM11/15/12 7:01 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

To my wife, Celeste, and my children, Amanda, Brian,
and Melissa.

—Russ Miller

To my wife, Linda; our daughter and son-in-law,
Robin and Mark Waldman, and their magnificent
 multiprocessing multiplications, Ella, Lilah, and
 Gabriel; and our son, Matthew.

—Laurence Boxer

C8208_fm.indd vC8208_fm.indd v 11/15/12 7:01 AM11/15/12 7:01 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C8208_fm.indd viC8208_fm.indd vi 11/15/12 7:01 AM11/15/12 7:01 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Contents

 Preface xvii

 Reference Guide xxiii

 1 Asymptotic Analysis 2

Notation and Terminology 5

Asymptotic Notation 7

Additional Notation 10

Asymptotic Relationships 12

Asymptotic Analysis and Limits 12

Summations and Integrals 15

Rules for Analysis of Algorithms 21

Limitations of Asymptotic Analysis 28

Asymptotic Relationships and Common Terminology 29

Summary 30

Chapter Notes 30

Exercises 31

 2 Induction and Recursion 36

Mathematical Induction 38

Induction Examples 38

Recursion 41

Sequential Search 44

Binary Search 46

 vii

C8208_fm.indd viiC8208_fm.indd vii 11/15/12 7:01 AM11/15/12 7:01 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

viii Contents

Additional Notes on Sequential and Binary Searches 48

Merging and Merge Sort 49

Common Recurrence Equations 55

Summary 56

Chapter Notes 56

Exercises 56

 3 The Master Method 60

Master Theorem 63

Examples 63

Summary 65

Chapter Notes 65

Exercises 65

 4 Models of Computation 66

RAM (Random Access Machine) 68

PRAM (Parallel Random Access Machine) 70

Distributed-Memory vs. Shared-Memory Machines 84

Interconnection Networks 85

Processor Organizations 88

Linear Array 88

Ring 97

Mesh 98

Tree 103

Pyramid 104

Mesh-of-Trees 106

Hypercube 111

Coarse-Grained Multiprocessors 116

Network of Workstations (NOW) 118

Cluster 120

C8208_fm.indd viiiC8208_fm.indd viii 11/15/12 7:01 AM11/15/12 7:01 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Contents ix

Grid 122

Cloud 124

Additional Terminology 125

Summary 128

Chapter Notes 129

Exercises 130

 5 Combinational Circuits 134

Combinational Circuits and Sorting Networks 136

Sorting Networks 136

Bitonic Merge 140

Bitonic Sort 142

Bitonic Sort on Parallel Computers 146

Summary 147

Chapter Notes 148

Exercises 148

 6 Matrix Operations 150

Matrix Multiplication 152

Gaussian Elimination 161

Roundoff Error 168

Summary 168

Chapter Notes 168

Exercises 169

 7 Parallel Prefix 172

Parallel Prefix 174

Parallel Algorithms 174

Parallel Prefix on the CREW PRAM 175

Mesh 178

Hypercube 180

C8208_fm.indd ixC8208_fm.indd ix 11/15/12 7:01 AM11/15/12 7:01 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

x Contents

Analysis 181

Coarse Grained Multicomputer 183

Maximum Sum Subsequence 183

RAM 183

CREW PRAM 184

Mesh 186

Array Packing 186

RAM 186

CREW PRAM 187

Network Models 188

Interval Broadcasting 189

Solution Strategy 190

Analysis 190

Point Domination Query 190

RAM 192

CREW PRAM and Network Models 192

Computing Overlapping Line Segments 192

RAM 193

CREW PRAM 194

Mesh 195

Maximal Overlapping Point 195

Analysis 196

Parallel Prefix on a NOW, Cluster, or Grid 196

Summary 196

Chapter Notes 197

Exercises 197

 8 Pointer Jumping 200

List Ranking 202

Linked List Parallel Prefix 204

C8208_fm.indd xC8208_fm.indd x 11/15/12 7:01 AM11/15/12 7:01 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Contents xi

Summary 205

Chapter Notes 206

Exercises 206

 9 Divide-and-Conquer 208

Merge Sort (Revisited) 210

RAM 210

Linear Array 210

Cluster 213

Selection 214

RAM 215

Correctness of Algorithm 217

Analysis of Running Time 217

PRAM 219

Mesh 220

Quicksort (Partition Sort) 220

Quicksort vs. Merge Sort 225

Array Implementation 226

Analysis of Quicksort 231

Improving Quicksort 233

Modifications of Quicksort for Parallel Models 235

Hyperquicksort 235

Bitonic Sort (Revisited) 236

Bitonic Sort on a Mesh 237

Sorting Data with Respect to Other Orderings 241

Sorting on a Cluster 242

Concurrent Read/Write 243

Implementation of a Concurrent Read 244

Implementation of Concurrent Write (overview) 244

Concurrent Read/Write on a Mesh 245

C8208_fm.indd xiC8208_fm.indd xi 11/15/12 7:01 AM11/15/12 7:01 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

xii Contents

Summary 245

Chapter Notes 246

Exercises 246

 10 Computational Geometry 250

Convex Hull 252

Graham’s Scan 254

Jarvis’ March 259

Divide-and-Conquer Solutions to the Convex Hull Problem 260

Smallest Enclosing Box 268

RAM 270

PRAM 270

Mesh 270

All-Nearest Neighbor Problem 271

Running Time 273

Line Intersection Problems 273

Overlapping Line Segments 275

Computational Geometry on NOW, Clusters,
and Grids 279

Summary 279

Chapter Notes 279

Exercises 282

 11 Image Processing 286

Preliminaries 288

Transitive Closure of a Binary Matrix 288

Component Labeling 290

RAM 290

Mesh 291

C8208_fm.indd xiiC8208_fm.indd xii 11/15/12 7:01 AM11/15/12 7:01 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Contents xiii

Convex Hull 295

Running Time 298

Distance Problems 298

All-Nearest Neighbor between Labeled Sets 299

Running Time 300

Hausdorff Metric for Digital Images 300

Image Processing on a Cluster 302

Summary 303

Chapter Notes 303

Exercises 303

 12 Graph Algorithms 306

Terminology 308

Representations 312

Adjacency Lists 312

Adjacency Matrix 313

Unordered Edges 314

Fundamental Algorithms 314

Breadth-First Search 314

Depth-First Search 318

Discussion of Depth-First and Breadth-First Search 320

Computing the Transitive Closure of an Adjacency Matrix 321

Connected Component Labeling 323

RAM 323

PRAM 324

Mesh 329

Minimum-Cost Spanning Trees 329

RAM 330

C8208_fm.indd xiiiC8208_fm.indd xiii 11/15/12 7:01 AM11/15/12 7:01 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

xiv Contents

PRAM 336

Mesh 338

Shortest-Path Problems 341

Single-Source Shortest-Path RAM Algorithm 341

All-Pairs Shortest-Path Parallel Algorithm 345

Summary 346

Chapter Notes 346

Exercises 347

 13 Numerical Problems 352

Primality 354

Greatest Common Divisor 355

Lamé’s Theorem 356

Integral Powers 357

Evaluating a Polynomial 359

Approximation by Taylor Series 360

Trapezoidal Integration 364

Approximate Solution of an Equation 367

Summary 368

Chapter Notes 369

Exercises 370

 Appendix 1 Proof of the Principle of Mathematical Induction 374

Appendix 2 Proof of the Master Theorem 378

Lemma 1 380

Lemma 2 381

Lemma 3 383

The General Case 384

C8208_fm.indd xivC8208_fm.indd xiv 11/15/12 7:01 AM11/15/12 7:01 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Contents xv

Appendix 3 Efficient Gather and Scatter Operations 390

Building a Tree of Processors 392

Gather and Scatter Algorithms 394

Appendix Notes 396

Appendix 4 Expected-Case Running Time of Quicksort 398

Bibliography 402

Index 408

C8208_fm.indd xvC8208_fm.indd xv 11/15/12 7:01 AM11/15/12 7:01 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C8208_fm.indd xviC8208_fm.indd xvi 11/15/12 7:01 AM11/15/12 7:01 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Preface

Effective computing requires the design, analysis, implementation, and evaluation
of algorithms to solve problems of interest. Computational problems come from

a wide variety of areas including science, engineering, business, athletics, architec-
ture, medicine, management, economics, psychology, anthropology, and entertain-
ment, to name a few. In addition, exciting new challenges exist in the field of
computational science and engineering, which is the “third science,” complementing
both theoretical and laboratory science. Computational science and engineering unites
computer science and mathematics with disciplinary expertise in biology, chemistry,
physics, and other applied scientific and engineering fields. Multidisciplinary efforts
in these STEM (Science, Technology, Engineering, and Mathematics) areas typically
require efficient algorithms that run on high- performance computers in order to per-
form simulation and modeling of physical and human environments.

With current technology, it is difficult to increase significantly the density of
computer chips, and, hence, the inherent speed of a traditional computer processor.
Since there continues to be a demand for increased computing power, state-of-the-
art computer systems are now being designed around architectures that consist of
multiple processing units. That is, computing systems are currently being con-
structed based on multiple processors and/or processors with multiple cores. In
fact, it is quite difficult to find even a consumer-based compute system that does
not consist of multiple processing units. This includes desktops, laptops, netbooks,
tablets, smart phones, gaming systems, and high-end computing systems. In
fact, many of these systems contain Graphics Processing Units (GPUs) that con-
sist of numerous processors targeted at enhancing a gaming and visualization
environment.

Since mainstream computing consists of multiprocessor units, whether it is
within a local system or in a remotely accessed “cloud,” it is critical for scientists,
engineers, and users of this 21st century computational infrastructure to have a
working knowledge of multiprocessor algorithms and architectures. For historical
reasons and due to legacy and “dusty deck” computer programs, it is also impor-
tant that the reader have a basic understanding of how to manipulate uniprocessor
systems efficiently.

Due to the state of current technology, the focus of this book is on parallel and
sequential algorithms and architectures, including clouds, grids, clusters, fine-
grained network models, shared- and distributed-memory machines, and the tradi-
tional von Neumann architecture. We discuss algorithms and their analysis for a

 xvii

C8208_fm.indd xviiC8208_fm.indd xvii 11/15/12 7:01 AM11/15/12 7:01 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

xviii Preface

variety of compute models in a unified approach by presenting a solution strategy,
and then discussing a comparison of resources for the implementation of the high-
level solution strategy on such architectures. Analyses of these resources consider
the number of computational units (processors or cores), the amount of memory,
interconnection networks, and running time, to name a few.

Computer Science Courses in Algorithms: Many computer science depart-
ments offer courses in “Analysis of Algorithms,” “Algorithms,” “An Introduction
to Algorithms,” or “Data Structures and their Algorithms” at the junior or senior
level. In addition, a course in “Analysis of Algorithms” is required of most gradu-
ate students pursuing an advanced degree in computer science. Throughout the
1980s, the vast majority of these course offerings focused on algorithms for
sequential (von Neumann) computers. In fact, not until the late 1980s did courses
covering an introduction to parallel algorithms begin to appear in research-
oriented departments. Furthermore, these courses in parallel algorithms were typi-
cally presented to advanced graduate students. However, by the early 1990s,
courses in parallel computing began to emerge at the undergraduate level, espe-
cially at progressive 4-year colleges.

Throughout much of the 1990s, traditional algorithms-based courses changed
very little. Gradually, such courses began to incorporate a component of parallel
algorithms, typically one to three weeks near the end of the semester. During the
later part of the 1990s, however, it was not uncommon to find algorithms courses
that contained as much as 1/3 of the material devoted to parallel algorithms.

In this book, we take a very different approach to an algorithms-based course.
Parallel computing has moved into the mainstream, with clusters of commodity-off-
the-shelf (COTS) machines dominating the list of top supercomputers in the world
(www.top500.org), and smaller versions of such machines being exploited in many
research laboratories. Therefore, the time is right to teach a fundamental course in
algorithms that covers paradigms for both sequential and parallel models.

This Book’s Approach to Presenting Algorithms: The approach we take in
this book is to integrate the presentation of sequential and parallel algorithms.
Specifically, we employ a philosophy of presenting a paradigm, such as divide-
and-conquer, and then discussing implementation issues for both sequential and
parallel models. Due to the fact that we present design and analysis of paradigms
for sequential and parallel models, the reader might notice that the number of para-
digms we can treat within a semester is limited when compared to a traditional
sequential algorithms text.

This book has been used successfully at a wide variety of colleges and
universities.

Prerequisites: We assume a basic knowledge of data structures and mathemati-
cal maturity. The reader should be comfortable with notions of a stack, queue, list, and
binary tree, at a level that is typically taught in a CS2 course. The reader should also
be familiar with fundamentals of Discrete Mathematics and Calculus. Specifically,
the reader should be comfortable with limits, summations, and integrals.

C8208_fm.indd xviiiC8208_fm.indd xviii 11/15/12 7:01 AM11/15/12 7:01 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Preface xix

Overview of Chapters

Background material for the course is presented in Chapters 1, 2, and 3. Chapter 1
introduces the concept of asymptotic analysis. While the reader might have seen
some of this material in a course on data structures, we present this material in a
fair amount of detail. The reader who is uncomfortable with some of the funda-
mental material from a freshman-level Calculus sequence might want to brush up
on notions such as limits, summations and integrals, and derivatives, as they natu-
rally arise in the presentation and application of asymptotic analysis. Chapter 2
focuses on fundamentals of induction and recursion. While many students have
seen this material in previous courses in computer science and/or mathematics, we
have found it important to review this material briefly and to provide the students
with a reference for performing the necessary review. In Chapter 3, we present the
Master Method, a very useful cookbook-type of system for evaluating recurrence
equations that are common in an algorithms-based setting.

Chapter 4 introduces fundamental models of computation, including the RAM
(a formal sequential architecture) and a variety of parallel architectures. We intro-
duce multiprocessor systems that include the PRAM, linear array, ring, mesh, tree,
pyramid, mesh-of-trees, hypercube, and the Coarse-Grained Multicomputer.
Chapter 4 also introduces computational systems that are abundantly available in
standard academic and industrial settings, including a Network of Workstations,
Cluster, Grid, and Cloud, as well as some standard terminology in the field of par-
allel computing. In Chapter 5, we present an overview of combinational circuits
and sorting networks. This work is used to motivate the natural use of parallel mod-
els and to demonstrate the blending of architectural and algorithmic approaches.

The focus of Chapter 6 is the important problem of matrix multiplication,
which is considered for a variety of models of computation. In Chapter 7, we intro-
duce the parallel prefix operation. This is a very powerful operation with a wide
variety of applications. We discuss implementations and analysis for a number of
the models presented in Chapter 5 and give sample applications. In Chapter 8, we
introduce pointer jumping techniques and show how some list-based algorithms
can be efficiently implemented in parallel.

In Chapter 9, we introduce the powerful divide-and-conquer paradigm. We
discuss applications of divide-and-conquer to problems involving data movement,
including sorting, concurrent reads/writes, and so forth. Algorithms and their anal-
ysis are presented for a variety of models.

Chapters 10 and 11 focus on two important application areas, respectively,
Computational Geometry and Image Processing. In these chapters, we focus on
interesting problems chosen from these important domains as a way of solidifying
the approach of this book in terms of developing machine independent solution
strategies, which can then be tailored for specific models, as required.

Chapter 12 focuses on fundamental graph theoretic problems. Initially, we
present standard traversal techniques, including breadth-first search and depth-first

C8208_fm.indd xixC8208_fm.indd xix 11/15/12 7:01 AM11/15/12 7:01 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

xx Preface

search. Finally, we couple these techniques with greedy algorithms to solve prob-
lems, such as labeling the connected components of a graph, determining a mini-
mal spanning forest of a graph, and problems involving shortest or minimal-weight
paths in a graph.

Chapter 13 is an optional chapter concerned with some fundamental numeri-
cal problems. A focus of the chapter is on sequential algorithms for polynomial
evaluation and approximations of definite integrals.

There are several appendices in which we give proofs of theorems that will be
difficult for many readers. We believe that only those with the interest and mathe-
matical aptitude to make the experience worthwhile should read these appendices.
We recommend that instructors allow students to use the results discussed in the
appendices whether they understand the material or not, in the fashion of computer
programmers who often use library routines developed by others.

Recommended Use

This book has been successfully deployed in both elective and required courses,
with students typically ranging from sophomores (2nd-year undergraduate stu-
dents) to 3rd-year graduate students. A student in a course using this book need
not have an advanced understanding of mathematics. A fundamental background
in mathematics will suffice.

Correspondence

Please feel free to contact the authors directly with any comments or criticisms of
this book. Russ Miller may be reached at miller@ buffalo.edu and Laurence Boxer
may be reached at boxer@niagara.edu. In addition, a Web site for the book can be
found from http://www.cse.buffalo.edu/faculty/miller/papers.shtml. This Web site
contains information related to the book, including pointers to education-based
pages, relevant parallel computing links, and errata.

Instructor Resources

Teaching tools are available for this book. When this book is used in a classroom
setting, the following materials are available for download at login.cengage.com.

PowerPoint Presentations. A set of PowerPoint slides is available for each
chapter. Slides may be used to guide classroom presentation, to make available to
students for review, or to print as classroom handouts. Instructors are welcome to
customize the slides to suit their course needs.

Figure Files. The complete set of images from the text is available for use in
classroom presentations.

Solution Files. A detailed set of solutions to all exercises is available to
instructors.

C8208_fm.indd xxC8208_fm.indd xx 11/15/12 7:01 AM11/15/12 7:01 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Preface xxi

Acknowledgments

The authors would like to thank Stefano Basagni, Kian L. Pokorny, and Don Kraft,
as well as a variety of anonymous reviewers, for providing insightful comments
that have been used to improve the presentation of this book. We would like to
thank the students at SUNY-Buffalo who used early drafts and previous editions of
this book in their classes and provided valuable feedback. We would like to thank
the team at Cengage, especially Alyssa Pratt, Senior Product Manager and Sreejith
Govindan, Project Manager at Integra for their tremendous attention to detail. We
would also like to thank our families for providing us the support necessary to
complete this time-consuming project.

Russ Miller & Laurence Boxer, 2013

C8208_fm.indd xxiC8208_fm.indd xxi 11/15/12 7:01 AM11/15/12 7:01 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C8208_fm.indd xxiiC8208_fm.indd xxii 11/15/12 7:01 AM11/15/12 7:01 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Reference Guide

Asymptotic Relationships

Assume f and g are positive functions of n. Then the following relationships exist.

 1. f (n) = O1g(n)2⇔ g(n) = Ω1 f (n)2.
 2. f (n) = Θ1g(n)2⇔ g(n) = Θ1 f (n)2.
 3. f (n) = Θ1g(n)2⇔ f (n) = O1g(n)2 and f (n) = Ω1g(n)2.
 4. f (n) = o1g(n)2⇔ g(n) = ω 1 f (n)2.
 5. f (n) = o1g(n)2⇔ lim

n→∞

f (n)

g(n)
 = 0.

 6. f (n) = ω 1g(n)2⇔ lim
n→∞

f (n)

g(n)
 = ∞ .

 7. f (n) = o1g(n)2 ⇒ f (n) = O1g(n)2, but the converse is false.

 8. f (n) = ω 1g(n)2 ⇒ f (n) = Ω1g(n)2, but the converse is false.

 9. f (n) is bounded above and below by positive constants if and only if
f (n) = Θ(1).

 xxiii

C8208_fm.indd xxiiiC8208_fm.indd xxiii 11/15/12 7:01 AM11/15/12 7:01 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

xxiv Reference Guide

Limits and Asymptotic Relationships

In order to determine the relationship between functions f and g, it is often useful
to examine

lim
n→∞

f (n)

g(n)
= L.

The possible outcomes of this relationship, and their implications, are given below.

 1. L = 0. This means that g(n) grows at a faster rate than f (n). Therefore,
f (n) = O(g(n)), f (n) ≠ Θ(g(n)), and f (n) = o(g(n)).

 2. L = ∞ . This means that f (n) grows at a faster rate than g(n). Therefore,
f (n) = Ω(g(n)), f (n) ≠ Θ(g(n)), and f (n) = ω (g(n)).

 3. L ≠ 0 is finite. This means that f (n) and g(n) grow at the same rate, to within
a constant factor. Therefore, f (n) = Θ(g(n)) and g(n) = Θ(f(n)). Notice that
this also means that f (n) = O(g(n)), g(n) = O(f (n)), f (n) = Ω(g(n)),
g(n) = Ω(f (n)), f (n) ≠ o(g(n)), and f (n) ≠ ω (g(n)).

 4. There is no limit. In the case where

lim
n→∞

f (n)

g(n)

 does not exist, this technique cannot be used to determine the asymptotic rela-
tionship between f (n) and g(n).

C8208_fm.indd xxivC8208_fm.indd xxiv 11/15/12 7:01 AM11/15/12 7:01 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Reference Guide xxv

Logarithmic Properties and Notation

Several properties of logarithms that are useful in the analysis of algorithms are
given below.

• loga 1 = 0
• loga a = 1
• loga xy = loga x + loga y

• logb a =
logc a

logc b

• loga xy = y loga x

• loga
x
y

= loga x − loga y

In the scientific literature, the following are common abbreviations for logarithms
of the given base.

• loge x is written as ln x

• log2 x is written as lg x

• log10 x is written as log x

C8208_fm.indd xxvC8208_fm.indd xxv 11/15/12 7:01 AM11/15/12 7:01 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

xxvi Reference Guide

Standard Terminology

These terms are fairly standard, appearing in many texts and the scientific literature.

An algorithm with running time is said to run in

Θ(1) constant time

Θ(log n) logarithmic time

O(logk n), k a positive integer polylogarithmic time

o(log n) sublogarithmic time

Θ(n) linear time

o(n) sublinear time

Θ(n2) quadratic time

O1 f (n)2, where f (n) is a polynomial polynomial time

C8208_fm.indd xxviC8208_fm.indd xxvi 11/15/12 7:01 AM11/15/12 7:01 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Reference Guide xxvii

Master Theorem

Let a ≥ 1 and b ≥ 1 be constants. Let f (n) be a positive function defined on the
positive integers. Let T(n) be defined on the positive integers by

 T (n) = aT a n

b
b + f (n), (3.1)

where we can interpret n/b as meaning either ⎣n/b⎦ or ⎡n/b⎤ . Then the following
hold.

 1. Suppose f (n) = O1nlogb a−ε2 for some constant ε > 0. Then T(n) = Θ1nlogb a2.
 2. Suppose f (n) = Θ1nlogb a2. Then T(n) = Θ1nlogb a log n2.
 3. Suppose f (n) = Ω(nlogb a+ ε) for some constant ε > 0, and there are constants c

and N, 0 < c < 1 and N > 0, such that n/b > N ⇒ af (n/b) ≤ cf (n). Then
T(n) = Θ1 f (n)2.

C8208_fm.indd xxviiC8208_fm.indd xxvii 11/15/12 7:01 AM11/15/12 7:01 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

xxviii Reference Guide

Common Recurrence Equations

Representative Algorithm Recurrence Equation Asymptotic Solution

Binary Search T (n) = T (n/2) + Θ(1) T (n) = Θ(log n)
Sequential Search T(n) = T(n − 1) + Θ(1) T (n) = Θ(n)
Tree Traversal T (n) = 2T (n/2) + Θ(1) T (n) = Θ(n)
Selection Sort T (n) = T (n − 1) + Θ (n) T (n) = Θ(n2)
Merge Sort T (n) = 2T (n/2) + Θ(n) T (n) = Θ(n log n)
Parallel Merge Sort T (n) = T (n/2) + Θ(n) T (n) = Θ(n)
Bitonic Sort T (n) = 2T (n/2) + Θ (n log n) T (n) = Θ(n log2 n)
Hypercube Bitonic Sort T (n) = T (n/2) + Θ (log n) T (n) = Θ (log2 n)

Mesh Divide-and-Conquer T (n) = T (n/4) + Θ (n1/2) T (n) = Θ(n1/2)

C8208_fm.indd xxviiiC8208_fm.indd xxviii 11/15/12 7:01 AM11/15/12 7:01 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Reference Guide xxix

Common Summations

Sum of Constant Terms:a
n

i=1

1 = n

Arithmetic Series:a
n

i=1

ai = n ca1 +
(n − 1)d

2
d , where ai+1 = ai + d, for some constant d.

Example of an arithmetic series: a
n

i=1

i =
n(n + 1)

2

Geometric Series:a
n

i=1

a0 r i−1 =
a0(1 − rn)

(1 − r)
, where r =

ai+1

ai
 is a constant, r ≠ 1.

Example of a geometric series: a
 log2 n

i=1

 n/2i = n − 1

Sum of Consecutive Squares: a
n

i=1

i2 =
n(n + 1)(2n + 1)

6

Sum of Consecutive Integers Raised to a Power:a
n

i=1

ik = Θ1nk+12, for k > 0 a
constant.

Sum of Consecutive Reciprocals:

a
n

i=1

1

i
= 1 +

1

2
+ g+

1
n

≈ ln n + γ , where γ ≈ 0.5772c(Euler’s constant)

Bounding a Sum for a Nondecreasing Function f(x):

∫
u

l − 1
f (x)dx ≤ a

u

i=l
 f (i) ≤ ∫

u + 1

l
f (x)dx

Bounding a Sum for a Nonincreasing Function f(x):

∫
u + 1

l
f (x)dx ≤ a

u

i=l
 f (i) ≤ ∫

u

l − 1
f (x)dx

C8208_fm.indd xxixC8208_fm.indd xxix 11/15/12 7:01 AM11/15/12 7:01 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

xxx Reference Guide

Models of Computation

Model Communication diameter Bisection width

RAM Θ(1) -
PRAM of size n equivalent to Θ(1) equivalent to Θ(n2)
Linear array of size n Θ(n) Θ(1)
Mesh of size n Θ(n1/2) Θ(n1/2)
Hypercube of size n Θ(log n) Θ(n)
Pyramid of base size n Θ(log n) Θ(n1/2)

Mesh of trees of base size n Θ(log n) Θ(n1/2)

Note that for the RAM, n represents the size of the memory.
Note that for the other models, which are multiprocessor models, n represents

the number of processors, where each processor is assumed to have some (small)
finite amount of memory.

C8208_fm.indd xxxC8208_fm.indd xxx 11/15/12 7:01 AM11/15/12 7:01 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Reference Guide xxxi

Asymptotic Running Times

Broadcast a
unit of data

Semigroup operation
on n data evenly
distributed

Parallel prefix
on n data
evenly
distributed

Sort n data evenly
distributed
(comparison-based
algorithm)

RAM N/A Θ(n) Θ(n) Θ(n log n)

CR PRAM of size n Θ(1) Θ(log n) Θ(log n) Θ(log n)

ER PRAM of size n Θ(log n) Θ(log n) Θ(log n) Θ(log n)

Linear array of size n Θ(n) Θ(n) Θ(n) Θ(n)

Mesh of size n Θ(n1/2) Θ(n1/2) Θ(n1/2) Θ(n1/2)

Hypercube of size n Θ(log n) Θ(log n) Θ(log n) O(log2 n)

Pyramid of base size n Θ(log n) Θ(log n) Θ(n1/2) Θ(n1/2)

Mesh-of-Trees of base
size n

Θ(log n) Θ(log n) Θ(log n) Θ(n1/2)

CGM(n,q) – coarse
grained multicomputer
of q processors with
enough memory for n
data

O(q) Θ(n/q) Θ(n/q) Not discussed in
this book

C8208_fm.indd xxxiC8208_fm.indd xxxi 11/15/12 7:01 AM11/15/12 7:01 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Notation and Terminology

Asymptotic Relationships

Rules for Analysis of Algorithms

Limitations of Asymptotic Analysis

Asymptotic Relationships and Common Terminology

Summary

Chapter Notes

Exercises

1
Asymptotic Analysis

Background Photo Credit © Spectral-Design / Shutterstock
All Images used within the chapter are © 2013 Cengage Learning

C8208_ch01.indd 2C8208_ch01.indd 2 11/16/12 11:54 AM11/16/12 11:54 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Acomprehensive study of algorithms includes the design, analysis, implementation,
and scientific evaluation through experimentation of algorithms to solve impor-

tant problems. In this chapter, we introduce some basic tools and techniques that are
required in order to evaluate effectively both a theoretical and an experimental analysis
of algorithms. It is important to realize that without analysis, it is often difficult to
 justify the choice of one algorithm over another or to justify the need for developing a
new algorithm. Therefore, a critical aspect of most courses covering advanced data
structures or algorithms is on the development of techniques for estimating resources
for a given algorithm. Such resources include the running time, disk space, memory,
and number of processors utilized by an efficient implementation of the algorithm
under consideration.

While we often focus on the running time of an algorithm, it is critical that the
algorithm under consideration produce correct results. In fact, it is not uncommon for
one to develop computer programs that run very fast and produce incorrect results.
Such programs can be extremely harmful. However, for pragmatic reasons, nontrivial
proofs of correctness are not covered in this text.

There are other goals when one is developing computer algorithms and programs
to solve problems. Such goals include maximizing the use of human and computer
resources. Human resources include current and future staff time for understanding the
problems to be solved, devising efficient solutions, providing theoretical analyses of
resources required by such solutions, implementing appropriate solutions, and per-
forming empirical evaluations of such solutions on representative data sets. It is impor-
tant to note that there is evidence to support the claim that efficiency of human
resources is often a function of the clarity of code written.

Computer resources include processing time, computer memory, communication
latency and bandwidth, number of processors, and the manner in which the processors
communicate, to name a few. It is not unusual for there to be a conflict in the utiliza-
tion of some of these resources. In particular, we will discuss a number of examples in
this book where there is a tradeoff in asymptotic running time and the asymptotic
amount of additional memory and/or processors required by an algorithm. That is,
there are times when one can devise an algorithm that runs faster if additional memory
and/or processors are available.

Throughout this book, we will focus on resources associated with a given algo-
rithm. Specifically, we will be concerned with quantities that include the number of
processors, the size of the memory, and the running time of the algorithm under con-
sideration. A comparison of such quantities will allow for a reasonable comparison
between algorithms, typically resulting in an informed choice as to the appropriate
algorithm to use. For example, such analyses will allow us to make a more informed
decision as to which sorting algorithm to use on a sequential machine given data with
certain properties that are maintained in specific data structures.

C8208_ch01.indd 3C8208_ch01.indd 3 11/16/12 11:54 AM11/16/12 11:54 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4 Chapter 1 Asymptotic Analysis

In practice, it often is the case that the most important computer resource is
 running time. This may surprise students who have been exposed primarily to rela-
tively small homework projects that, once freed of compiler errors and infinite
loops, begin printing results almost immediately. However, many important appli-
cations require massive processing of large data sets, where a world-class computer
may run for hours or even days before determining a solution. Examples of such
applications are found in areas such as simulating disasters and responses as well
as the spread and containment of infectious disease. Additional examples include
data mining, traffic simulation, molecular modeling, weather forecasting, global
warming, image analysis, geographical surveying, and modeling new physical
structures, such as buildings, bridges, and roads, to name a few. Aside from the
financial cost of computer time, human impatience or serious deadlines may limit
the use of such applications. For example, it only helps to have a weather forecast
if it is made available in advance of the forecast period. By contrast, it is not
uncommon to be able to devise algorithms and their associated data structures
such that the memory requirements are quite reasonable.

Consider, for example, the prominence of simulation and modeling in modern
science and engineering. In fact, discovery in our digital data-driven society relies
increasingly on simulation and modeling. A U.S. National Science Foundation
report on “Simulation-based Engineering Science” echoes the following important
statements.

• Simulation is typically less expensive and safer than conducting experiments
with a physical prototype for many scientific and engineering devices. As a
result, some of the most powerful computing systems in the world are used
to simulate the detonation of nuclear devices and their effects. Others are
used to simulate natural catastrophes including hurricanes, tornadoes, and
tsunamis.

• Simulation often provides a more realistic result than a traditional physical
experiment, as it can be set up to allow for ease of configuration of environ-
mental parameters found in the final product. Examples include simulation of
environmental systems, including ground-water flow, weather, oceans, and
lakes.

• Simulations can often be constructed and evaluated much more efficiently
than physical simulators. Furthermore, computer simulation can often run
much faster than a real-time simulation on a physical simulator, allowing for
many more parameters to be evaluated in the same amount of time.

Simulation and modeling are typically data driven, often requiring high-end
computing systems. Simulation and modeling of natural systems occur in various
scientific and engineering disciplines, including physics, chemistry, and biology,
as well as in human systems including economics and the social sciences.

Currently, the generation and storage of data is increasing at an astonishing
rate. In part, this is due to very high-end scientific devices that have come on-line

C8208_ch01.indd 4C8208_ch01.indd 4 11/16/12 11:54 AM11/16/12 11:54 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Notation and Terminology 5

recently. It is also due to consumer consumption of available technology, specifi-
cally various data-intensive multimedia forms of networked-based entertainment.
So, in order to compete effectively in a knowledge-based economy, scientists,
engineers, and technologists need to be proficient at the collection, organization,
maintenance, analysis, and visualization of data.

Let’s begin our journey into the design and analysis of algorithms for sequen-
tial and multiprocessor systems by developing mathematical tools for the analysis
of resources required by computer algorithms. Because running time is more often
the subject of our analysis than computer memory, we will use time-related termi-
nology while presenting introductory material. However, the same tools may natu-
rally be applied to the analysis of memory requirements or error tolerance.

Notation and Terminology

In this section, we introduce some notation and terminology that will be used
throughout the text. The notation and terminology that we introduce is standard in
the literature.

In this book, we use the term algorithm to mean a procedure for correctly
 solving a problem in a finite number of steps. The focus of this book is on the
analysis of resources for a reasonable implementation of a given algorithm to solve
a given problem correctly. Specifically, the analysis of an algorithm is concerned
with estimating resources, such as running time and computer memory, used by
the efficient implementation of an algorithm. In general, we will remove the awk-
wardness of stating “an efficient implementation of an algorithm” and simply
assume that the implementation is efficient. Thus, we will simply refer to the
 analysis of an algorithm.

A sequential algorithm is an algorithm designed to run on a sequential, i.e.,
single-processor computer, while a parallel algorithm is an algorithm designed to
run on a parallel computer, i.e., a multiprocessor system. In general, an efficient
parallel algorithm utilizes multiple processors working in a cooperative fashion to
solve a given problem significantly faster than it could be solved on a sequential
 computer.

Typically, we use the positive integer n to denote the size of the data set pro-
cessed by an algorithm. We may process an array of n entries, for example, or a
linked list, tree, or graph of n nodes. We will use T(n) to represent the running time
of an algorithm operating on a data set of size n.

An algorithm can be implemented on a variety of hardware/software platforms.
We expect that the same algorithm operating on the same data values will execute
faster if implemented in the assembly language of a supercomputer than if imple-
mented in an interpreted language on a personal computer from, say, the 1980s.
Thus, it rarely makes sense to analyze an algorithm in terms of actual CPU time.
Rather, we want our analysis to reflect the intrinsic efficiency of the algorithm
without regard to such factors as the speed of the hardware/software environment

C8208_ch01.indd 5C8208_ch01.indd 5 11/16/12 11:54 AM11/16/12 11:54 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6 Chapter 1 Asymptotic Analysis

in which the algorithm is to be implemented. That is, we seek to measure the effi-
ciency of our programming methods, not their actual implementations.

Thus, the analysis of algorithms generally adheres to the following principles.

 1. Ignore machine-dependent constants. We will not be concerned with how
fast an individual processor executes a machine instruction.

 2. Look at growth of resources as n → ∞ . Even an inefficient algorithm will
often finish its work in acceptable time when operating on a small data set.
Thus, we are usually interested in T(n), the running time of an algorithm for
large n, where n is typically the size of the data input to the algorithm.

Asymptotic analysis implies that we are interested in the general behavior of
the function T(n) as the input parameter gets large. That is, we are interested in the
behavior of T(n) as n → ∞ . Therefore, since we are interested in the growth rate of
the function as n gets large, we may ignore low-order terms as well as multiplica-
tive constant factors when expressing asymptotic analysis. This is not to say that
these terms are irrelevant in practice, just that they are not useful in terms of
 considering the growth rate of a function. So, for example, we say that the function
3n3 + 10n2 + n + 17 grows as n3. That is, for large values of n, the quadratic, linear,
and constant terms, respectively, 10n2, n, and 17, are insignificant compared with

y = g(n)

y = f(n)

better

T(n)

n0 n

FIGURE 1-1 An illustration of the growth rate of
two functions, f (n) and g(n). Notice that for large
values of n, an algorithm with an asymptotic
 running time of f (n) is typically more desirable
than an algorithm with an asymptotic running
time of g(n). In this illustration, “large” is
defined as n ≥ n0. The value n0 represents a point
beyond which the “eventually larger” function
g(n) dominates the “eventually smaller” f (n).

C8208_ch01.indd 6C8208_ch01.indd 6 11/16/12 11:54 AM11/16/12 11:54 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Notation and Terminology 7

the cubic term when considering growth rate of the function. Consider another
example. As n gets large, would you prefer to use an algorithm with running time
95n2 + 405n + 1997 or one with a running time of 2n3 + 12? We hope you chose
the former, which has a growth rate of n2, as opposed to the latter, which has a
growth rate of n3. Naturally, though, if n were small, one would prefer 2n3 + 12 to
95n2 + 405n + 1997. In fact, you should be able to determine the value of n that is
the breakeven point. Figure 1-1 presents an illustration of this situation.

Asymptotic Notation

In this section, we introduce some standard notation that is useful in expressing
the asymptotic behavior of a function of n. That is, the behavior of a function as
n approaches infinity. Since we often have a function that we wish to express in
terms of a “simpler” function, we introduce this notation in terms of functions
f and g, both of which are positive functions of n.

 1. f (n) = Θ(g(n)), to be read as “f of n is theta of g of n,” if and only if there exist
positive constants c1, c2, and n0 such that c1g(n) ≤ f (n) ≤ c2g(n) whenever
n ≥ n0. That is, f grows at the same asymptotic rate as g. See Figure 1-2.

 2. f (n) = O(g(n)), to be read as “f of n is oh of g of n” or “f of n is big oh of g
of n,” if and only if there exist positive constants c and n0 such that f (n) ≤ cg(n)
whenever n ≥ n0. That is, f grows at no more than the same asymptotic rate as g.
Equivalently, f is asymptotically bounded from above by g. See Figure 1-3.

FIGURE 1-2 An illustration of Θ-notation.
f (n) = Θ(g(n)) since functions f (n) and g(n)
grow at the same rate for all n ≥ n0.

y = g(n)

y = f(n)

n0

C8208_ch01.indd 7C8208_ch01.indd 7 11/16/12 11:54 AM11/16/12 11:54 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

8 Chapter 1 Asymptotic Analysis

 3. f (n) = Ω(g(n)), to be read as “f of n is omega of g of n” or “f of n is capital
omega of g of n” or “f of n is big omega of g of n,” if and only if there exist
positive constants c and n0 such that cg(n) ≤ f (n) whenever n ≥ n0. That is, f
grows at least at the same asymptotic rate as g. Equivalently, f is asymptoti-
cally bounded from below by g. See Figure 1-4.

 4. f (n) = o(g(n)), to be read as “f of n is little oh of g of n,” if and only if for
every positive constant C there is a positive integer n0 such that f (n) < Cg(n)
whenever n ≥ n0. That is, f is strictly bounded from above by g, where f and g
do not have the same growth rate. See Figure 1-5.

FIGURE 1-4 An illustration of Ω-notation.
f (n) = Ω(g(n)) since function f (n) is
bounded from below by g(n) for all n ≥ n0.

y = g(n)

y = f(n)

n0

FIGURE 1-3 An illustration of O-notation.
f (n) = O(g(n)) since function f (n) is
bounded from above by g(n) for all n ≥ n0.

y = g(n)

y = f(n)

n0

n0(C)

y = g(n)

y = Cg(n)

y = C'g(n)

y = f(n)

 n0(C')

FIGURE 1-5 An illustration of o-notation: f (n) = o(g(n)). Note that n0(C) corresponds to n0
in the definition of o-notation for the pair of functions f (n) and Cg (n). Similarly, n0(C ')
 corresponds to n0 in the definition of o-notation for the pair of functions f (n) and C 'g (n).

C8208_ch01.indd 8C8208_ch01.indd 8 11/16/12 11:54 AM11/16/12 11:54 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Notation and Terminology 9

 5. f (n) = ω (g(n)), to be read as “f of n is little omega of g of n,” if and only if for
every positive constant C there is a positive integer n0 such that f (n) > Cg(n)
whenever n ≥ n0. That is, f is strictly bounded from below by g, where f and g
do not have the same growth rate. See Figure 1-6.

Strictly speaking, Θ, O, Ω, o, and ω are set-valued functions. Therefore, it
would be appropriate to write (3n2 + 2) ∈ Θ(n2). In fact, some authors have tried to
use this membership notation, but it is not the standard. In the literature, this idea
is typically expressed as 3n2 + 2 = Θ(n2). While not correct in the mathematical
sense, such an expression is the standard in the field of algorithms when express-
ing the growth rate of a resource such as running time, memory, number of proces-
sors, and so forth. The expression 3n2 + 2 = Θ(n2) is read as “3 n squared plus 2 is
theta of n squared.” Note that one does not write Θ(n2) = 3n2 + 2.

The set-valued functions Θ, O, Ω, o, and ω are referred to as asymptotic nota-
tion. Recall that we use asymptotic notation to simplify analysis and capture
growth rate. Therefore, we want the simplest and best function as a representative
of each Θ, O, Ω, o and ω expression. Some examples follow.

EXAMPLE

Given f (t) = 5 + sin t and g(t) = 1, then 5 + sin t = Θ(1) since 4 ≤ 5 + sin t ≤ 6.
(See Figure 1-7.) Note also that f (t) = O(1) and f (t) = Ω(1), but the best choice
for notation is to write f (t) = Θ(1) since Θ conveys more information than
 either O or Ω.

n0(C)

y = C'g(n)

y = f(n)

y = Cg(n)

y = g(n)

n0(C')

FIGURE 1-6 An illustration of ω -notation: f (n) = ω (g(n)). n0(C) is the value of
n0 in the definition of ω -notation for the pair (f (n), Cg(n)). Similarly, n0(C ') is
the value of n0 in the definition of ω -notation for the pair (f (n), C 'g(n)).

C8208_ch01.indd 9C8208_ch01.indd 9 11/16/12 11:54 AM11/16/12 11:54 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

10 Chapter 1 Asymptotic Analysis

Additional Notation

Floor and Ceiling Functions. We will often find the floor and ceiling functions
useful. Given a real number x, there is a unique integer n such that

n ≤ x < n + 1.

We say that n is the “floor of x”, denoted

⎣x⎦ = n.

In other words, ⎣x⎦ is the largest integer that is less than or equal to x.
Similarly, given a real number x, there is a unique integer n such that

n < x ≤ n + 1.

Then n + 1 is the “ceiling of x,” denoted

⎡x⎤ = n + 1.

In other words, ⎡x⎤ is the smallest integer that is greater than or equal to x.
For example, ⎣3.2⎦ = 3, ⎡3.2⎤ = 4, and ⎣18⎦ = ⎡18⎤ = 18.
Notice for all real numbers x we have

x − 1 < ⎣x⎦ ≤ x ≤ ⎡x⎤ < x + 1.

It follows that ⎣x⎦ = Θ(x) and ⎡x⎤ = Θ(x).

Variable Assignment. In describing the assignment of a value to a variable, we
will use either the equal sign or the left arrow, as both are widely used in computer
science. That is, either of the notations

left = right

or

left ← right

will mean “assign the value of right as the new value of left.”

FIGURE 1-7 Graph of f (t) = 5 + sin t.

π2− π− 3π2ππ

1
2
3
4
5
6

t

C8208_ch01.indd 10C8208_ch01.indd 10 11/16/12 11:54 AM11/16/12 11:54 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Notation and Terminology 11

EXAMPLE

Show that

a
n

k=1

kp = Θ1np+12,
for p > 1 a fixed constant. First, we consider an upper bound on the summation.
We know that

a
n

k=1

kp ≤ n × np

since the summation contains n terms, the largest of which is np. Therefore, we
know that

a
n

k=1

kp = O1np+12.
Next, we consider a lower bound on the summation. Notice that it is easy to
derive a trivial lower bound of Ω(n), since there are n terms in the summation,
the least of which is equal to 1. However, we can derive a more useful, larger,
lower bound as follows. Notice that

a
n

k=1

kp = a
⎣n/2⎦

k=1

kp + a
n

k=⎣n/2⎦+1

kp ≥ a
n

k=⎣n/2⎦+1

kp.

Looking closely at

a
n

k=⎣n/2⎦+1

kp,

notice that there are n − ⎣n/2⎦ terms for which (⎣n/2⎦ + 1)p is the smallest
term. Therefore, we have

a
n

k=1

k p > (n/2)(n/2)p =
np+1

2p+1
.

Since 2p+1 is a constant, we have

a
n

k=1

kp = Ω1np+12.
In fact, we have shown that

np+1

2p+1
 ≤ a

n

k=1

kp ≤ np+1.

That is,

a
n

k=1

kp = Θ1np+12.

C8208_ch01.indd 11C8208_ch01.indd 11 11/16/12 11:54 AM11/16/12 11:54 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

12 Chapter 1 Asymptotic Analysis

Asymptotic Relationships

Useful relationships exist among Θ, O, Ω, o, and ω , some of which are given in
the proposition below. The reader might wish to try to prove some of these.

Proposition: Let f and g be positive functions of n. Then we have the following
relationships.

 1. f (n) = O1g(n)2⇔ g(n) = Ω1 f (n)2.
 2. f (n) = Θ1g(n)2⇔ g(n) = Θ1 f (n)2.
 3. f (n) = Θ1g(n)2⇔ f (n) = O1g(n)2 and f (n) = Ω1g(n)2.
 4. f (n) = o1g(n)2⇔ g(n) = ω 1 f (n)2.
 5. f (n) = o1g(n)2⇔ lim

n→∞

f (n)

g(n)
 = 0.

 6. f (n) = ω 1g(n)2⇔ lim
n→∞

f (n)

g(n)
 = ∞ .

 7. f (n) = o1g(n)2 ⇒ f (n) = O1g(n)2, but the converse is false.

 8. f (n) = ω 1g(n)2 ⇒ f (n) = Ω1g(n)2, but the converse is false.

 9. f (n) is bounded above and below by positive constants if and only if
f (n) = Θ(1).

Asymptotic Analysis and Limits

In order to determine the relationship between functions f and g, it is often useful
to examine

lim
n→∞

f (n)

g(n)
= L.

The possible outcomes of this relationship, and their implications, are given
below.

 1. L = 0. This means that g(n) grows at a faster rate than f (n), and hence that
f (n) = O(g(n)). Indeed, f (n) = o(g(n)) and f (n) ≠ Θ(g(n)).

 2. L = ∞ . This means that f (n) grows at a faster rate than g(n), and hence that
f (n) = Ω(g(n)). Indeed, f (n) = ω (g(n)) and f (n) ≠ Θ(g(n)).

 3. L ≠ 0 is finite. This means that f (n) and g(n) grow at the same rate, to within a
constant factor, and hence that f (n) = Θ(g(n)), or equivalently, g(n) = Θ(f(n)).
Notice that this also means that f (n) = O(g(n)), g(n) = O(f (n)), f (n) = Ω(g(n)),
g(n) = Ω(f (n)), f (n) ≠ o(g(n)), and f (n) ≠ ω (g(n)).

C8208_ch01.indd 12C8208_ch01.indd 12 11/16/12 11:54 AM11/16/12 11:54 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Asymptotic Relationships 13

 4. There is no limit. In the case where lim
n→∞

f (n)

g(n)
 does not exist, this technique

 cannot be used to determine the asymptotic relationship between f (n) and g(n).

We now give some examples of how to determine asymptotic relationships based
on taking limits of a quotient.

EXAMPLE

Let

f (n) =
n(n + 1)

2
 and g(n) = n2.

Then we can show that f (n) = Θ(g(n)) since

lim
n→∞

f (n)

g(n)
= lim

n→∞

n2 + n

2n2
=

(dividing both numerator and denominator by n2)

lim
n→∞

1 +
1
n

2
=

1

2
.

EXAMPLE

If P(n) is a polynomial of degree d > 0, then P(n) = Θ(nd). This can be seen as

follows. The hypothesis implies P(n) = a
d

i=0

ai ni for some set of coefficients

5ai6d
i=0 with ad ≠ 0. Therefore,

lim
n→∞

P(n)

nd
= lim

n→∞

a

d

i=0

aini

nd
= lim

n→∞
c aa

d−1

i=0

ai

nd−i
 b + ad d = ad.

The assertion follows.

C8208_ch01.indd 13C8208_ch01.indd 13 11/16/12 11:55 AM11/16/12 11:55 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

14 Chapter 1 Asymptotic Analysis

At this point, we take a slight detour to discuss logarithmic notation, as loga-
rithms play an important role in asymptotic analysis. As appropriate, we will use
fairly standard terminology in referring to logarithms. In particular, we write

• loge x as ln x,
• log2 x as lg x, and
• log10 x as log x.

We now continue with an example that uses logarithms.

EXAMPLE

Compare n100 and 2n. We remind the reader that

d

dx
 e f (x) = e f (x) f �(x).

We have

lim
n→∞

2n

n100
= lim

n→∞

eln 2n

n100
= lim

n→∞

en ln 2

n100
.

We can apply L’Hopital’s Rule to the numerator and denominator of this limit
100 times, which yields

lim
n→∞

2n

n100
= lim

n→∞

en ln 2

n100
= lim

n→∞

1ln 221002n

100!
= ∞ .

The result of this limit yields n100 = O(2n) and 2n = Ω(n100). In addition, using
some of the properties previously presented, we have n100 = o(2n) and
2n = ω (n100). Further, these results yield n100 ≠ Θ(2n).

EXAMPLE

Let f (n) = ln n and g(n) = n. Then, by applying L’Hopital’s Rule, we have

lim
n→∞

n

 ln n
 = lim

n→∞

1

1/n
,

which evaluates as

lim
n→∞

1

1/n
 = lim

n→∞
n = ∞ .

Therefore, ln n = O(n).

C8208_ch01.indd 14C8208_ch01.indd 14 11/16/12 11:55 AM11/16/12 11:55 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Asymptotic Relationships 15

We remind the reader that logb n = (logb a)(loga n), for positive a, b, and n with
a ≠ 1 ≠ b. Therefore, we have logb n = C loga n, for the constant C = logb a. More
importantly, this yields logb x = Θ(log x). Since we generally assume that a and b
are greater than 1, the latter can be interpreted as showing that the base of a loga-
rithm is irrelevant in asymptotic relationships.

Summations and Integrals

Since many algorithms involve looping and/or recursion, it is not uncommon
for the analysis of an algorithm to include a dependence on some function f (n)
that is best expressed as the sum of simpler functions. For example, it may be
that the dominant term in an analysis of an algorithm can be expressed as
f (n) = h(1) + h(2) +g+ h(n). When we consider the worst-case number of
 comparisons in the insertion sort routine later in this chapter, we will find that the
total number of comparisons can be computed as f (n) = 1 + 2 + 3 +g+ n =
n(n + 1)/2 = Θ(n2).

We first consider the case where the function h(i) is nondecreasing. Notice
that the worst-case number of comparisons used in Insertion Sort, as mentioned
above, uses the nondecreasing function h(i) = i. Specifically, let

f (n) = a
n

i=1

h(i),

where h is nondecreasing. An illustration of this situation is presented in Figure 1-8.
In order to evaluate f (n), we can consider summing n unit-width rectangles.

Specifically, the ith rectangle has height h(i) and width 1. In Figure 1-8, we present
these rectangles in two ways in order to obtain tight bounds on the asymptotic
behavior of the total area of the rectangles, i.e., on the value of f (n). On the left,
we draw the rectangles so that the ith rectangle is anchored on the left. That is, the
left edge of the unit-width rectangle with height h(i) has its left edge at value i on
the x-axis and its right edge at value i + 1 on the x-axis. In this way, you will notice
that each rectangle is below the curve of h(t), where t takes on values between 1
and n + 1, where, for simplicity, we are assuming 1 is the value of the lower bound
and n is the value of the upper bound in the sum.

Conversely, on the right of Figure 1-8, we draw the rectangles so that the ith unit-
width rectangle is anchored on the right. That is, the right edge of the unit-width
rectangle with height h(i) has its right edge at value i on the x-axis and its left edge
at value i − 1 on the x-axis. This allows us to use the rectangles to bound the area of
the curve, between 0 and n, assuming as before that 1 is the value of the lower bound
and n is the value of the upper bound, from above. Notice that in Figure 1-8, we give
the relationships of the area under the curve bounding the total area of the rectangles
(Figure 1-8 left side) and the total area of the rectangles bounding the area under the
curve (Figure 1-8 right side). In addition, we show how to combine these relation-
ships to obtain a bound on the summation by related integrals.

C8208_ch01.indd 15C8208_ch01.indd 15 11/16/12 11:55 AM11/16/12 11:55 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

16 Chapter 1 Asymptotic Analysis

The method of determining asymptotic analysis of a summation by integration
is quite powerful. Next, we give several examples, and in doing so, illustrate a vari-
ety of techniques and review some basic principles of integration.

FIGURE 1-8 An illustration of bounding the summation a
n

i=1

h(i) by the integral of

the nondecreasing function h(t). On the left, we demonstrate how to use

the integral ∫ n+1

1
h(t)dt to derive an upper bound on the summation by

aligning the unit-width rectangles to the right. Note that a “unit-width rectangle”

has a width of 1. Therefore, a
n

i=1

h(i) ≤ ∫
n+1

1
h(t)dt. On the right, we show how to use

the integral ∫ n

0
 h(t)dt to derive a lower bound on the summation by aligning the

unit-width rectangles to the left. This yields ∫
n

0 h(t)dt ≤ a
n

i=1

h(i). Therefore, we have

∫
n

0 h(t)dt ≤ a
n

i=1

h(i) ≤ ∫
n+1

1
h(t)dt.

h(n)
h(1)

0 11 2 n − 1 n

h(n)
h(1)

Rectangles aligned
to the right.

Rectangles aligned
to the left.

EXAMPLE

Find the asymptotic complexity of

f (n) = a
n

i=1

i.

First, we consider the integral bounding principles that were given above. Since
the function h(i) = i is nondecreasing, we can apply the conclusion directly and
arrive at the bound

∫ n

0
tdt ≤ a

n

i=1

i ≤ ∫ n+1

1
tdt.

C8208_ch01.indd 16C8208_ch01.indd 16 11/16/12 11:55 AM11/16/12 11:55 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Asymptotic Relationships 17

Evaluating both the left-hand side and right-hand side simultaneously yields

t2

2
`
0

n

≤ a
n

i=1

i ≤
t2

2
`
1

n+1

,

which can be evaluated in a fairly routine fashion, resulting in

n2

2
 ≤ a

n

i=1

i ≤
1n + 122

2
 −

1

2
.

Working with the right-hand side of this inequality, we can obtain

(n + 1)2

2
 −

1

2
 =

1

2
 n2 + n.

Further simplification of the right-hand side can be used to give

1

2
 n2 + n ≤

1

2
 n2 + n2

for n ≥ 1. Therefore,

1

2
 n2 ≤ a

n

i=1

i ≤
3

2
 n2.

Since the function

f (n) = a
n

i=1

i

is bounded by a multiple of n2 on both the left- and right-hand sides, we can
conclude that

f (n) = a
n

i=1

i = Θ1n22.

EXAMPLE

Find the asymptotic complexity of

f (n) = a
n

k=1

1

k
.

First, it is important to realize that the function 1
k is a nonincreasing function.

This requires an update in the analysis presented for nondecreasing functions.
In Figure 1-9, we present a figure that illustrates the behavior of a nonincreasing

C8208_ch01.indd 17C8208_ch01.indd 17 11/16/12 11:55 AM11/16/12 11:55 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

18 Chapter 1 Asymptotic Analysis

function over the interval [a,b]. Notice that with the proper analysis, you should
be able to show that

a
b

k=a+1

f (k) ≤ ∫ b

a
f (x)dx ≤ a

b−1

k=a
 f (k).

Based on this analysis, we can now attempt to produce an asymptotically tight
bound on the function f (n). First, we consider a lower bound on f (n). Our
analysis shows that

∫ n+1

1

1
x

dx ≤ a
n

k=1

1

k
.

Since

∫ n+1

1

1
x

 dx = ln x 0 1n+1 = ln(n + 1) − ln 1 = ln(n + 1),

we know that f (n) is bounded from below by ln(n + 1).
Next, we consider an upper bound on f (n). Notice that if we blindly apply

the result of our analysis for a nonincreasing function, we obtain

a
n

k=1

1

k
 ≤ ∫ n

0

1
x

 dx = ln x 0 0n = ∞ .

Unfortunately, this result, while providing some information, does not yield a
tight enough upper bound. However, notice that the cause of the upper bound
resulting in ∞ is evaluation of the integral at the specific point of 0. This prob-
lem can be alleviated by carefully rewriting the equation to avoid the problem-
atic point. Let’s consider the more restricted inequality

a
n

k=2

1

k
≤ ∫ n

1

1
x

 dx.

Notice that the integral evaluates to ln n. Therefore, if we now add back in the
problematic term, we arrive at

a
n

k=1

1

k
 = 1 + a

n

k=2

1

k
 ≤ 1 + ∫ n

1

1
x

 dx = 1 + ln n.

Combining the results of both the upper and lower bounds on f (n), we arrive at

ln n < ln(n + 1) ≤ a
n

k=1

1

k
≤ 1 + ln n ≤ 2 ln n

for n large enough, a conclusion we suggest that the reader verify. Therefore,

a
n

k=1

1

k
 = Θ(ln n).

C8208_ch01.indd 18C8208_ch01.indd 18 11/16/12 11:55 AM11/16/12 11:55 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Asymptotic Relationships 19

EXAMPLE

As our final example of evaluating the asymptotic behavior of a summation by
integrals, we consider the function

f (n) = a
n

k=1

kp

for p > 0. Recall that we showed earlier in this chapter that

f (n) = a
n

k=1

kp = Θ1np+12.
However, the purpose of this example is to show how to obtain this result by
the method we have been considering that relates summations to integrals.
 Recall that a function f is increasing if u < v ⇒ f (u) < f(v). Consider the deriva-
tive of kp. For k > 0, we have

d

dk
 k p = pkp−1 > 0.

Therefore, the function kp is an increasing function of k. A quick sketch of an
increasing function, in a setting more general than illustrated earlier, appears in
Figure 1-10.

FIGURE 1-9 An illustration of bounding the summation a
n

i=1

f (i) for

a nonincreasing function f. For f nonincreasing, we can derive the

relationship a
b

k=a+1

f (k) ≤ ∫
b

a
 f (x)dx ≤ a

b−1

k=a

 f (k) in a straightforward

fashion by considering rectangles to the left and right as we did

for nondecreasing functions. This translates into a bound on the

summation as ∫
b+1

a
f (t)dt ≤ a

b

i=a

f (i) ≤ ∫ b

a−1
f (t)dt.

Note: f (x) is nonincreasing

a a 1 b 1 b

C8208_ch01.indd 19C8208_ch01.indd 19 11/16/12 11:55 AM11/16/12 11:55 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

20 Chapter 1 Asymptotic Analysis

Using the analysis associated with Figure 1-10, we have both

∫
n

0
xpdx ≤ a

n

k=1

k p and a
n

k=1

k p ≤ ∫ n+1

1
xpdx.

Thus,

xp+1

p + 1
`
0

n

≤ a
n

k=1

k p ≤
xp+1

p + 1
`
1

n+1

, or

np+1

p + 1
 ≤ a

n

k=1

kp ≤
1n + 12 p+1 − 1

p + 1
<
1n + 12 p+1

p + 1
.

Since n + 1 ≤ 2n for n ≥ 1,

np+1

p + 1
≤ a

n

k=1

 kp ≤
1n + 12p+1

p + 1
 ≤
12n2p + 1

p + 1
=

2p+1np+1

p + 1
, or

1

p + 1
 np+1 ≤ a

n

k=1

kp ≤
2p+1

p + 1
 np+1,

which, based on asymptotic properties given earlier in this chapter, yields the
expected solution of

a
n

k=1

kp = Θ1np+12.

FIGURE 1-10 An increasing function in
the range [a, b]. We have

a
b−1

k=a

f (k) < ∫
b

a f (x)dx < a
b

k=a+1

f (k).

a b

C8208_ch01.indd 20C8208_ch01.indd 20 11/16/12 11:55 AM11/16/12 11:55 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Rules for Analysis of Algorithms 21

Rules for Analysis of Algorithms

The application of asymptotic analysis is critical in order to provide an effective
means of evaluating both the running time and space of an algorithm as a function
of the size of the input and number of processors. In this section, we present fun-
damental information related to the analysis of algorithms and give several exam-
ples to illustrate the major points of emphasis.

Fundamental operations execute in Θ(1) time. Traditionally, it is assumed that
“fundamental” operations require a constant amount of time to execute, i.e., a fixed
number of computer “clock cycles.” We assume that the running time of a funda-
mental operation is bounded by a constant, irrespective of the data being processed.
These operations include the following.

• Arithmetic operations, including +, −, × , /, as applied to a constant number of
fixed-size operands.

• Comparison operators, including < , ≤ , > , ≥ , = , ≠ , as applied to 2 fixed-size
operands.

• Logical operators, including AND, OR, NOT, XOR, as applied to a constant
number of fixed-size operands.

• Bitwise operations, as applied to a constant number of fixed-size operands.
• Conditional/branch operations.
• The evaluation of certain elementary functions. Notice that such functions

need to be considered carefully. For example, when the function sinθ is to be
evaluated for “moderate-sized” values of θ , it is reasonable to assume that
Θ(1) time is required for each application of the function. However, for very
large values of θ , a loop dominating the calculation of sinθ may require a
significant number of operations before stabilizing at an accurate approxima-
tion. In this case, it may not be reasonable to assume Θ(1) time for this
 operation.

• Input and output, or I/O, operations that are used to read or write a constant
number of fixed-size data items. Note this does not include input from a key-
board, mouse, or other human-operated device, as the user’s response time is
unpredictable.

Additional fundamental properties follow.

• Suppose the running times of operations A and B are, respectively, O(f (n))
and O(g(n)). Then the sequence of operations consisting of A followed by B
runs in O(f (n) + g(n)) time. Note that this analysis holds for Θ, Ω, o and ω ,
as well.

• Suppose that each iteration of the body of a loop runs in O(f (n)) time, and the
loop executes its body O(g(n)) times. Then the time required to execute the
loop is O(f (n)g(n)). A similar property holds for Θ, Ω, o and ω .

C8208_ch01.indd 21C8208_ch01.indd 21 11/16/12 11:55 AM11/16/12 11:55 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

22 Chapter 1 Asymptotic Analysis

EXAMPLE (INSERTION SORT)

As an example, we consider the analysis of Insertion Sort, a simple sorting
technique that is introduced in many first-semester computer science courses.

Suppose we are given a set of data arbitrarily distributed in an array and we
wish to rearrange the data so that it appears in increasing order. We give pseudo-
code for the algorithm and then present an analysis of both its time and space
requirements. Note that later in this book, we compare more advanced algo-
rithms to Insertion Sort, and also show how Insertion Sort can be effectively
exploited in restricted situations, e.g., where the set of data presented to
Insertion Sort is such that no item is very far from where it belongs.

Subprogram InsertionSort(X)
Input: an array X of n entries
Output: the array X with its entries in ascending order
Algorithm: Insertion Sort
Local Variables: indices current, insertPlace

Action:

 For current = 2 to n do
 {Current is initially set to 2 as the first

current − 1 entries of X are ordered.}
 a. Search X[1...current − 1] to determine the index

where X[current] should be inserted. This index
will be denoted as insertPlace, which has a
value in the range of 1,...,current.
If insertPlace < current then

 b. Make a copy of X[current].
 c. Shift the elements X[insertPlace,...,

current − 1] by one position into elements
X[insertPlace + 1,...,current]. The details
of this shift are discussed below in our
Insert routine.

 d. Place the copy of X[current] made in step b)
into its proper position at X[insertPlace].

 End If
 End For

The description above presents a top-level view of Insertion Sort. An
 example is given in Figure 1-11. We observe that the search called for in the
first step of the loop can be performed by a straightforward sequential search
that runs in O(k) time, where k is the value of current. The reader should verify

C8208_ch01.indd 22C8208_ch01.indd 22 11/16/12 11:55 AM11/16/12 11:55 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Rules for Analysis of Algorithms 23

that this step runs in Θ(k) time on average. Alternately, an O(log k) time binary
search can be performed, as will be discussed in the chapter on Induction and
Recursion, though this will not improve the overall asymptotic running time in
the expected or worst case.

For illustrative purposes, let us consider the total time required to perform
all n searches. That is, we consider the time to perform the searches and only the
searches. At this point, we do not yet consider the time required to move the data.
If sequential searches are used, then the running time for the n − 1 searches is

Oaa
n

k=2

kb = O1n22.
If binary searches are used during each of the n − 1 iterations, then the time for
the searches is given by

Oaa
n

k=2

 log kb = O1n log n2.
Notice that O-notation is used, as both results represent upper bounds on the
search time since the time taken by any individual search is a function of the
search value and the data values being searched.

Now, we consider the time to move the data. Once insertPlace is deter-
mined, current/2 data moves are required, on average, in order to move the data
so as to free up position insertPlace in order to be able to place a copy of the
data at the current there. In fact, in the worst case, the insert step always re-
quires X[current] to be moved to position number 1, requiring current − 1 data
items in the array to be moved out of the way. Therefore, the running time of the
algorithm is dominated by the data movement, which is given by

T(n) = a
n

k=2

 shiftk,

where shiftk, the length of the segment for which members are shifted, is 0 in
the best case, k − 1 in the worst case, and (k − 1)/2 in the average case. Hence,
the running time of Insertion Sort is Θ(n) in the best case, when data is already
sorted and a sequential search from (current − 1) downto 1 is used. Insertion
Sort runs in Θ(n2) time in the average or expected case, and Θ(n2) time in the
worst case. The reader should verify these results by substituting the appropri-
ate values into the summation and simplifying the equation. Notice that since
the average- and worst-case running times are dominated by the data movement
operations, in terms of the asymptotic running time, it is irrelevant as to whether
a sequential or binary search is used to determine position insertPlace.

Finally, notice that Θ(n) space is required for the algorithm to store the
n data items. More importantly, the amount of extra space required for this
algorithm is constant, i.e., Θ(1). An insertion routine is presented below.

C8208_ch01.indd 23C8208_ch01.indd 23 11/16/12 11:55 AM11/16/12 11:55 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

24 Chapter 1 Asymptotic Analysis

Subprogram Insert(X, current, insertPlace)
Insert X[current] into the ordered
subarrary X[1. . . current − 1] at position
insertPlace.
We assume 1 ≤ insertPlace ≤ current ≤ n
Local variables: index j, entry-type hold

Action:

 If current ≠ insertPlace, then {there’s work to do}
 hold = X[current]
 For j = current − 1 downto insertPlace, do
 X[j + 1] = X[j]
 End For
 X[insertPlace] = hold
 End If

For completeness, we present an efficient implementation of the Insertion Sort
algorithm based on the analysis we have presented.

Subprogram InsertionSort(X, n)
Input: an array X of n entries
Output: the array X with its entries in ascending order
Algorithm: Insertion Sort
 {This is a simple version of the Insertion Sort algorithm
with sequential search.}

 For i = 2 to n, do
 hold = x[i]
 position = 1
 While hold > x[position], do
 position = position + 1
 End While
 If position < i, then
 For j = i downto position, do
 x[j] = x[j − 1]
 End For
 x[position] = hold
 End If
 End For
End InsertionSort

C8208_ch01.indd 24C8208_ch01.indd 24 11/16/12 11:55 AM11/16/12 11:55 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Rules for Analysis of Algorithms 25

It is often possible to modify an algorithm designed for one data structure to
accommodate a different data structure. In the exercises, we ask the reader to adapt
Insertion Sort to linked lists.

4

3

5

1

2

3

4

5

1

2

3

4

5

1

2

1

3

4

5

2

1

2

3

4

5

FIGURE 1-11 An example of the Insertion Sort algorithm, as given in
Subprogram InsertionSort. It is initially assumed that the first item, 4,
is in the correct position. Then the second item, 3, is placed into
 position with respect to all of the items in front of it, resulting in (3,4)
being properly ordered. The algorithm continues until the last item, 2,
is placed in its proper position with respect to the items (1,3,4,5) that
are in front of it.

EXAMPLE: BIN SORT

Sorting is a fundamental operation as a major use of computers is to maintain
order within large collections of data. Perhaps for this reason, the computer
 science community has developed numerous algorithms for ordering data.
Some of these algorithms are considerably faster than others in the abstract.
Yet, under certain conditions an asymptotically slower algorithm might be sig-
nificantly more efficient than an asymptotically faster algorithm due to the
characteristics or size of the input data set. For this reason, we will present and
discuss a variety of sorting algorithms in this book.

In the previous section, we presented an analysis of Insertion Sort. In one of
the exercises at the end of this chapter, we present Selection Sort, another
straightforward and useful sorting routine that runs in the same worst-case Θ(n2)
time as Insertion Sort. Later in the book, we present alternative comparison-based
sorting algorithms that exhibit an asymptotically optimal Θ(n log n) worst-case
running time. In fact, many of you may already be familiar with a result that
states that comparison-based sorting algorithms run in Ω(n log n) time. That is,
in order to sort a collection of n elements by a comparison-based sorting routine,
Ω(n log n) time is required.

C8208_ch01.indd 25C8208_ch01.indd 25 11/16/12 11:55 AM11/16/12 11:55 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

26 Chapter 1 Asymptotic Analysis

It is quite important to note, however, that not all sorting algorithms are
based on comparisons. In fact, when one knows detailed and specific informa-
tion about the input data, it is not unusual to be able to construct a sorting algo-
rithm that runs in o(n log n) time. An important theme that runs through this
book is that we should attempt to use a sorting algorithm that runs in o(n log n)
time if we have constraints on the input data that will be used.

For example, suppose we are required to sort data that is chosen from a
restricted set. Further, suppose we know that the n keys take on no more than n
values. In such a situation, we can employ an asymptotically optimal algorithm
based on Bin Sort. This is an algorithm that is based on the process of placing
labeled items, such as machine parts, directly into an ordered list of bins that
only contain items with the same label. Alternatively, we might think about
sorting a deck of cards by going through the deck once, tossing all the Aces in
one pile, all the 2s in another, and so on. Once we have gone through all the
cards and created 13 bins, then we simply need to pile the bins one on top of
another, i.e., concatenate the bins, in order to create the final sorted set. Notice
that if we sort more than one deck of cards, we still need only 13 bins. Given
one complete deck of cards, each bin will wind up with exactly 4 cards in it. An
example of Bin Sort is presented in Figure 1-12.

Below, we present BinSort, an implementation of the Bin Sort algorithm,
where we assume that the data values to be ordered are in the range from 1 to n. It
is known that Ω(n log n) comparisons are required to sort an arbitrary set of data
by a comparison-based sort, so the reader should note that Bin Sort is not a com-
parison-based sorting algorithm. That is, Bin Sort does not rely on comparing
data items to each other. In fact, the algorithm never compares two data items.

Subprogram BinSort(X)
Input: an array X of n entries
Output: the array X with its entries in ascending order
Algorithm: Bin Sort
Caveat: The entries of X are integers in [1,…, n]
Local variables: indices entry, stack_index
stack, an array of pointers, each representing a stack

Action:

 For entry = 1 to n, do
 {make stack[entry] an empty stack}
 stack[entry] = null
 For entry = 1 to n, do
 push(X[entry], stack[X[entry].key])
 End For
 stack_index = 1

C8208_ch01.indd 26C8208_ch01.indd 26 11/16/12 11:55 AM11/16/12 11:55 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Rules for Analysis of Algorithms 27

 For entry = 1 to n, do
 while emptyStack(stack[stack_index])
 stack_index ← stack_index + 1
 end while
 pop(stack[stack_index], X[entry])
 end For

An analysis of the algorithm follows. It is easy to see that the first two For-
loops each run in Θ(n) time, after which each element is in one of the n bins. The
initialization of each stack runs in Θ(1) time. The final For-loop requires that
every item be examined once. Therefore, the final For-loop runs in Θ(n) time.
Hence, the entire algorithm runs in Θ(n) time. Further, notice that the algorithm
utilizes Θ(n) space to store the items and only Θ(n) additional space for indices,
stack pointers, and the like. We observe that the linear amount of additional
space requires only a small constant of proportionality, since the items them-
selves are placed on the stacks, and no copies of the items are ever made. Later in
this chapter, we make precise the notion of an optimal algorithm. Our algorithm
for Bin Sort is optimal as any asymptotically faster algorithm would require not
examining all of the items, in which case the data might not wind up sorted.

5

2

3

4

1

3

2

3

5

3

(a) Initial data.

(b) Create
empty bins.

stackX Xstack

(c) Final bins after complete pass
through data array.

1

2

2

3

3

3

3

4

5

5

(d) Sorted array.

1

2

3

4

5

1 1

2

3

4

5

22

3

4

5

3 3 3

5

FIGURE 1-12 Bin Sort applied to an array of 10 items chosen from [1…5].
In (a), the initial array of data is given. In (b), the set of empty bins is created.
In (c), the bins are shown after a complete pass through the array. In (d), the
array is recreated by “concatenating” the bins.

C8208_ch01.indd 27C8208_ch01.indd 27 11/16/12 11:55 AM11/16/12 11:55 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

28 Chapter 1 Asymptotic Analysis

Limitations of Asymptotic Analysis

Suppose a given problem has two equally acceptable solution strategies. Further,
suppose both of these algorithms have the same asymptotic running times and the
same asymptotic space requirements. This might make it difficult to choose
between the two algorithms.

Asymptotic analysis provides some guidelines for behavior, but we are aware
that asymptotic analysis also hides high-order constants and low-order terms. In
fact, suppose that algorithm A is 5 times faster than algorithm B for problems of a
given size. Since 5 is just a constant, this will be hidden in the O-notation. Similarly,
since low-order terms are masked with O-notation, it may be that one algorithm is
superior for “small” data sets, where the low-order terms are important, but not for
“large” data sets, where these low-order terms are, appropriately, masked.

Since your application might be used predominantly for “small” data sets or
for data sets with special properties, it is always advisable to perform some basic
experimental verification in terms of which algorithm is the best fit for your
 particular application rather than for a generic application.

Consider the problem of sorting a set of data, and assume that based on knowl-
edge of the input, you decide that a general, comparison-based sorting algorithm is
required. Among your choices are algorithms that copy data and algorithms that do
not copy data. For example, sorting can be done by using pointer manipulation as
well as by copying data. Suppose, for example, we consider three algorithms with
running times dominated by the following steps.

a. Algorithm A: Θ(n2) comparisons, Θ(n2) copying operations

b. Algorithm B: Θ(n2) comparisons, Θ(n) copying operations

c. Algorithm C: Θ(n2) comparisons, Θ(n) pointer manipulation operations

All three algorithms run in Θ(n2) time, yet we should expect A to be slower
than B, and B to be slower than C. For example, suppose the data being sorted
 consists of 10,000-byte data records. Then at the machine level, every copying
operation, an assignment statement of the form x ← y, can be thought of as a loop
of the form

For byteNumber = 1 to 10000, do

x[byteNumber] ← y[byteNumber]

Therefore, a data-copying operation takes time proportional to the size of
the data entity being copied. Thus, given data entries of significant size, where
significant is machine-dependent, we expect Algorithm A to be slower than
Algorithm B, even though the two algorithms have the same asymptotic
running time.

C8208_ch01.indd 28C8208_ch01.indd 28 11/16/12 11:55 AM11/16/12 11:55 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Asymptotic Relationships and Common Terminology 29

Pointers of four bytes, i.e., 32 bits, can theoretically be used to address
232 bytes or four Gigabytes of memory. A sorting algorithm that uses Θ(n)
pointer manipulations, might involve three to four pointer assignments, which
might result in 12 to 16 bytes of assignments, per data movement. Therefore,
such an algorithm would typically be more efficient than an algorithm that cop-
ies data, so long as the data items are sufficiently long. Of course, on real
machines, some of these conjectures must be tested experimentally, as instruc-
tion sets and compilers can play a major role in choosing the most efficient
algorithm.

Asymptotic Relationships and Common
Terminology

We first gather material from earlier in the chapter so that this section can be used
as a reference guide. The reader should note that a Reference Guide is presented
immediately preceding this chapter. The Reference Guide contains the following
information, as well as additional information that the reader will find useful in
the context of Algorithms and their Analysis.

Let f and g be positive functions of n. Then the following hold.

 1. f (n) = O1g(n)2⇔ g(n) = Ω1 f (n)2.
 2. f (n) = Θ1g(n)2⇔ g(n) = Θ1 f (n)2.
 3. f (n) = Θ1g(n)2⇔ f (n) = O1g(n)2 and f (n) = Ω1g(n)2.
 4. f (n) = o1g(n)2⇔ g(n) = ω 1 f (n)2.
 5. f (n) = o1g(n)2⇔ lim

n→∞

f (n)

g(n)
 = 0.

 6. f (n) = ω 1g(n)2⇔ lim
n→∞

f (n)

g(n)
 = ∞ .

 7. f (n) = o1g(n)2 ⇒ f (n) = O1g(n)2, but the converse is false.

 8. f (n) = ω 1g(n)2 ⇒ f (n) = Ω1g(n)2, but the converse is false.

 9. f (n) is bounded above and below by positive constants if and only if
f (n) = Θ(1).

We conclude this chapter by giving some common terminology that will be
used throughout the text. These terms are fairly standard, appearing in many texts
and the scientific literature.

C8208_ch01.indd 29C8208_ch01.indd 29 11/16/12 11:55 AM11/16/12 11:55 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

30 Chapter 1 Asymptotic Analysis

An algorithm with running time is said to run in

Θ(1) constant time

Θ(log n) logarithmic time

O(logk n), k a positive integer polylogarithmic time

o(log n) sublogarithmic time

Θ(n) linear time

o(n) sublinear time

Θ(n2) quadratic time

O1 f (n)2, where f (n) is a polynomial polynomial time

An algorithm is said to run in optimal time for the given computer architecture
if its running time T(n) = O(f (n)) is such that Ω(f (n)) time is required to solve the
problem on that architecture. It is important to note that when we use terms such as
optimality or efficiency, we compare the running time of a given algorithm to the
lower bound on the running time to solve the problem being considered on a given
architecture. For example, any algorithm to compute the minimum entry of an
unsorted array of n entries must examine every item in the array, because any item
skipped could be the minimal item. Therefore, any sequential algorithm to solve
this problem requires Ω(n) time. So, an algorithm for this problem that runs in
Θ(n) time is optimal.

Notice that we use the term optimal to mean asymptotically optimal. An opti-
mal algorithm need not be the fastest possible algorithm to give a correct solution
to its problem, but it must be within a constant factor of being the fastest possible
algorithm to solve the problem. Proving optimality is often difficult, and there are
many problems for which optimal running times are not known. There are, how-
ever, problems for which proof of optimality is fairly easy, some of which will
appear in this book.

Summary

In this chapter, we introduce fundamental techniques, strategies, notions, and ter-
minologies related to the analysis of algorithms. We discuss and give examples of
a variety of techniques from algebra and calculus, including limits, L’Hopital’s
Rule, summations, and integrals, by which algorithms are analyzed. We also dis-
cuss the limitations of asymptotic analysis.

Chapter Notes

The notion of applying asymptotic analysis to algorithms is often credited to
 Donald E. Knuth, whose Web site is at www-cs-faculty.Stanford.EDU/~knuth/.

C8208_ch01.indd 30C8208_ch01.indd 30 11/16/12 11:55 AM11/16/12 11:55 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Exercises 31

Although it served as the foundation for part of his seminal series The Art of
 Computer Programming, Knuth, in fact, traces O-notation back to a number theory
textbook by Bachmann in 1892. The O-notation was apparently first introduced by
Landau in 1909, but the modern use of this notation in algorithms is attributed to
the paper by D.E. Knuth, “Big omicron and big omega and big theta,” ACM
SIGACT News, 8(2)(1976): 18–23.

Historical developments of the asymptotic notation in computer science can
be found in reviews by D.E. Knuth and in Algorithmics: Theory and Practice by
Brassard and Bratley (Prentice Hall, 1988). One of the early books that earned
“classic” status was The Design and Analysis of Computer Algorithms, by A.V.
Aho, J.E. Hopcroft, and J.D. Ullman, which was released by Addison-Wesley in
1974. More recent books that focus on algorithms and their analysis include
 Introduction to Algorithms, by T.H. Cormen, C.E. Leiserson, R.L. Rivest, and
C. Stein (3rd ed.: MIT Press, Cambridge, MA, 2009), and Computer Algorithms/
C+ + by E. Horowitz, S. Sahni, and S. Rajasekaran (Computer Science Press,
New York, 1996).

Exercises

 1. Rank the following by growth rate: n, n1/2, log n, log(log n), log2 n, (1/3)n, 4,
(3/2)n, n!

 2. Prove or disprove each of the following.

 a. f (n) = O1g(n)2 ⇒ g(n) = O1 f (n)2
 b. f (n) + g(n) = Θ1max { f (n), g(n)}2
 c. f (n) = O1[f (n)]22
 d. f (n) = O1g(n)2 ⇒ g(n) = Ω1 f (n)2
 e. f (n) + o1 f (n)2 = Θ1 f (n)2
 3. Use O, o, Ω, ω , and Θ to describe the relationship between the following

pairs of functions.

 a. logk n, nε, where k and ε are positive constants

 b. nk, cn, where k and c are constants, k > 0, c > 1

 c. 2n, 2n/2

 4. Prove that 17n1/6 = O1n1/52.
 5. Prove that a

n

k=1

k1/6 = Θ1n7/62.

C8208_ch01.indd 31C8208_ch01.indd 31 11/16/12 11:55 AM11/16/12 11:55 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

32 Chapter 1 Asymptotic Analysis

 6. Given a set of n integer values in the range of [1, . . . , 100], give an efficient
sequential algorithm to sort these items. Discuss the time, space, and optimality
of your solution.

 7. (Total function) Determine the asymptotic running time of the following
algorithm, which is used to sum a set of values. Show that the running time is
optimal.

Function Total (list)
Input: an array, list, of numeric entries indexed from 1 to n
Output: the total of the entries in the array
Local variables: integer index, numeric subtotal

Action:

 subtotal = 0
 For index = 1 to n, do
 subtotal = subtotal + list[index]
 Return subtotal

 8. (Selection Sort) Determine the asymptotic running time of the following
algorithm, which is used to sort a set of data. See Figure 1-13. Determine the
total asymptotic space and the additional asymptotic space required.

FIGURE 1-13 An example of Selection Sort. A complete pass is made
through the initial set of data in order to determine the item that
belongs in the front of the list (1). A swap is performed between this
minimum element and the element currently in the front of the list.
Next, a pass is made through the remaining four items to determine the
minimum (2) of these elements. This minimum element is swapped with
the current second item (3). The procedure continues until n − 1 items
have been properly ordered since this forces all n items to be properly
ordered.

4

3

5

1

2

1

3

5

4

2

1

2

5

4

3

1

2

3

4

5

1

2

3

4

5

C8208_ch01.indd 32C8208_ch01.indd 32 11/16/12 11:55 AM11/16/12 11:55 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Exercises 33

Subprogram SelectionSort(List)
Input: array List[1, . . . , n], to be sorted in ascending order according
to the key field of the records
Output: the ordered List
Algorithm: Selection Sort, as follows
 For each position in the List, we
1. Determine the index corresponding to the entry from the unsorted

portion of the List that is a minimum.
2. Swap the item at the position just determined with the current item.
Local variables: indices ListPosition, SwapPlace

Action:

 {ListPosition is only considered for values up to
n − 1, because once the first n − 1 entries have been
swapped into their correct positions, the last item
must also be correct.}

 For ListPosition = 1 to n − 1
 {Determine the index of correct entry

for ListPosition and swap the entries.}
 SwapPlace = MinimumIndex(List,ListPosition)
 Swap(List[SwapPlace],List[ListPosition])
 End For
 End Sort

Subprogram Swap(A, B)
Input: Data entities A, B
Output: The input variables with their values interchanged, e.g., if on
entry we have A = 3 and B = 5, then at exit we have A = 5 and B = 3.
Local variable: temp, of the same type as A and B

Action:

 temp = A {Backup the entry value of A}
 A = B {A gets entry value of B}
 B = temp {B gets entry value of A}
 end Swap

Function MinimumIndex(List, startIndex)
Input: List[1 . . . n], an array of records to be ordered by a key field;
startIndex, the first index considered.

C8208_ch01.indd 33C8208_ch01.indd 33 11/16/12 11:55 AM11/16/12 11:55 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

34 Chapter 1 Asymptotic Analysis

Output: index of the smallest key entry among those indexed startIndex . . . n
(the range of indices of the portion of the List presumed unordered)
Local variables: indices bestIndexSoFar, at

Action:

 bestIndexSoFar = startIndex
{at is used to traverse the
rest of the index subrange}

 For at = startIndex + 1 to n, do
 If List[at].key < List[bestIndexSoFar].key
 then bestIndexSoFar = at
 End For
 Return bestIndexSoFar
End MinimumIndex

 9. Earlier in this chapter, we gave an array-based implementation of Insertion
Sort. In this problem, we consider a linked list-based version of the algorithm.

Subprogram InsertionSort(X)

 For every current entry of the list after the first
entry:

 Search the sublist of all entries from the first
entry to the current entry for the proper place-
ment, indexed insertPlace, of the current entry in
the sublist;

 Insert the current entry into the same sublist at
the position insertPlace.

 End For

Suppose we implement the Insertion Sort algorithm as just described for a
linked list data structure.

 a. What is the worst-case running time for a generic iteration of the Search step?

 b. What is the worst-case running time for a generic instance of the Insert step?

 c. Show that the algorithm has a worst-case running time of Θ(n2).

 d. Although both the array-based and linked list-based implementations of
Insertion Sort have worst-case running times of Θ(n2), in practice, we usu-
ally find that the linked list-based implementation, applied to the same
data, in the same input order, is faster. Why should this be? Think in terms
of entries consisting of large data records.

C8208_ch01.indd 34C8208_ch01.indd 34 11/16/12 11:55 AM11/16/12 11:55 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Exercises 35

 10. Array implementations of both Insertion Sort and Selection Sort have Θ(n2)
worst-case running times. Which is likely to be faster if we time both in the
same hardware/software environment for the same input data? Why?

 11. The Stable Marriage Problem (SMP) requires establishing a stable match-
ing between two sets of elements given a set of preferences for each element.
Suppose there are arrays him[1 . . . n] and her[1 . . . n] of identically structured
person records, where one of the fields in the record is partner. Suppose the
entries of these arrays represent members of couples, with the value of the
partner field indexing the member of the opposite array that is the entry’s part-
ner. For example, if him[5] and her[8] are a couple, then him[5].partner = 8
and her[8].partner = 5. Suppose there is an evaluation function of two person
records that executes in Θ(1) time, returning a numerical evaluation of how
the person represented by the first parameter evaluates the person represented
by the second parameter. There is an unstable situation if an uncoupled pair,
one from the him array and one from the her array, each evaluates the other
higher than his/her own partner.

 a. Give an efficient algorithm that determines whether or not the him and
her arrays represent an unstable situation, and analyze its worst-case run-
ning time.

 b. Analyze the best-case running time of this algorithm.

 c. If your algorithm is efficient, argue that it has optimal worst-case
running time.

C8208_ch01.indd 35C8208_ch01.indd 35 11/16/12 11:55 AM11/16/12 11:55 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Mathematical Induction

Induction Examples

Recursion

Sequential Search

Binary Search

Additional Notes on Sequential and Binary Searches

Merging and Merge Sort

Summary

Chapter Notes

Exercises

2
Induction and
Recursion

Background Photo Credit © Spectral-Design / Shutterstock
All Images used within the chapter are © 2013 Cengage Learning

C8208_ch02.indd 36C8208_ch02.indd 36 11/12/12 9:22 AM11/12/12 9:22 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In this chapter, we present fundamental mathematical techniques that are used
throughout the book in order to derive analyses of algorithms. These techniques,

including mathematical induction and recursion, are typically taught in courses such as
Calculus and Discrete Mathematics. For some readers, much of this chapter will serve
as a review. For other readers, a careful reading of this chapter may provide a solid
understanding of induction and recursion, which is critical to the design and analysis
of algorithms.

Mathematical induction, to which we will often refer simply as induction, is a
technique for proving statements about sets of consecutive integers. One can view this
as being done by inducing our knowledge of the next case from that of its
predecessor.

Recursion is a technique of designing algorithms in which we

 i. divide a large problem into smaller subproblems,

ii. solve the subproblems recursively, unless the problems are small enough to be
solved directly, and then

iii. combine the solutions to our subproblems in order to obtain a solution to the
 original problem.

So, in order to solve a given problem P1 by recursion, we might first divide P1 into two
subproblems, say P2 and P3. We would then recursively solve P2 and P3, and then com-
bine their results in order to obtain the required result for P1. Notice that in order to
solve P2 and P3, we might continue with the recursion of dividing problem P2 into
subproblems P4 and P5, and similarly dividing problem P3 into subproblems P6 and P7.
Before combining P4 and P5, and similarly P6 and P7, these problems must first be
solved, typically by way of recursion. Therefore, we might recursively divide problems
P4, P5, P6, and P7 into subproblems, recursively solve them, and so on. This recursive
subdivision of problems typically continues until subproblems have simple/trivial solu-
tions, in which case they are solved directly.

Thus, recursion resembles induction in that a recursive algorithm solves a problem
by making use of its capability to solve simpler problems, inducing a solution to the
initial problem from solutions of these simpler problems.

C8208_ch02.indd 37C8208_ch02.indd 37 11/12/12 9:22 AM11/12/12 9:22 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

38 Chapter 2 Induction and Recursion

Mathematical Induction

Suppose we have a statement about positive integers, and we wish to show that the
statement is always true. Formally, let P(n) be a predicate, a statement that is true or
false, depending on its argument n, which we assume to be a positive integer. For
example, the statement “the product of the positive integers from 1 to n is divisible
by 10” is a predicate. This predicate is true for n = 5, since 1 × 2 × 3 × 4 × 5 = 120,
which is divisible by 10, and is false for n = 4, since 1 × 2 × 3 × 4 = 24, which is
not divisible by 10. However, if we have a predicate P(n) that it is true for all posi-
tive integers n, we often can prove the latter by using the following principle.

EXAMPLE

Prove that for all positive integers n, a
n

i=1

i =
n(n + 1)

2
.

Principle of Mathematical Induction: Let P(n) be a predicate, where n is an
arbitrary positive integer. Suppose we can accomplish the following.

 1. Show that P(1) is true.

 2. Show that whenever P(k) is true, it follows that P(k + 1) is also true.

If we can achieve these two goals, then it follows that P(n) is true for all posi-
tive integers n.

Why does this work? Suppose we have proven the two statements given above.
So, we know from statement 1 that P(1) is true, and thus by statement 2 that
P(1 + 1) = P(2) is true, and thus by statement 2 that P(2 + 1) = P(3) is true, and
thus by statement 2 that P(3 + 1) = P(4) is true, and so forth. That is, statement 2
allows us to induce the truth of P(n) for every positive integer n from the truth of
P(1). For a mathematically stronger argument, see Appendix 1.

We often refer to the statement P(1) as the base case of the problem being
considered. The assumption in statement 2 that P(k) = true is called the Inductive
Hypothesis due to the fact that statement 2 is typically used to induce the conclu-
sion that P(k + 1) is true.

The Principle of Mathematical Induction is stated above as an assertion.
Further, we have also given an informal argument as to its validity. For the sake of
mathematical completeness, we prove the assertion in Appendix 1.

Induction Examples

C8208_ch02.indd 38C8208_ch02.indd 38 11/12/12 9:22 AM11/12/12 9:22 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Induction Examples 39

Before we give a proof, we show how we might guess that a
n

i=1

i =
n(n + 1)

2
.

Let S = a
n

i=1

i. Then we have

 S = 1 + 2 + g+ (n − 1) + n. (a)

Now, if we write S in reverse order, we have

 S = n + (n − 1) + g+ 2 + 1. (b)

Again, note that the current exposition is not a proof, due to the impreci-
sion of the “g” notation. So, if we add these two equations by combining the
first terms of the right sides, the second terms of the right sides, and so on, we
obtain

2S = (n + 1) + (n + 1) + (n + 1) + g+ (n + 1) + (n + 1).

That is,

2S = n(n + 1) or S =
n(n + 1)

2
.

Now, we formally prove that a
n

i=1

i =
n(n + 1)

2
. The equation claims that the

sum of the first n positive integers is
n(n + 1)

2
. For n = 1, the left side of the

asserted equation is

a
1

i=1

i = 1

and the right side of the asserted equation is

1(1 + 1)

2
 = 1.

Thus, for n = 1, the asserted equation is true. That is, we have achieved the
first step of an induction proof, namely, the base case.

Suppose the asserted equation is valid for n = k, for some positive integer
k. Notice that we are justified in stating this assumption by our demonstration
above that the case n = k = 1 is an instance for which the assumption is valid.
Then we need to prove the asserted equation is true for the next case, namely,
n = k + 1. That is, by using the assumption for n = k, we want to prove that

a
k+1

i=1

i =
(k + 1)(k + 2)

2
 .

C8208_ch02.indd 39C8208_ch02.indd 39 11/12/12 9:22 AM11/12/12 9:22 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

40 Chapter 2 Induction and Recursion

Notice that we can rewrite the left side of the latter equation as

a
k+1

i=1

i = aa
k

i=1

ib + (k + 1).

Substituting from the inductive hypothesis, we have

a
k+1

i=1

i =
k(k + 1)

2
 + (k + 1) =

(k + 1)(k + 2)

2
 ,

as desired. Thus, our proof is complete.

EXAMPLE

Prove that n! > 2n for all integers n ≥ 4. Notice that we may view this as a state-
ment about all positive integers, not just those greater than or equal to 4, by
observing that the assertion is equivalent to the statement that for all positive
integers j, (j + 3)! > 2 j+3. This observation easily generalizes so that mathemat-
ical induction can be viewed as a technique for proving the truth of predicates
defined for all integers greater than or equal to some fixed integer m. In this
generalized view of induction, the first step of an inductive proof requires
showing that P(m) = true. The proof of our assertion follows.

 1. We first show that the assertion is true for the base case of n = 4. Since
4! = 24 > 16 = 24, the assertion is true for the base case.

 2. Now, suppose k! > 2k for some integer k ≥ 4. This assumption is the induc-
tive hypothesis. Based on this assertion, we must now show that
(k + 1)! > 2k+1. Note that (k + 1)! = (k + 1)(k!), which, by the inductive
 hypothesis and the assumption that k ≥ 4, is an expression at least as large
as 5(2k) > 2(2k) = 2k+1, as desired. This completes the proof.

EXAMPLE

Prove that
d

dx
 xn = nxn−1, for all integers n.

Proof: Even though this is a statement about all integers, we can use mathe-
matical induction to give the proof for n, an arbitrary positive integer, and then
use fundamental rules of calculus to handle other values of n.

C8208_ch02.indd 40C8208_ch02.indd 40 11/12/12 9:22 AM11/12/12 9:22 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Recursion 41

First, assume that n is a positive integer. For the base case, we let n = 1, in
which case the assertion simplifies to

d

dx
 x = 1,

which is true. Next, consider the inductive step. Suppose the assertion is true
for some positive integer k. That is, the inductive hypothesis is the statement

d

dx
 xk = kxk−1.

Now, consider the case of n = k + 1. By utilizing the product rule of calcu-
lus and the inductive hypothesis, we have

d

dx
 xk+1 =

d

dx
 (xxk) = 1xk + x

d

dx
 xk = xk + xk xk−1 = (k + 1)xk,

as desired. Thus, the proof is complete for positive integers n.
For n = 0, the assertion simplifies to

d

dx
 x0 = 0,

which is true.
Finally, if n < 0, we can apply the quotient rule to the result of applying our

assertion to the positive integer −n. That is,

d

dx
 xn =

d

dx

1

x−n
 =

0x−n − 1(−n)x−n−1

(x−n)2
 = nxn−1,

as desired. Therefore, we have shown that for all integers n,

d

dx
 xn = nxn−1.

Recursion

A subprogram that calls upon itself, either directly or indirectly, is called recursive.
Formally, an algorithm exhibits recursive behavior when it can be defined by two
properties.

 1. A simple base case or cases.

 2. A set of rules that reduce all other cases towards the base case.

To the beginner unfamiliar with this notion, it may sound like recursion is a
recipe for an infinite loop in disguise, as indeed it may be if not used with care.

C8208_ch02.indd 41C8208_ch02.indd 41 11/12/12 9:22 AM11/12/12 9:22 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

42 Chapter 2 Induction and Recursion

However, recursion is typically used in such a way that each recursive call is made
only with a smaller/simpler instance of the problem. Furthermore, in order to avoid
infinite recursion, it is crucial that when the program is invoked with a small
enough, i.e., simple enough, set of data, the subprogram will compute the required
answer and return without issuing another call to itself.

So, a recursive algorithm typically exhibits the following behavior.

• Recursive calls are made with a smaller/simpler set of data.

• When a call is made with a sufficiently small/simple enough set of data, the
call is resolved directly.

Notice the similarity of mathematical induction and recursion. Just as mathe-
matical induction is a technique for inducing conclusions for “large n” from our
knowledge of “small n,” recursion allows us to process large or complex data sets
based on our ability to process smaller or less complex data sets.

A classic example of recursion is computing the factorial function, which has
a recursive definition. Although it can be proven that, for n > 0, n!, to be read as
“n factorial,” is the product of the integers from 1 to n, and, therefore, can be
 computed using a tight loop, the definition of n! is recursive and lends itself to a
recursive calculation.

Definition of n Factorial: Let n be a nonnegative integer. Then n! is defined as

n! = e 1 if n = 0;

n[(n − 1)!] if n > 0.
f

For example, we use the Definition of n Factorial to compute 3! as follows.
From the recursive definition, we know that 3! = 3 × 2!. Thus, we need the
value of 2!. Using the second line of the recursive definition, we know that
3! = 3 × 2! = 3 × 2 × 1! = 3 × 2 × 1 × 0!. Notice that the first line of the Definition
of n Factorial tells us that 0! = 1. This is the simplest case of n considered by the
definition of n!, a case that does not require further use of recursion and there-
fore is a base case. A recursive definition or algorithm may have more than
one base case. It is the existence of one or more base cases, and logic that drives
the computation toward base cases, that prevent recursion from producing an
 infinite loop.

In our example, we substitute 1 for 0! in order to resolve our calculations. If
we proceed in the typical fashion of a person calculating with pencil and paper, we
would make this substitution in the above and complete the multiplication,

3! = 3 × 2 × 1 × 0! = 3 × 2 × 1 × 1 = 6.

C8208_ch02.indd 42C8208_ch02.indd 42 11/12/12 9:22 AM11/12/12 9:22 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Recursion 43

A typical computer implementation of this example’s recursion follows.
Substitute 0! = 1 to resolve the calculation of 1!, obtaining 1! = 1 × 0! = 1 × 1 = 1.
Next, substitute the result of 1! in the calculation of 2!, obtaining 2! = 2 × 1! =
2 × 1 = 2. Finally, substitute the result for 2! into the calculation of 3!, which yields
3! = 3 × 2! = 3 × 2 = 6.

Below, we give a recursive algorithm for computing the factorial function. It is
important to note that this algorithm is given for illustrative purposes only. If one
really wants to write an efficient program to compute the factorial function, a sim-
ple tight loop would typically be much more efficient.

Integer function factorial (integer n)
Input: n is assumed to be a nonnegative integer.
Algorithm: Produce the value of n! by using recursion.

Action:

 If n = 0, then return 1
 Else return n × factorial(n − 1)

How do we analyze the running time of such an algorithm? Notice that while
the size of the data set does not decrease with each invocation of the procedure, the
value of n decreases monotonically with each successive call. Therefore, let T(n)
denote the running time of the procedure with input value n. We see from the base
case of the recursion that T(0) = Θ(1), since the time to compute 0! is constant.
From the recurrence given above, we can define the time to compute n!, for n > 0,
as T(n) = T(n − 1) + Θ(1). The conditions

 e T(0) = Θ(1);

T(n) = T(n − 1) + Θ(1)
f (1)

form a recursive relation. We wish to evaluate T(n) in such a way as to express
T(n) without recursion. A naïve approach uses repeated substitution of the recur-
sive relation. This results in

T(n) = T(n − 1) + Θ(1) =

T(n − 2) + Θ(1) + Θ(1) = T(n − 2) + 2Θ(1) =

T(n − 3) + Θ(1) + 2Θ(1) = T(n − 3) + 3Θ(1).

It is important to note the pattern that is emerging is T(n) = T(n − k) + k Θ(1).
Such a pattern will lead us to conjecture that T(n) = T(0) + n Θ (1), which, by the base
case of the recursive definition, yields T(n) = Θ(1) + n Θ(1) = (n + 1)Θ(1) = Θ(n).

Indeed, the conjecture that we have arrived at is correct. However, the “proof ”
given is not correct. Although naïve arguments are often useful for recognizing

C8208_ch02.indd 43C8208_ch02.indd 43 11/12/12 9:22 AM11/12/12 9:22 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

44 Chapter 2 Induction and Recursion

patterns, they do not serve as proofs. In fact, whenever one detects a pattern and
uses such a conjecture as a proof, there is a logical hole in the proof. After all, such
an argument fails to rule out the possibility that the pattern is incorrect for some
case that wasn’t considered. Such an approach reminds us of the well-known Sidney
Harris cartoon in which a difficult step in the derivation of a formula is explained
with the phrase “THEN A MIRACLE OCCURS” (see http://www.sciencecartoons
plus.com/gallery.htm). Thus, once we think that we have recognized a solution to a
recursive relation, it is still necessary to give a solid mathematical proof.

In the case of the current example, the following proof can be given. We
observe that the Θ-notation in condition (1) is a generalization of proportionality.
Suppose we consider the simplified recursive relation

 e T(0) = 1;

T(n) = T(n − 1) + 1.
f (2)

Our previous observations lead us to suspect that this turns out to be
T(n) = n + 1, which we can prove by mathematical induction, as follows.

• For n = 0, the assertion is T(0) = 1, which is true.

• Suppose the assertion T(n) = n + 1 is true for some positive integer k. Thus,
our inductive hypothesis is the equation T(k) = k + 1. We need to show
T(k + 1) = k + 2. Now, using the recursive relation (2) and the inductive
hypothesis, we have T(k + 1) = T(k) + 1 = (k + 1) + 1 = k + 2, as desired.

Thus, we have completed an inductive proof that our recursive relation (2)
simplifies as T(n) = n + 1. Since condition (1) is a generalization of (2), in which
the Θ-interpretation is not affected by the differences between (1) and (2), it
 follows that condition (1) satisfies T(n) = Θ(n). Thus, our recursive algorithm for
computing n! runs in Θ(n) time.

Sequential Search

A sequential search is efficiently implemented in an iterative fashion. We present the
traditional non-recursive sequential search algorithm so that it can be compared to
the recursive implementation of binary search that is given in the following section.

Consider the problem of searching an arbitrarily ordered set of data by a tradi-
tional sequential search. Notice that in the worst case, every item must be exam-
ined, since the item we are looking for i) might not exist or ii) might be the last
item listed. So, without loss of generality, let’s assume that our sequential search
starts at the beginning of the unordered data set and concludes based on one of the
 following conditions.

• The search succeeds when the required item is located.

• The search fails after every item has been examined without finding the item
being sought.

C8208_ch02.indd 44C8208_ch02.indd 44 11/12/12 9:22 AM11/12/12 9:22 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Sequential Search 45

Since the data is not known to be ordered, the sequential examination of data
items is necessary, because were we to skip over any item, the skipped item could
be the one that we wanted (see Figure 2-1).

FIGURE 2-1 An example of sequential
search. Given the array of data, a
search for the value 4 requires five key
comparisons. A search for the value
9 requires three key comparisons.
A search for the value 1 requires seven
key comparisons in order to determine
that the requested value is not present.

5 7 9 3 4 6 8

Thus, we give the following algorithm for a sequential search.

Subprogram SequentialSearch (X, searchValue, success, foundAt)
Algorithm: Perform a sequential search on the array X[1 . . . n] for searchValue.
If an element with a key value of searchValue is found, then return
success = true and foundAt, where searchValue = X[foundAt].key, and where
X[foundAt].key is the first instance of searchValue.
Otherwise, return success = false.
Local variable: index position

Action:

 position = 1
 Do
 success = (searchValue = X[position].key)
 If success, then foundAt = position
 Else position = position + 1
 While (Not success) and (position ≤ n) {End Do}
 Return success, foundAt
End Search

Analysis: The set of instructions inside the Do-While loop runs in Θ(1)
time since each instruction runs in constant, i.e., Θ(1), time. In the worst case, the
body of the loop will be executed n times. This occurs when either the search is
 unsuccessful or when the item we are searching for is the last item in the array X.

C8208_ch02.indd 45C8208_ch02.indd 45 11/12/12 9:22 AM11/12/12 9:22 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

46 Chapter 2 Induction and Recursion

Thus, one can say that the worst-case sequential search runs in Θ(n) time.
Assuming that the data is ordered in a truly random fashion, then a successful
search will, on average, succeed after examining half of the entries. That is, a suc-
cessful search of an unordered data set in which the items are randomly distrib-
uted, requires examining n/2 items on average. Indeed, the expected-case or
average-case running time of a successful sequential search is Θ(n). Finally, since
the data is presented in a random fashion, it is possible that we find the item we
are searching for immediately, which means that the time required for the best-
case search is Θ(1).

Binary Search

In contrast with our recursive algorithm for computing n!, recursion is more com-
monly used when every recursive call involves a significant reduction in the size of
the current instance of the problem. An example of such a recursive algorithm is
Binary Search. Searching for a data value is a fundamental operation, in which
efficiency is crucial. For example, consider searching for an entry of a phone book,
a sorted listing of names and telephone numbers, or for an entry of a dictionary, a
sorted listing of words and their definitions. Since hardcopy phone books and dic-
tionaries are examples of sorted databases, we can take advantage of the fact that
the data is ordered when we attempt to find an element. For example, when search-
ing a hardcopy phone book for “Miller,” we would not start at the very beginning
of the book and search entry by entry, page by page, in hopes of finding “Miller”.
Instead, we would likely open the book to the middle and decide whether “Miller”
appears on the page(s) before, after, or on the page being examined.

We now consider the impact of performing a search on a sorted set of data.
Think about designing an algorithm that mimics what you would do to find “Miller”
in a hardcopy phone book. That is, grab a bunch of pages and flip back and forth,
each time grabbing fewer and fewer pages, until the desired item is located. Notice
that this method considers very few data values relative to the number considered
by the sequential search. A question we need to consider is whether or not this algo-
rithm is asymptotically faster than the sequential search algorithm, since it may be
faster by just a high-order constant or low-order term. Before we consider a proper
analysis of this binary search, we present a detailed description of the algorithm.

Subprogram BinarySearch (X, searchValue, success, foundAt, minIndex,
maxIndex)
Algorithm: Binary search algorithm to search ordered subarray
X [minIndex cmaxIndex] for a key field equal to searchValue.
The algorithm is recursive. In order to search the entire array X [1, . . . , n], the
initial call is of the form Search(X, searchValue, success, foundAt, 1, n).
If searchValue is found, return success = true and foundAt as an index at
which searchValue is found; otherwise, return success = false.

C8208_ch02.indd 46C8208_ch02.indd 46 11/12/12 9:22 AM11/12/12 9:22 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Binary Search 47

Local variable: index midIndex

Action:

 If minIndex > maxIndex, then {The subarray is empty}
 success = false, foundAt = 0
 Else {The subarray is nonempty}

 midIndex = j minIndex + maxIndex
2

k
 If searchValue = X[midIndex].key, then
 success = true, foundAt = midIndex
 Else {searchValue ≠ X[midIndex].key}
 If searchValue < X[midIndex].key, then
 BinarySearch(X, searchValue, success, foundAt,

minIndex, midIndex − 1)
 Else {searchValue > X[midIndex].key}
 BinarySearch(X, searchValue, success, foundAt,

midIndex + 1, maxIndex)
 End {searchValue ≠ X[midIndex].key}
 End {Subarray is nonempty}
 Return success, foundAt
End Search

See Figure 2-2. Notice that the running time, T(n), of our binary search algo-
rithm satisfies the recursive relation

T(1) = Θ(1);

T(n) ≤ T(n/2) + Θ(1).

FIGURE 2-2 An example of binary
search. Given the array of data, a search
for the value 4 requires two key com-
parisons (6,4). A search for the value 9
requires three key comparisons (6,8,9).
A search for the value 1 requires three
key comparisons (6,4,3) in order to
determine that the value is not present.

3 4 5 6 7 8 9

C8208_ch02.indd 47C8208_ch02.indd 47 11/12/12 9:22 AM11/12/12 9:22 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

48 Chapter 2 Induction and Recursion

To analyze the worst-case running time implied by this recursive relation, we
can again use the naïve approach of repeated substitution into this recursive rela-
tion to try to find a pattern, interpret the pattern for a non-recursive base case, then
try to prove the resulting assertion by mathematical induction. This results in an
expansion that looks like

T(n) = T(n/2) + Θ(1) =

T(n/4) + Θ(1) + Θ(1) = T(n/4) + 2 × Θ(1) =

T(n/8) + Θ(1) + 2 × Θ(1) = T(n/8) + 3 × Θ(1).

Notice that the pattern beginning to emerge is T(n) = T(n/2k) + k × Θ(1), where
the argument of T reaches the base value 1 = n/2k when k = log2 n. Such a pattern
leads us to the conjecture that

T(n) = T(1) + log2 n × Θ(1) = Θ(log n).

Based on this “analysis,” we believe that a binary search exhibits a worst-case
running time of Θ(log n).

Notice that in our “analysis” above, we made the simplifying assumption that
n is a positive integer that is a power of 2. It turns out that this assumption only
simplifies the analysis of the running time without changing the result of the
analy sis (see the Exercises).

As before, it is important to realize that once we have recognized what appears
to be the pattern of the expanded recursive relation, we must prove our conjecture.
To do this, we can use mathematical induction. We leave the proof of the running
time of binary search as an exercise for the reader.

The term binary, when applied to this search procedure, is used to suggest
that during each iteration of the algorithm, the search is being performed on
roughly 1/2 the number of items that were used during the preceding iteration.
Although such an assumption makes the analysis more straightforward, it is
important for the reader to note that the asymptotic running time holds so long as
at the conclusion of each recursion, some fixed fraction of the data is removed
from consideration.

Additional Notes on Sequential and Binary Searches

It is important to recall that a sequential search can be used on a list, whether or
not the list is known to be ordered. By contrast, a binary search requires an ordered
list, assuming the user wants to be assured of a correct result. Notice that Binary
Search correctly solves the search problem for an ordered list with a Θ(log n)
worst-case running time, while Sequential Search solves the search problem on an
arbitrarily ordered list in Θ(n) worst-case running time.

C8208_ch02.indd 48C8208_ch02.indd 48 11/12/12 9:22 AM11/12/12 9:22 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Merging and Merge Sort 49

Merging and Merge Sort

Many efficient sorting algorithms are based on a recursive paradigm in which the
list of data to be sorted is split into sublists of approximately equal size, each of the
resulting sublists is sorted recursively, and then the sorted sublists are combined
into a completely sorted list (see Figure 2-3).

10

4

3

2

9

7

1

5

8

6

1

2

3

4

5

6

7

8

9

10

10

3

9

1

8

4

2

7

5

6

1

3

8

9

10

2

4

5

6

7

FIGURE 2-3 Recursively sorting a set of data. Take the initial list and divide it
into two lists, each roughly half the size of the original list. Recursively sort each
of the sublists. Merge these sorted sublists to create the final sorted list.

The recursive relation that describes the running time of such an algorithm is
given by

T(1) = Θ(1);

T(n) = S(n) + 2T(n/2) + C(n),

where S(n) is the time used by the algorithm to split a list of n entries into two sub-
lists of approximately n/2 entries apiece, and C(n) is the time used by the algo-
rithm to combine two sorted lists of approximately n/2 entries apiece into a single
sorted list. An example of such an algorithm is Merge Sort, discussed below.

Merging two ordered lists A and B into a single ordered list C requires properly
intermingling the members of A and B in order to produce C. Think of it as having
half a deck of cards in each hand, both of which are ordered, and combining them
to get a final ordered list.

C8208_ch02.indd 49C8208_ch02.indd 49 11/12/12 9:22 AM11/12/12 9:22 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

50 Chapter 2 Induction and Recursion

This operation is most natural to describe when the lists are maintained as linked
lists, i.e., pointer-based lists. In the following discussion, we consider our data to be
arranged as a singly linked list in which each data record has the following.

 i. A field called sortkey, which is used as the basis for sorting.
 ii. Zero or more other fields, denoted otherinfo in Figure 2-4, that are used to

store information pertinent to the record but are not used by the sort routine.
iii. A field called next, which is a pointer to the next element in the list.

sortkey

next

otherinfo

3

--

head
sortkey

next . . .

otherinfo

8

--

sortkey

next

otherinfo

405

--

FIGURE 2-4 An illustration of a linked list in a language that supports
dynamic allocation of elements. Notice that the head of the list is simply a
pointer and not a complete record, and that the last item in the list has its
next pointer set to NULL. An algorithm to merge two ordered linked lists
containing a total of n elements in O(n) time is given below. An example
of merging is shown in Figure 2-5.

Initial
Configuration:

Step 1:

head1 1 3 8 9 10

1 2 3 4 5 6

head2

headMerge

2 4 5 6 7

head1 3 8 9 10

head2

headMerge

2 4

1

5 6 7

Step 2: head1 3 8 9 10

head2

headMerge 1

4 5

2

6 7

Step 6: head1 8 9 10

head2

headMerge

7

1 2 3 4 5 6 7 8 9 10

Step 8: head1

head2

headMerge

FIGURE 2-5 An example of merging two ordered lists, initially indexed by
head1 and head2, to create an ordered list headMerge. Snapshots are pre-
sented at various stages of the algorithm. As the merge progresses, head1
and head2 each indexes the first unmerged node in their respective list.

C8208_ch02.indd 50C8208_ch02.indd 50 11/12/12 9:22 AM11/12/12 9:22 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Merging and Merge Sort 51

Note that a programming language typically has a special pointer constant that
is defined to point to no element, e.g., “NULL” or “nil”. This value is typically
used to mark boundaries of pointer-based data structures, e.g., the last member of
a linked list typically has a next field with this special value. Figure 2-4 presents a
representation of such a data structure. Notice that in Figure 2-4, we assume the
sortkey data is of type integer.

Subprogram Merge(head1, head2, headMerge)
Input: head1 and head2 point to two distinct ordered lists that are to be
merged with respect to field sortkey. We assume all ordered lists are in
ascending order.
Output: This routine produces a merged list addressed by headMerge.
Local variable: atMerge, a pointer to a link of the merged list

Action:

 If head1 = null, then return headMerge = head2
 Else {The first input list is nonempty}
 If head2 = null, then return headMerge = head1
 Else {Both input lists are nonempty}
 If head1.sortkey ≤ head2.sortkey, then

{Start merged list with 1st element of 1st list}
 headMerge = head1; head1 = head1.next
 Else {Start merged list with 1st element of 2nd list}
 headMerge = head2; head2 = head2.next
 End {Decide first merge element}
 atMerge = headMerge
 While (head1 ≠ null and head2 ≠ null), do
 If head1.sortkey ≤ head2.sortkey then

 {Merge element of 1st list}
 atMerge.next = head1
 atMerge = head1
 head1 = head1.next
 Else {Merge element of 2nd list}
 atMerge.next = head2
 atMerge = head2
 head2 = head2.next
 End If
 End While

{Now, one of the lists is exhausted, but
the other isn’t. So concatenate the
unmerged portion of the unexhausted

list to the merged list.}

C8208_ch02.indd 51C8208_ch02.indd 51 11/12/12 9:22 AM11/12/12 9:22 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

52 Chapter 2 Induction and Recursion

 If head1 = null, then atMerge.next = head2
 Else atMerge.next = head1
 End Else {Both input lists are nonempty}
 End Else {First input list is nonempty}
 Return headMerge
 End Merge

It is useful to examine the merge algorithm above in terms of both the best-
case, i.e., minimal running time, and the worst-case, i.e., maximal running time. In
the best case, one of the input lists is empty, and the algorithm finishes its work in
Θ(1) time. In the worst-case, when one of the input lists is exhausted, only one
item remains in the other list. In this case, since each iteration of the While-loop
requires a constant amount of work to merge one element into the merged list that
is being constructed, the running time for the entire procedure is Θ(n). We note
also that the algorithm processes every element of one of its input lists. Therefore,
the running time of this simple merge algorithm is Θ(k), where k is the number of
nodes from both input lists that have been merged when the first input list is
exhausted. So, if the total length of both lists combined is Θ(n), e.g., if we are
merging two lists of length n/2 each, then the worst-case running time of this
merge algorithm is Θ(n).

In addition to being able to merge two ordered lists, the Merge Sort algorithm
requires a routine that will split a list into two sublists of roughly equal size.
Suppose we are given a deck of cards and don’t know how many cards are in the
deck. A reasonable way to divide the deck into two piles so that each pile had
roughly the same number of cards in it is to deal the cards alternately between the
two piles. We give such an algorithm for splitting a list below.

Subprogram Split(headIn, headOut)
Algorithm: Split an input list indexed by headIn, a pointer to the first
element, into two output lists by alternating the output list to which an input
element is assigned.
The output lists are indexed by headOut[0…1].
Local variables: current_list, an index alternating between output lists temp,
a temporary pointer to current link of input list

Action:

{Initialize output lists as empty.}
 headOut[0] = headOut[1] = null
 current_list = 0
 While headIn ≠ null, do
 temp = headIn

C8208_ch02.indd 52C8208_ch02.indd 52 11/12/12 9:22 AM11/12/12 9:22 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Merging and Merge Sort 53

 headIn = headIn.next
 temp.next = headOut[current_list]
 headOut[current_list] = temp
 current_list = 1 − current_list

{Switch value between 0, 1}
 End While
 Return headOut
 End Split

In the Split algorithm above, every iteration of the loop takes one element
from the input list and places it at the head of one of the output lists. This opera-
tion runs in Θ(1) time. Thus, if the initial list has n elements, the algorithm runs in
Θ(n) time.

Since we have introduced and analyzed the tools necessary for Merge Sort, we
now present an implementation of the algorithm in Subprogram MergeSort.

Subprogram MergeSort(head)
Algorithm: Sort a linked list by using the Merge Sort algorithm
Input: a linked list indexed by head, a pointer to the first element
Output: an ordered list
Local variables: temp[0…1], an array of two pointers

Action:

 If head ≠ null, then {Input list is nonempty}
 If head.next ≠ null, then
 {There’s work to do, as the list

has at least 2 elements.}
 Split(head, temp)
 MergeSort(temp[0])
 MergeSort(temp[1])
 Merge(temp[0], temp[1], head)
 End If
 End If
 Return head
End Sort

Before we analyze the Merge Sort algorithm given above in Subprogram
MergeSort, we make the following observations. The algorithm is recursive, so a
question that should be raised is, “what condition represents the base case?”
Actually, two base cases are present, but they are both so simple that they are
 easily missed.

C8208_ch02.indd 53C8208_ch02.indd 53 11/12/12 9:22 AM11/12/12 9:22 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

54 Chapter 2 Induction and Recursion

 1. Consider the statement “If head ≠ null, then” in Subprogram MergeSort. The
consequent action does not seem like the simple case we expect in a base case of
recursion. It does, however, suggest that we consider the opposite case,
head = null. The latter case is not mentioned at all in the algorithm, yet clearly it
can happen. This, in fact, is a base case of recursion. Notice that if head = null,
then there is no work to be done, as the list is empty. It is tempting to say that
when this happens, no time is used, but we should attribute to this case the Θ(1)
time necessary to recognize that head = null.

 2. Consider the inner “If ” clause, “If head.next ≠ null.” Notice that this condition
is only tested when the outer If-condition is true, and therefore represents the
condition of having a list with at least one element beyond the head element.
That is, the list must have at least two elements. Thus, negation of the inner
If-condition represents the condition of having a list with exactly one node,
since the outer If ’s condition being true means there is at least one node. As
above, the condition head.next = null results in no listed action, corresponding
to the fact that a list of one element must be ordered. As above, we analyze the
case head.next = null as using Θ(1) time.

It is important to observe that a piece of code of the form

 If A, then
 actionsForA
 End If A

is logically equivalent to

 If not A, then {no action}
 Else {A is true}
 actionsForA
 End Else A

We usually prefer the former form for its brevity, but in discussing Merge
Sort, the latter form helps us distinguish base cases that require no action from
recursive cases.

Analysis: Let T(n) be the running time of the Merge Sort algorithm, which
sorts a linked list of n items. Based on the analysis above, we know that the split-
ting time is S(n) = Θ(n). We also know that the time to merge is M(n) = O(n).
Given the time for splitting and merging, we can construct a recurrence equation
for the running time of the entire algorithm, as follows.

 T(1) = Θ(1);

 T(n) = S(n) + 2T(n/2) + M(n) = 2T(n/2) + Θ(n). (a)

Before we proceed further, notice that the latter equation, in the worst case,
could have been written as

 T(n) = 2[T(n/2) + Θ(n)]. (b)

C8208_ch02.indd 54C8208_ch02.indd 54 11/12/12 9:22 AM11/12/12 9:22 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Common Recurrence Equations 55

Roughly, equations (a) and (b) are equivalent because 2Θ(n) = Θ(2n) = Θ(n).
In order to proceed with the analysis, we again consider using repeated substitu-
tion as a means of obtaining a conjecture about the running time. Therefore, we
have, from equation (a),

T(n) = 2T(n/2) + Θ(n) =

2[2T(n/4) + Θ(n/2)] + Θ(n) = 4T(n/4) + 2 × Θ(n) =

4[2T(n/8) + Θ(n/4)] + 2 × Θ(n) = 8T(n/8) + 3 × Θ(n).

The emerging pattern is T(n) = 2kT(n/2k) + k × Θ(n), reaching the base case
1 = n/2k for k = log2 n. This pattern results in a conjecture that

T(n) = nT(1) + Θ(n log n) = Θ(n) + Θ(n log n) = Θ(n log n).

If we are still not comfortable by the remark above that equations (a) and (b)
are equivalent, notice that had we based our search for a conjecture on repeated
substitution into equation (b), we would have obtained

T(n) = 2[T(n/2) + Θ(n)]

2{2[T(n/4) + Θ(n/2)]} + 2Θ(n) = 4T(n/4) + 4Θ(n) =

4{2[T(n/8) + Θ(n/4)]} + 4Θ(n) = 8T(n/8) + 6Θ(n).

The emerging pattern is T(n) = 2kT(n/2k) + 2kΘ(n), reaching its base case for
k = log2 n, substitution of which into the pattern equation yields the conjecture
T(n) = nT(1) + (2 log2 n)Θ(n) = Θ(n log n), as above.

Our conjecture can be proved using mathematical induction on k for n = 2k
(see Exercises). Therefore, the running time of our Merge Sort algorithm is
Θ(n log n).

Common Recurrence Equations

In this section, we give some common recurrence equations, several of which were
derived in this chapter.

Representative Algorithm Recurrence Equation Asymptotic Solution

Binary Search T(n) = T(n/2) + Θ(1) T(n) = Θ(log n)

Sequential Search T(n) = T(n − 1) + Θ(1) T(n) = Θ(n)

Tree Traversal T(n) = 2T(n/2) + Θ(1) T(n) = Θ(n)

Insertion Sort T(n) = T(n − 1) + Θ(n) T(n) = Θ(n2)

Merge Sort T(n) = 2T(n/2) + Θ(n) T(n) = Θ(n log n)

C8208_ch02.indd 55C8208_ch02.indd 55 11/12/12 9:22 AM11/12/12 9:22 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

56 Chapter 2 Induction and Recursion

Summary

In this chapter, we introduce the related notions of mathematical induction and
recursion. Mathematical induction is a technique for proving statements about sets
of successive integers. Often, the set of concern takes the form of all integers
greater than or equal to an initial integer. This is done by proving a base case and
then proving that the truth of a successor case follows from the truth of its prede-
cessor. Recursion is a technique of solving problems by dividing the original prob-
lem into multiple smaller problems, solving these smaller problems, and combining
the solutions to the smaller problems in order to obtain the desired solution to the
original problem. Note that the step of “solving these smaller problems” is done
recursively unless a simple base case is reached where the problem can be solved
directly. Examples of both of these powerful tools are presented, including appli-
cations to fundamental data processing operations such as searching and sorting.

Chapter Notes

A classic reference for the material presented in this chapter is Fundamental
Algorithms, volume 1 of The Art of Computer Programming, by Donald Knuth. The
book, published by Addison-Wesley, originally appeared in 1968, and, along with the
companion volumes, is a classic that should be on every computer scientist’s desk. An
excellent book on discrete mathematics is Discrete Algorithmic Mathematics by S.B.
Maurer & A. Ralston (Addison-Wesley Publishing Company, Reading, Massachusetts,
1991). An interesting book, combining discrete and continuous mathematics, is
Concrete Mathematics by R.L. Graham, D.E. Knuth, & O. Patashnik (Addison-Wesley
Publishing Company, Reading, Massachusetts, 1989). Finally, we should mention an
excellent book, Introduction to Algorithms, by T.H. Cormen, C.E. Leiserson, R.L.
Rivest, and C. Stein (3rd ed.: MIT Press, Cambridge, MA, 2009). This book covers
fundamental mathematics for algorithmic analysis in a thorough fashion.

Exercises

Note: Some of our exercises are based on the sequence of Fibonacci numbers
f1, f2, f3, c, defined recursively as

f1 = f2 = 1;

fn+2 = fn + fn+1.

 1. Suppose we have a positive number c and define a sequence g1,g2,g3, c,
recursively by

g1 = g2 = c;

gn+2 = gn + gn+1.

 Show that for every positive integer n, we have gn = cfn, where fn is the nth
Fibonacci number.

C8208_ch02.indd 56C8208_ch02.indd 56 11/12/12 9:22 AM11/12/12 9:22 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Exercises 57

The next two exercises may be completed with non-recursive algorithms. These
algorithms may be used in subsequent exercises.

 2. Devise a Θ(n) time algorithm that takes as input an array X and produces as
output a singly linked list Y such that the ith element of Y has the same data as
the ith entry of X. Prove that the algorithm runs in Θ(n) time.

 3. Devise a Θ(n) time algorithm that takes as input a singly linked list X and pro-
duces as output an array Y such that the ith entry of Y has the same data as the
ith element of X. Prove that the algorithm runs in Θ(n) time.

 4. Show that a
∞

i=1

1

2i
 = 1. This can be done by showing that for all positive integers n,

a
n

i=1

1

2i
 = 1 −

1

2n
, which can be shown by mathematical induction.

 5. (Arithmetic progression.) Show that a recursive algorithm, where the running
time is given as a function of items

T(1) = Θ(1);

T(n) = T(n − 1) + Θ(n),

satisfies T(n) = Θ(n2).

 6. (Geometric progression.) Show that a recursive algorithm, where the running
time is given as a function of items

T(1) = Θ(1);

T(n) = T(n/r) + Θ(n),

where r > 1 is a constant, satisfies T(n) = Θ(n).

 7. (Binary search.)

 a. Show that the recursive relation used with the binary search algorithm,

T(1) = Θ(1);

T(n) ≤ T(n/2) + Θ(1),

 satisfies T(n) = O(log n) when n = 2k for some nonnegative integer k.
Hint: Your proof should use mathematical induction on k to show that

T(1) = 1;

T(n) ≤ T(n/2) + 1,

satisfies T(n) ≤ 1 + log2 n.

C8208_ch02.indd 57C8208_ch02.indd 57 11/12/12 9:22 AM11/12/12 9:22 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

58 Chapter 2 Induction and Recursion

 b. Even if n is not an integer power of 2, the recursive relation above satisfies
T(n) = O(log n). Prove this assertion, using the result for the case of n being
a power of 2. Hint: Start with the assumption that 2k < n < 2k+1 for some
positive integer k. One approach is to show that only one more item need be
examined, in the worst case, than in the worst case for n = 2k. Another
approach is to prove that we could work instead with the recursive relation

T(1) = 1;

T(n) ≤ Tal n − 1

2
 m b + 1,

then show how this, in turn, yields the desired conclusion.

 8. Prove that Subprogram MergeSort has a running time of Θ(n log n) by show-
ing that the recursive relation used in its partial analysis above,

T(1) = Θ(1);

T(n) = S(n) + 2T(n/2) + C(n) = 2T(n/2) + Θ(n),

 satisfies T(n) = Θ(n log n). As above, this can be done by an argument based
on the assumption that n = 2k, for some nonnegative integer k, using mathe-
matical induction on k.

 9. Show that an array of n entries can be sorted in Θ(n log n) time by an algo-
rithm that makes use of the Merge Sort algorithm given above. Hint: see
Exercises 2 and 3.

 10. More on Fibonacci numbers
a. Develop a nonrecursive Θ(n) time algorithm to return the nth Fibonacci

number.

b. Below, we state a recursive algorithm to produce the nth Fibonacci number,
based on the definition above. Show that this algorithm has a running time
that is ω (n). This shows that the naïve use of recursion isn’t always a good
idea.

integer function fibonacci(n)
Outputs the nth Fibonacci number
Input: n, a nonnegative integer

Action:

 If n ≤ 2, then return 1
 Else return fibonacci(n − 2) + fibonacci(n − 1)

C8208_ch02.indd 58C8208_ch02.indd 58 11/12/12 9:22 AM11/12/12 9:22 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Exercises 59

Hint: The analysis can be achieved by the following steps.

• Show that the running time T(n) can be analyzed by using the recursive
relation T(n) = T(n − 1) + T(n − 2) + Θ(1).

• Show the recursive relation obtained above implies T(n) > 2T(n − 2).

• Use the above to show that T(n) = ω (n). Note it is not necessary to find
an explicit formula for either fn or T(n) to achieve this step.

 11. A certain method for computing the determinant of an n × n matrix has run-
ning time T(n2) described, to within constants of proportionality, by

T(n2) = e nT1(n − 1)22 for n > 1;

1 for n = 1.

Show this recursion resolves as T(n2) = n!, the factorial function.

C8208_ch02.indd 59C8208_ch02.indd 59 11/12/12 9:22 AM11/12/12 9:22 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Master Theorem

Examples

Summary

Chapter Notes

Exercises

3
The Master Method

Background Photo Credit © Spectral-Design / Shutterstock
All Images used within the chapter are © 2013 Cengage Learning

C8208_ch03.indd 60C8208_ch03.indd 60 11/12/12 6:48 AM11/12/12 6:48 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The Master Method is an important tool that can provide solutions to a large class of
recursion relations. This is important, for example, when we try to solve equations

that provide the time, space, or memory requirements of an algorithm. Further, recur-
rence equations can often be used to suggest solution strategies, i.e., algorithms, to
solve problems of interest.

Consider a recurrence of the form

T(n) = aTan
b
b + f (n),

where a ≥ 1 and b > 1 are constants, and f (n) is a positive function. In addition, we
assume a base case of T(c) = Θ(1), for c ≤ 1 unless explicitly stated otherwise.

If T(n) is the running time of a problem of size n, we can interpret this recurrence
as defining T(n) to be the time to solve a subproblems of size n/b, plus f (n), which is
the sum of the following.

• The time to divide the original problem into the a subproblems.

• The time to combine the subproblems’ solutions in order to obtain the solution to
the original problem.

Consider the problem of sorting a linked list of data using the Merge Sort algo-
rithm described in the previous chapter (see Figure 3-1). Assume that we split a list of
length n into two lists, each of length n/2, recursively sort these new lists, and then
merge them together. In terms of developing a recurrence equation, we have 2 sub-
problems to solve, each of size n/2. That is, we have a = 2 subproblems, each of size
n/b, for b = 2.

Further, the interpretation is that f (n) is the time to split the list of length n into
two lists of length n/2 each, plus the time to merge two ordered lists of length n/2 each
into an ordered list of length n. See Figure 3-2.

C8208_ch03.indd 61C8208_ch03.indd 61 11/12/12 6:48 AM11/12/12 6:48 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

62 Chapter 3 The Master Method

FIGURE 3-1 A recursion tree representing the recurrence equation T(n) = aT(n/b) + f (n).
The number of problems to be solved at each horizontal level of recursion is listed, along
with the size of each problem at that level. “Time” is used to represent the time per
 problem, not counting recursion, at each level.

n

n/bn/bn/b n/b

f (n)

. . .

. . .

n/b2 n/b2 n/b2 n/b2
f (n/b)

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

f (n/b2)

. . .

a2

.

a

1

No. of Problems

n

n/b

n/b2

. . .

Each Problem Size

.

f (n/b2)

f (n/b)

f (n)

Time

FIGURE 3-2 A recursion tree for Merge Sort, as represented by T(n) = 2T(n/2) + Θ(n).
Notice that level i of the recursion tree, for i ∈{1, 2, c, log2 n}, runs in
2i × Θ1n/2i2 = Θ(n) time. This resolves as T(n) = Θ(n log n).

n

n/2

n/4

1 1 1 1

n/4 n/4 n/4

n/2

n

n/4

1

n/2

Each Problem Size

.

.

.

4

2

1

No. of Problems

. . . .

 n

Time

. . .

(n/2)

(n/22)

(1)

(n)

C8208_ch03.indd 62C8208_ch03.indd 62 11/12/12 6:48 AM11/12/12 6:48 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Examples 63

Master Theorem

The Master Method is summarized in the following “Master Theorem.”

Master Theorem: Let a ≥ 1 and b ≥ 1 be constants. Let f (n) be a positive
function defined on the positive integers. Let T(n) be defined on the positive
integers by

 T(n) = aTan
b
b + f (n), (3.1)

where we can interpret n/b as meaning either ⎣n/b⎦ or ⎡n/b⎤ . Then the follow-
ing hold.

 1. Suppose f (n) = O1nlogb a−ε2 for some constant ε > 0. Then T(n) = Θ1nlogb a2.
 2. Suppose f (n) = Θ1nlogb a2. Then T(n) = Θ1nlogb a log n2.
 3. Suppose f (n) = Ω(nlogb a+ ε) for some constant ε > 0, and there are constants

c and N, 0 < c < 1 and N > 0, such that (n/b) > N ⇒ af (n/b) ≤ cf (n). Then
T(n) = Θ1 f (n)2.

EXAMPLE

(Geometric progression) Consider the recurrence

T(c) = Θ(1) for c ≤ 1,

T(n) = T(n/r) + Θ(n) for c > 1,

for some constant r > 1. Notice that this geometric series was presented in an
Exercise of Chapter 2, where it was to be resolved by mathematical induction.
Many of you have been exposed to the case of r = 2, which is equivalent to
T(n) = Θ(n + n/2 + n/4 + . . .) = Θ(n).

If, instead, we use the Master Theorem to resolve the general recurrence,
we have a = 1, b = r, and logb a = logr1 = 0. This yields

f (n) = n = nlogb a+1

The reader should observe that the Master Theorem does not cover all
instances of equation (3.1).

In Appendix 2, we sketch a proof for the Master Theorem. The proof is pro-
vided as a convenience to those who have the mathematical skills, interest, and
background to appreciate it, but should be skipped by other readers.

Examples

C8208_ch03.indd 63C8208_ch03.indd 63 11/12/12 6:48 AM11/12/12 6:48 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

64 Chapter 3 The Master Method

EXAMPLE

Consider the recurrence

T(n) = T an
2
b + 1

that occurs in the analysis of Binary Search. Corresponding to the notation
used in our statement of the Master Theorem, we have f (n) = 1 = nlog2 1, so by
case 2 of the Master Theorem, T(n) = Θ(log n).

EXAMPLE

Consider the recurrence

T(n) = 2T an
2
b + n

that occurs in the analysis of Merge Sort. Corresponding to the notation used
in our statement of the Master Theorem, we have a = 2, b = 2, and f (n) =
n = nlogb a. So, by case 2 of the Master Theorem, T(n) = Θ(n log n).

EXAMPLE

Consider the recurrence

T(n) = 4T an
4
b + n1/2

that occurs in the analysis of some image processing algorithms. We have

a = 4, b = 4, logb a = log4 4 = 1, and f (n) = n1/2 = nlogb a−1/2.

By case 1 of the Master Theorem, T(n) = Θ(n).

Further,

af (n/b) = n/r =
1
r
 f (n)

From the third case of the Master Theorem, it follows that even in the general
case, T(n) = Θ(n).

C8208_ch03.indd 64C8208_ch03.indd 64 11/12/12 6:48 AM11/12/12 6:48 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Exercises 65

Summary

In this chapter, we present the Master Theorem, which provides solutions to many,
although not all, types of recursive relationships. A proof of this theorem is given
in Appendix 2. We show how to use this theorem with several examples.

Chapter Notes

In this chapter, we focus on the Master Method, a cookbook approach to solving
certain recurrences of the form T(n) = aT(n/b) + f (n). This approach has been well
utilized in texts by E. Horowitz and S. Sahni, including Computer Algorithms/
C++, by E. Horowitz, S. Sahni, and S. Rajasekaran (Computer Science Press, New
York, 1996). The paper, “A general method for solving divide-and-conquer recur-
rences,” by J.L. Bentley, D. Haken, and J.B. Saxe, SIGACT News, 12(3): 36–44,
1980, appears to serve as one of the earliest references to this technique.

Exercises

For each of the following recurrences, either solve by using the Master Theorem,
or show it is not applicable, as appropriate. If the Master Theorem is not applica-
ble, try to solve the recurrence by another means.

EXAMPLE

Consider the recurrence

T(n) = T an
4
b + n1/2

that occurs in the analysis of many mesh computer algorithms that will be
 presented later in the text. Corresponding to the notation used in our statement
of the Master Theorem, we have

a = 1, b = 4, f (n) = n1/2 = Ω(nlogb a+0.5),

and

af (n/b) = (n/4)1/2 = n1/2/2 = 0.5f (n).

So, by case 3 of the Master Theorem, T(n) = n1/2.

 1. T(n) = 2Tan
2
b + 1

 2. T(n) = T(n − 2) + 1

 3. T(n) = 4Tan
2
b + n2

 4. T(n) = 4Tan
2
b + n3/2

 5. T(n) = 3Tan
2
b + n2

 6. T(n) = 8Tan
2
b +

n2

 log2 n

 7. T(n) = 16Tan
4
b +

n3

 log2 n

 8. T(n) = 2Tan
2
b + 2n

C8208_ch03.indd 65C8208_ch03.indd 65 11/12/12 6:48 AM11/12/12 6:48 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

RAM (Random Access Machine)

PRAM (Parallel Random Access Machine)

Distributed-Memory vs. Shared-Memory Machines

Interconnection Networks

Processor Organizations

Coarse-Grained Multiprocessors

Additional Terminology

Summary

Chapter Notes

Exercises

4
Models of
Computation

Background Photo Credit © Spectral-Design / Shutterstock
All Images used within the chapter are © 2013 Cengage Learning

C8208_ch04.indd 66C8208_ch04.indd 66 11/16/12 12:24 PM11/16/12 12:24 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In this chapter, we introduce a variety of models of computation that will be used
throughout the book. Initially, we introduce the random access machine (RAM), which

is the traditional sequential model of computation, i.e., the von Neumann model. The
RAM has been an extremely successful model in terms of the design and analysis of
sequential algorithms targeted at traditional sequential computers.

Next, we introduce the parallel random access machine (PRAM), which is the most
popular model for the theoretical study of parallel computation, largely because the PRAM
allows for the design and analysis of parallel algorithms without concern for communication
of data. That is, when designing an algorithm for the PRAM, one may assume that any two
processors can communicate in constant time and that any processor can access any memory
location in constant time. For the PRAM, we present a variety of algorithms to perform
essential operations and use these algorithms to solve a number of fundamental problems.

After introducing the RAM and PRAM, we introduce parallel models of computation
that rely on specific interconnection networks. Each interconnection network consists of a
set of direct connections between pairs of processors that contain on-board memory. The
reader might picture a chessboard in which every square is a processor with memory and
every generic processor is connected to its two horizontal neighbors and its two vertical
neighbors. Such network models include the mesh, tree, pyramid, mesh-of-trees, and hyper-
cube, many of which have been built and sold by a variety of companies.

For these network models, we first present fundamental algorithms, including broadcast-
ing, semigroup operations, and parallel prefix, to name a few. These fundamental algorithms
are used throughout the book to build efficient solutions to higher-level problems. This
method of building efficient solutions to higher-level problems from fundamental algorithms
provides us with the opportunity to point out the relative positives and negatives of these
models with respect to each other, as well as with respect to the RAM and PRAM.

We will then present the Coarse-Grained Multicomputer, a theoretical model that is
designed to represent a simple, practical parallel computing system. Finally, we introduce
modern production systems that are widely deployed. These include the cloud, grid, cluster,
and Network of Workstations (NOW). Such multiprocessor systems are currently used by
tens of thousands of companies, educational institutions, and government laboratories.
These systems are typically used to solve large-scale computationally-intensive or data-
intensive problems and/or to provide solutions to problems that are large in the aggregate.

Algorithms that take advantage of high-end systems, including clusters and NOWs, typ-
ically address problems that come from areas of computational science and engineering. In
addition, numerous solutions to problems on such systems also involve the manipulation of
large databases. These high-end computational systems, which dominate the list of top 500
most powerful computing systems1 in the world, will be included in discussions throughout
the remainder of the text as we present the design and analysis of multiprocessor algorithms
to solve disciplinary problems.

We conclude the chapter by presenting some standard terminology that is used in the
literature and throughout the remainder of the text.

1 The reader is encouraged to review www.top500.org, which lists the 500 most powerful supercomputers in
the world. At that website, the reader will also find interesting analysis and trends in supercomputing.

C8208_ch04.indd 67C8208_ch04.indd 67 11/16/12 12:24 PM11/16/12 12:24 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

68 Chapter 4 Models of Computation

RAM (Random Access Machine)

The random access machine, or RAM, is the traditional sequential model of com-
putation, as shown in Figure 4-1. It has proved to be quite successful since algo-
rithms designed for the RAM tend to perform as predicted on a single processing
element, which is often referred to as a “core” on the processor of a standard
multi-core desktop, laptop, tablet, or even cellular phone system.

FIGURE 4-1 The random access machine (RAM)
is a traditional sequential model of computation.
It consists of a single processing element and
local memory. The processor is able to access any
 location of memory in Θ(1) time through the
memory access unit.

Processor

Memory Access
Unit

Memory

The RAM has the following characteristics.

Memory: Assume that the RAM has M memory locations, where M is a large
finite number. Each memory location has a unique address and is capable of stor-
ing a single piece of data. The memory locations can be accessed in a direct fash-
ion. That is, there is a constant C > 0 such that given any memory address A, the
data stored at address A can be accessed in at most C units of time. Thus, memory
access on a RAM is assumed to take Θ(1) time, regardless of the number of mem-
ory locations or the particular location of a memory cell.

Processor: The RAM contains a single processor, without multiple cores, and
executes a sequential algorithm. That is, the processor issues one instruction at a

C8208_ch04.indd 68C8208_ch04.indd 68 11/16/12 12:24 PM11/16/12 12:24 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

RAM (Random Access Machine) 69

time and each instruction is performed to completion before continuing with the
next instruction. We assume that the processor can perform a variety of fundamen-
tal operations. These operations include loading and storing data between memory
and the processor’s registers, as well as performing basic arithmetic and logical
operations on the contents of the data in the registers.

Memory Access Unit: The memory access unit is used to create a direct connec-
tion between the processor and a memory location.

Execution: Each step of an algorithm consists of three phases, namely, a
read phase, a compute phase, and a write phase. In the read phase, the proces-
sor can read data from memory into one of its registers. In the compute phase,
the processor can perform basic operations on the contents of its registers.
Finally, during the write phase, the processor can send the contents of one of
its registers to a specific memory location. This is a high-level interpretation
of a single step/cycle of an algorithm, corresponding typically to several low-
level assembly or machine instructions. There is no distortion of analysis in
such an interpretation, as several low-level instructions can be executed in
Θ(1) time.

Running Time: We now consider running times for the read, process, and write
phases that comprise each step of an algorithm. It is important to note that each
register in the processor must be of size greater than or equal to log2 M bits in
order to accommodate M distinct memory locations. Due to the fan-out of “wires”
between the processor and memory, any access to memory will require O(log M)
time. Notice, however, that it is often possible for k consecutive memory accesses
to be pipelined to run in O(k + log M) time on a slightly enhanced model of a
RAM. Based on this analysis, and the fact that many computations are amenable to
pipelining for memory access, we assume that both the read and the write phase of
an execution cycle are performed in Θ(1) time.

Now consider the compute phase of the execution cycle. Given a set of
k-bit registers, many of the fundamental operations can be performed in
Θ(log k) time. The reader unfamiliar with these results might wish to consult a
basic book on computer architecture and read about carry-lookahead adders,
which provide an excellent example. Therefore, since each register has
k = Θ(log M) bits, the compute phase of each execution cycle can be performed
in O(log log M) time.

Historically, one assumes that every cycle of a RAM algorithm requires Θ(1)
time. This is due to the fact that neither the O(k + log M) time required for mem-
ory access nor the O(log log M) time required to perform fundamental operations
on registers typically affects the comparison of running time between algorithms.
Further, these two asymptotic terms are relatively small and negligible in practice,

C8208_ch04.indd 69C8208_ch04.indd 69 11/16/12 12:24 PM11/16/12 12:24 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

70 Chapter 4 Models of Computation

so much so that the running time of an algorithm is typically dominated by other
considerations, including the following.

• The amount of data being processed.
• The instructions executed.
• The error tolerance.

It is important to note that this Θ(1) time model is the standard, and that most
authors do not go into the analysis or justification of it. However, this model is
properly referred to as the uniform analysis variant of the RAM. This is the model
that we will assume throughout the book when we refer to the RAM and, as
 mentioned, it is the model that is used in all standard algorithms and data struc-
tures books.

PRAM (Parallel Random Access Machine)

The parallel random access machine, or PRAM, is the most widely utilized
theoretical parallel model of computation. The PRAM was developed with the
intention that it would do for parallel computing what the RAM did for sequen-
tial computing. That is, the PRAM was developed so that parallel algorithms
would run on real parallel computers using resources such as running time,
memory, and number of processors, as predicted by analysis on the PRAM. The
advantage of the PRAM is that it ignores communication and allows the user to
focus on the potential parallelism available in the design of an efficient solu-
tion to the given problem. The PRAM has the following characteristics.
(See Figure 4-2.)

Processors: The PRAM consists of n identical processors, say P1, P2, . . . , Pn, each
of which is a RAM. These processors are often referred to as processing elements,
PEs, or simply processors.

Memory: As with the RAM, there is a common/shared/global memory. All pro-
cessors have access to this shared memory. It is typically assumed that there are
m ≥ n memory locations.

Memory Access Unit: The memory access unit of the PRAM is similar to the
memory access unit of the RAM in that it assumes that every processor can access
any memory location in Θ(1) time.

It is important to note that the processors are not directly connected to each
other. So, if two processors wish to communicate in their effort to solve a prob-
lem, they must do so through the common memory. That is, PRAM algorithms
often treat the common memory as a blackboard, to borrow a term from
Artificial Intelligence. For example, suppose processor P1 maintains the value X
in one of its registers. Then, in order for another processor to access this value,
P1 must write X to a location in the global memory. Once it is there, other

C8208_ch04.indd 70C8208_ch04.indd 70 11/16/12 12:24 PM11/16/12 12:24 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

PRAM (Parallel Random Access Machine) 71

processors that know the location can read this value. Therefore, even though
processors are not directly connected, a pair of processors can share a unit of
data in Θ(1) time.

Execution: As with the RAM, each step of an algorithm consists of three phases,
namely, a read phase, a compute phase, and a write phase. During the read phase,
all n processors can read simultaneously a piece of data from a, not necessarily
unique, memory location. Each processor places the data item into one of its reg-
isters. In the compute phase, every processor can perform a fundamental operation
on the contents of its registers. This phase is identical to that of the RAM. However,
n independent compute operations, one per processor, can be performed simulta-
neously. During the write phase, every processor can simultaneously write an item

FIGURE 4-2 Characteristics of a parallel random access machine (PRAM). The
PRAM consists of a set of identical processing elements connected to a global
memory through a memory access unit. All memory accesses are assumed to take
Θ(1) time.

Control
Unit

Local
Memory
(Registers)

P2

Program

Memory Access
Unit

.

. . . .

. . . .

.

Global Memory

Local
Memory
(Registers)

P1

Local
Memory
(Registers)

PnProcessors

C8208_ch04.indd 71C8208_ch04.indd 71 11/16/12 12:24 PM11/16/12 12:24 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

72 Chapter 4 Models of Computation

from one of its registers to the global memory. Again, the write stage is very simi-
lar to the write stage of the RAM, with the exception that n simultaneous writes,
one per processor, can occur.

It is important to note that conflicts can occur during both the read and write
phases. We will consider resolutions to such conflicts shortly.

Running Time: As with the RAM, we consider the time to perform the read,
compute, and write phases of a cycle. An analysis of the read and write phases
will again show that the time required for each processor to access any of the m
memory locations, due to constraints in fan-in, is O(log m). As discussed
 previously, this can be improved by pipelining to allow k consecutive requests
from all n processors to be handled in O(k + log m) time. Similarly, every pro-
cessor can perform fundamental operations on its own k-bit registers in O(log k)
time. Finally, by assuming a uniform access model, we can assume that every
cycle can be performed in Θ(1) time. Although this uniform access model is
not perfect, it suits most of our needs and is the standard model used in the
literature.

Memory Access (resolving data access conflicts): Conflicts in memory
access can arise during both the read phase and the write phase of a cycle. How
should one handle this? For example, if two processors are simultaneously
 trying to read from the same memory location, should only one succeed? If so,
which one? If two processors are simultaneously trying to write to the same
memory location, i.e., the classic “race condition,” which one, if either, suc-
ceeds? Further, should a processor be notified if it didn’t succeed? After we
define the traditional PRAM variants of read and write access options, we will
discuss ways in which they can be combined in order to produce common
PRAM models.

Read Conflicts: Handling read conflicts is fairly straightforward. Two basic
models exist.

 1. Exclusive Read (ER). The definition of an ER PRAM states that only one
processor is allowed to read from a given memory location during a cycle. That
is, it is considered an illegal instruction if at any point during the execution of a
procedure, two or more processors attempt to read from the same memory lo-
cation. One might alternately think of this as a run-time error. So, while n reads
may occur simultaneously during a read phase, no two simultaneous reads are
permitted to be from the same memory location.

 2. Concurrent Read (CR). The definition of a CR PRAM states that multiple
processors are allowed to read from the same memory location during a
clock cycle. So, while n reads may occur simultaneously during a read phase,
there is no restriction on the memory locations from which the processors
may read.

C8208_ch04.indd 72C8208_ch04.indd 72 11/16/12 12:24 PM11/16/12 12:24 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

PRAM (Parallel Random Access Machine) 73

Write Conflicts: Handling write conflicts is much more complex than handling
read conflicts. A variety of options exist.

 1. Exclusive Write (EW). The exclusive write model permits only one processor
to write to a given memory location during a clock cycle. That is, it is consid-
ered to be a run-time error if a piece of code results in two or more processors
attempting to write to the same memory location during the same clock cycle.
So, while n write operations may occur during the write phase, no two proces-
sors can write to the same memory location.

 2. Concurrent Write (CW). The concurrent write model allows multiple
 processors to attempt to write to the same memory location simultaneously.
That is, as many as n write operations occur during the write phase with no
restriction on which processors write to which memory locations. This brings
up an interesting point. How should one resolve write conflicts? A variety of
arbitration schemes have been used in the literature. We list some of the
 popular ones.

a. Priority CW. The priority CW model assumes that if two or more proces-
sors attempt to write to the same memory location during the same clock
cycle, the processor with the highest priority succeeds. In this case, it is
assumed that processors have been assigned priorities in advance of such
an operation, and that the priorities are unique. Notice that there is no feed-
back to the processors as to which processor succeeds and which
processor(s) fail.

b. Common CW. The common CW model assumes that all processors attempt-
ing a simultaneous write to a given memory location during the same clock
cycle will write the same value. A run-time error occurs otherwise.

c. Arbitrary CW. The arbitrary CW model is quite interesting. This model
assumes that if multiple processors try to write simultaneously to a given
memory location during the same clock cycle, then one of them, arbitrarily,
will succeed.

d. Combining CW. The combining CW model assumes that when multiple
processors attempt to write simultaneously to the same memory location
during the same clock cycle, the values written by these multiple proces-
sors are “magically” combined, and this combined value will be written to
the memory location in question. Popular operations for the combining
CW model include arithmetic functions such as sum and product, logical
functions such as and, or, and xor, and higher-level fundamental opera-
tions such as min and max.

Standard PRAM Models. Now that we have defined some of the common
ways in which reads and writes are arbitrated during the read and write phases

C8208_ch04.indd 73C8208_ch04.indd 73 11/16/12 12:24 PM11/16/12 12:24 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

74 Chapter 4 Models of Computation

of an operation, respectively, on a PRAM, we will discuss the three popular
PRAM models.

 1. CREW (Concurrent Read, Exclusive Write). The CREW PRAM is one of the
most popular models because it is intuitively appealing to assume that concur-
rent reads may occur, but concurrent writes may not occur.

 2. CRCW (Concurrent Read, Concurrent Write). The CRCW PRAM allows
for both concurrent reads and concurrent writes. When we use such a model,
the details of the concurrent write must be specified. Several choices of CW
were discussed above.

 3. EREW (Exclusive Read, Exclusive Write). The EREW PRAM is the most
restrictive form of a PRAM in that it forbids both concurrent reads and con-
current writes. Since only exclusive reads and writes are permitted, it is much
more of a challenge to design efficient algorithms for this model. Further, due
to the severe restrictions placed on the EREW PRAM model, notice that any
algorithm designed for the EREW PRAM will run on the CREW and CRCW
models. Note, however, that an optimal EREW algorithm may not be optimal
on the CREW or CRCW PRAM.

One might also consider an ERCW (Exclusive Read, Concurrent Write) PRAM
to round out the obvious combinations of options for PRAM reads and writes.
However, the ERCW model is rarely mentioned in the literature. Notice that intui-
tively, if one assumes that hardware can perform concurrent writes, it is not intel-
lectually satisfying to assume that concurrent reads cannot be performed.

Discussion. The PRAM is one of the earliest and most widely studied parallel
models of computation. However, it is important to realize that the PRAM is not a
physically realizable machine. That is, while a machine with PRAM-type charac-
teristics can be built with relatively few processors, such a machine could not be
built with an extremely large number of processors. In part, this is due to current
technological limitations in connecting processors and memory. Regardless of the
practical implications, the PRAM is a powerful model for studying the logical
structure of parallel computation under conditions that permit theoretically opti-
mal communication. Therefore, the PRAM offers a model for exploring the limits
of parallel computation, in the sense that the asymptotic running time of an opti-
mal PRAM algorithm should be at least as fast as that of an optimal algorithm on
any other architecture with the same number of processors. It is worth noting that
there are some exceptions to this last statement, but they are outside the scope of
this book.

The great speed that is available through an efficient use of a PRAM is primar-
ily due to the fact that the PRAM ignores processor-to-memory communication

C8208_ch04.indd 74C8208_ch04.indd 74 11/16/12 12:24 PM11/16/12 12:24 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

PRAM (Parallel Random Access Machine) 75

costs. This is because any two processors can communicate in Θ(1) time through
the shared memory, as follows.

a. A source processor writes a data value to a predetermined memory location.

b. A destination processor reads the data value from the predetermined memory
location.

By contrast, parallel computers based on other architectures may require a
non-constant amount of time for communication between certain pairs of proces-
sors, as the data must be passed step-by-step between neighboring processors as it
travels from a source processor to a destination processor.

EXAMPLES: FUNDAMENTAL ALGORITHMS

Now that we have introduced many of the critical aspects of the PRAM, it is
appropriate to present several fundamental algorithms, along with some basic
analysis of time and space. The first operation we consider is that of broadcast-
ing a piece of information. For example, suppose a particular processor con-
tains a piece of information in one of its registers that is required by all other
processors. We can use a broadcast operation to distribute this information
from the given source processor to all destination processors. The first broad-
cast algorithm we present is targeted at Concurrent Read PRAMs. Note that
this algorithm will not work on Exclusive Read PRAM models.

Concurrent Read (CR) PRAM Broadcast Algorithm
Initial Condition: One processor, Pi, stores a value d in its jth register,
ri, j, that is to be broadcast to all processors.
Exit Condition: All processors store the value d in one of their registers.

Action:

 1. Processor Pi writes the value d from register
ri,j to shared memory location X.

 2. In parallel, all processors read d from shared
memory location X.

 End Broadcast

Step 1 runs in Θ(1) time, assuming that each processor knows whether or
not it is the one broadcasting the data. Step 2 runs in Θ(1) time by using a con-
current read operation. Therefore, the running time of this algorithm is Θ(1),
regardless of the number of processors.

C8208_ch04.indd 75C8208_ch04.indd 75 11/16/12 12:24 PM11/16/12 12:24 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

76 Chapter 4 Models of Computation

Now, consider the broadcast problem for an Exclusive Read PRAM. A simple
modification to the previous algorithm could be made to allow each processor, in
sequence, to read the data item from shared memory location X. However, this
would result in an algorithm that runs in time linear in the number of processors,
which is an inefficient use of the PRAM. That is, given an Exclusive Read PRAM
with n processors, such an algorithm would run in Θ(n) time. Alternately, we could
make multiple copies of the data, one for each processor, and then allow all pro-
cessors to read their respective copies simultaneously. We will take this approach.
The algorithm follows.

Exclusive Read (ER) PRAM Broadcast Algorithm
Assumption: The ER PRAM has n processors.
Initial Condition: One processor, Pi, has the data value d stored in its jth
register, ri, j, that is to be broadcast to all processors.
Exit Condition: All processors have the value d.

Action:

1. Processor Pi writes the value d from register ri,j
to shared memory location X1.

2. For i = 1 to ⎡log2 n⎤, do
 In parallel, processors Pj, j ∈ {1,. . .,2i−1}, do
 read d from Xj
 If j + 2i−1 ≤ n then Pj writes d to xj+2i−1

 End Parallel
 End For
3. Every processor Pi, i ∈ {1,. . .,n}, reads d from Xi.
End Broadcast

This is an example of a recursive doubling procedure. Note that during every
iteration of the For-loop, the number of copies of the item to be broadcast doubles,
either exactly or approximately. In general, such a procedure also implies that the
number of processors that maintain a copy of the data item doubles from one step
of the algorithm to the next. Note that for a PRAM, the number of memory loca-
tions associated with processors that contain a copy of the data doubles during
each successive step. Since each step of reading and writing can be performed in
Θ(1) time, regardless of the number of processors participating in the operation, an
ER PRAM with n processors can perform a broadcast operation in Θ(log n) time.

Next, we consider PRAM algorithms to perform fundamental operations
involving arrays of data. Let’s assume that the input to these problems consists of
an array X = [x1, x2, . . . , xn], where each entry xi might be a record containing
 multiple fields. When there is no confusion, we will make references to the key
fields simply by referring to an entry xi.

C8208_ch04.indd 76C8208_ch04.indd 76 11/16/12 12:24 PM11/16/12 12:24 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

PRAM (Parallel Random Access Machine) 77

A semigroup operation is a binary associative operation. The term binary
implies that the operator ⊗ takes two operands, say xi and xj, as input, and ⊗ is a
well-defined operation for any values of its operands. The result of a semigroup
operation ⊗ on xi and xj is denoted as xi ⊗ xj . The term associative means that
(xi ⊗ xj) ⊗ xk = xi ⊗ (xj ⊗ xk). Note that we do not assume that ⊗ is commutative.
That is, xi ⊗ xj may or may not be equal to xj ⊗ xi . Popular semigroup operators
include max, min, sum, product, and OR. Sometimes we find it easier to present
a concrete example. Therefore, we will choose min as our operator for several of
the semigroup operations that follow. We first consider an efficient algorithm on a
RAM to compute the minimum of a set X.

RAM Minimum Algorithm
Input: Array X.
Output: Minimum entry of X.
Local variables: i, min_so_ far

Action:

 min_so_far = x1
 For i = 2 to n, do
 If xi < min_so_far then min_so_far = xi
 End For
 return min_so_far
End Minimum

The analysis of this algorithm’s running time is fairly straightforward. Given
an array of size n, each entry is examined exactly once, utilizing Θ(1) time per
entry. Therefore, the running time of the algorithm is Θ(n). Further, given an
unordered set of data, this is optimal since if we fail to examine any of the n ele-
ments, we may miss the minimal value and thus produce an incorrect result.
Next, we consider the space requirements of this algorithm. Notice that Θ(n)
space is used to store the array of data, and that the algorithm uses Θ(1) addi-
tional space.

Now consider a semigroup operation for the PRAM. The first algorithm we
present is fairly intuitive. The algorithm uses a bottom-up, level by level, tree-like
computation, as shown in Figure 4-3. The algorithm computes the minimum of
disjoint pairs of items, then the minimum of these disjoint pairs, and so on until the
global minimum has been determined. In Figure 4-4, we show how the processors
cooperate in order to compute the minimum. The reader should note that the pro-
cessing presented in Figure 4-4 performs the computations that are presented in
Figure 4-3. To simplify our presentation, we assume the size of the problem, n, is a
power of 2.

C8208_ch04.indd 77C8208_ch04.indd 77 11/16/12 12:24 PM11/16/12 12:24 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

78 Chapter 4 Models of Computation

4Step 3

Step 0

Step 1

Step 2 15

15

18 15 36 28

28

4

22

22 23 95 4

4

FIGURE 4-3 A bottom-up tree-like computation to compute
the minimum of eight values. The global minimum can be
computed in 3 parallel steps. Each step reduces the total
number of candidates by half since computations are
 performed in a simultaneous fashion throughout one level
of processors at a time, from leaves to root.

Time step 1

T 18

Time step 2

Time step 3

15 36 28 22 23 9 4

T 15 28 22 4 22 23 9 4

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

P2 P3 P4P1

T 15 4 22 4 22 23 9 4

1 2 3 4 5 6 7 8

P2P1

T 4 4 22 4 22 23 9 4

1 2 3 4 5 6 7 8

P1

FIGURE 4-4 Another view of the minimum
operation presented in Figure 4-3. This shows
the action of a set of 4 processors. The data
is presented as residing in a horizontal array.
The processors that operate on data are
shown for each of the three time steps.

C8208_ch04.indd 78C8208_ch04.indd 78 11/16/12 12:24 PM11/16/12 12:24 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

PRAM (Parallel Random Access Machine) 79

PRAM Minimum Algorithm (initial attempt)
Assumption: The CR or ER PRAM has n processors.
Input: An array X = [x1, x2, . . . , xn], in which the entries are drawn from a
linearly ordered set.
Output: A smallest entry of X.

Action:

1. Copy X to a temporary array T = [t1,t2,. . .,tn].
2. For i = 1 to log2 n, do
 In parallel, processors Pj, j ∈ {1,. . .,n/2i}, do
 a. Read t2j−1 and t2j
 b. Write min {t2j−1,t2j} to tj
 End Parallel
 End For
3. If desired, broadcast t1 = min {x1,x2,. . .,xn}
End Minimum

Step 1 of the algorithm runs in constant time since all processors Pj can, in
parallel, copy an element in Θ(1) time. That is, every processor can execute a state-
ment of the form tj ← xj in constant time. Notice that if we do not care about
 preserving the input data, then we could omit Step 1. Step 2 runs in Θ(log n) time.
This step performs the bottom-up, tree-type operation of computing pairwise
 minima, then minima of minima, and so forth. The broadcast operation can be
performed in Θ(1) time on a CR PRAM and in Θ(log n) time on an ER PRAM.
Thus, the algorithm runs in Θ(log n) total time.

However, time is not the only measure of the quality of an algorithm.
Sometimes we care about the efficient utilization of additional resources. We
define a measure that considers both running time and productivity of the proces-
sors, as follows.

Definition: Let Tpar(n) be the time required for an algorithm on a parallel
 machine with n processors. The cost of such an algorithm is defined as
cost = n × Tpar(n), which represents the total number of cycles available during
the execution of the given algorithm.

Since n processors are available in the preceding PRAM algorithm to deter-
mine the minimum value of an array, the cost of the algorithm is
n × Θ(log n) = Θ(n log n). That is, during the time that the algorithm is execut-
ing, the machine has the capability of performing Θ(n log n) operations, regard-
less of how many operations it actually performs. Since the machine has the

C8208_ch04.indd 79C8208_ch04.indd 79 11/16/12 12:24 PM11/16/12 12:24 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

80 Chapter 4 Models of Computation

capability of performing Θ(n log n) operations, and the problem can be solved
with Θ(n) operations on a RAM, we know that this PRAM algorithm is not
cost-optimal.

Let’s consider how we might improve this algorithm. In order to improve the
cost of the algorithm, we might consider either reducing the number of processors,
reducing the running time, or both. We might argue that with the model we have
defined, we cannot combine more than a fixed number of data values in a proces-
sor during one clock cycle. Therefore, it must take a logarithmic number of clock
cycles to combine the input data. Since our argument suggests that Θ(log n) time
is required, let’s consider reducing the number of processors. So, consider the
question of how many processors are required in order to obtain a cost-optimal
algorithm without sacrificing the running time. That is, assuming that the running
time remains at Θ(log n), what is the value of P, the number of processors, that
will yield P × Θ(log n) = Θ(n)? The answer to this query is that the number of
processors must be P = Θ(n/log n).

The algorithm that follows shows how to utilize P = Θ(n/log n) processors in
order to determine the global minimum of n values in Θ(log n) time on a PRAM.
Given a parallel architecture, where the processors can store more than a constant
amount of data, the algorithm that follows will serve as an illustration of a hetero-
geneous fine-grained/coarse-grained algorithmic paradigm. Specifically, such an
approach typically includes the following steps.

• An initial RAM algorithm that is run simultaneously on all processors.

• A “fine-grained” algorithm that operates on a single value per processor.

In addition, at times there is a final pass that executes a RAM algorithm simul-
taneously on all processors. See Figures 4-5 and 4-6. To simplify our presentation,
we assume that n = 2k for some positive integer k. Note that if this assumption is
not true, minor modifications can be made to the algorithm that do not affect the
asymptotic running time.

Processors:

Memory:

. . .

.

P1

x1 x2 xnxlog n+1xlog n x2 log n xn-log n+1

P2 Pn/log n

FIGURE 4-5 Improving the performance of a PRAM algorithm by
requiring each of n/log n processors to be responsible for log n
data items.

C8208_ch04.indd 80C8208_ch04.indd 80 11/16/12 12:24 PM11/16/12 12:24 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

PRAM (Parallel Random Access Machine) 81

PRAM Minimum Algorithm (efficient and cost-optimal)
Assumption: The ER or CR PRAM has n/log2 n processors.
Input: An array X = [x1, x2, . . . , xn], drawn from a linearly ordered set.
Output: A smallest entry of X.

Action:

1. Conceptually partition the data into n/log2 n
 disjoint sets of log2 n items each. In parallel,

 every processor Pj computes tj = min5xi6j log2 ni=(j−1)log2 n+1
 using an optimal RAM algorithm, given previously.

Since the data set operated on by Pj has size
Θ(log n), this operation runs in Θ(log n) time.

2. Use the previous PRAM algorithm to compute
min{t1,t2,. . .,tn/log

2
 n} with n/log2 n processors in

Θ(log (n/log n)) = Θ(log n) time.
End Minimum

The algorithm just described uses asymptotically fewer processors than
there are data items of concern. This is an approach that we utilize throughout

P1

x1 xlog n

. . . P2

t1 t2

min{t1, t2, . . . , tn/log n}

tn/log n

Pn/log n

P1
. . . P2 Pn/log n

. . .

FIGURE 4-6 An algorithm for computing the minimum
of n items with n/ log2 n processors on a PRAM.
Initially, every processor sequentially determines the
minimum of the log2 n items that it is responsible for.
Once these n/ log2 n results are known, then the
 minimum of these values can be determined in
Θ(log (n/log n)) = Θ(log n − log log n) = Θ(log n)
time on a PRAM with n/ log2 n processors.

C8208_ch04.indd 81C8208_ch04.indd 81 11/16/12 12:24 PM11/16/12 12:24 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

82 Chapter 4 Models of Computation

the text when considering cost-optimal or cost-efficient algorithms. In particu-
lar, we divide the data items over the number of processors. For example, sup-
pose there are P processors and D data items. Then we assume every processor
is responsible for approximately D/P items. Each processor first works on its
set of D/P items in a sequential manner. After the sequential phase of the algo-
rithm completes, each processor has reduced its information to only one item of
concern, which in this case is the minimum of the items for which the processor
is responsible. Finally, one item per processor is used as input into the simple,
non-optimal parallel algorithm to complete the task. This may seem to be a
 contradiction, but we will see several times in this book that a non-optimal
algorithm can be a key tool in designing an optimal algorithm. Notice that
this final parallel operation uses P items with P processors. Therefore, this
PRAM algorithm runs in Θ(log n) time on n/log2 n processors. This results in a
cost of n/log2 n × Θ(log n) = Θ(n), which is optimal. Therefore, we have a cost-
optimal PRAM algorithm for computing the minimum entry of an array of size
n that also runs in time-optimal Θ(log n) time.

Now, let’s consider the problem of searching an ordered array on a PRAM.
That is, given an array X = [x1, x2, . . . , xn] in which the elements are in some prede-
termined order, construct an efficient algorithm to determine if a given query ele-
ment q is present. Without loss of generality, let’s assume that our array X is given
in nondecreasing order. If q is present in X, we will return an index i such that
xi = q. Notice that i is not necessarily unique.

First, let’s consider a traditional binary search on a RAM. Given an ordered set
of data, we have previously discussed how to perform a binary search in worst-
case Θ(log n) time (see Chapter 2, “Induction and Recursion”). Using this result as
the base case for the parallel models, we know that we are aiming for algorithms
with a worst-case total cost of Θ(log n), which is an extremely tight bound. The
first model we consider is the CRCW PRAM.

CRCW PRAM Algorithm to Search an Ordered Array (initial attempt)
Assumption: We use an arbitrary CRCW PRAM of n processors.
Input: An ordered array, X = [x1, x2, . . . , xn], and search_value, the value
sought
Output: succeeds, a flag indicating whether or not the search succeeds, and
location, an index at which the search succeeds, if it does

Action:

 Processor P1 initializes succeeds = false
 In parallel, every processor Pi does the following.
 1. read search_value and xi {Note that CR is used

to read search_value.}
 2. If xi = search_value then

C8208_ch04.indd 82C8208_ch04.indd 82 11/16/12 12:25 PM11/16/12 12:25 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

PRAM (Parallel Random Access Machine) 83

 succeeds = true
 location = i
 End If
 End Parallel
End Search

When this CRCW algorithm terminates, the value of the Boolean variable suc-
ceeds will be true if and only if search_value is found in the array. In the event that
the item is found, the variable location is set to a position in the array where
search_value exists. This position need not be unique, as there might be duplicate
data values in the array. Now let’s consider the running time of the algorithm.
Notice that the initial concurrent read runs in Θ(1) time. The time for every pro-
cessor simultaneously to compare its element to the query element is Θ(1). Finally,
the two concurrent write operations run in Θ(1) time. Notice that the concurrent
writes exploit the arbitrary property of the CRCW PRAM. Therefore, the total
running time of the algorithm is Θ(1). Consider the cost of the algorithm on this
architecture. Since Θ(1) time is required on a machine with n processors, the total
cost is a less-than-wonderful Θ(n). Next, we present an alternative algorithm that
is somewhat slower but more cost-efficient than the previous algorithm.

CRCW PRAM Algorithm to Search an Ordered Array (cost efficient)
Assumption: The arbitrary CRCW PRAM has f (n) = O(n) processors. For
simplicity, we assume that f (n) is a factor of n.
Input: An ordered array X = [x1, x2, . . . , xn], and search_value, the item to
search for

Action:

 Processor P1 initializes succeeds = false.
 In parallel, every processor Pi conducts a binary

 search on the subarray cx(i−1)n
f(n) +1

,x(i−1)n
f(n) +2

,. . . ,x in
f(n) d

End Search

The algorithm above is interesting in that it presents the user with a continuum
of options in terms of the number of processors utilized and the effect that this
number will have on the running time and total cost. So, if a primary concern is
minimizing cost, notice that by using one processor, the worst case running
time will be Θ(log n) and the cost will be Θ(log n), which is optimal. In fact,
with the number of processors set to one, notice that this is the RAM binary
search algorithm.

Now, suppose we are concerned with minimizing the running time. Then the
more processors we use, the better off we are, although using more than n

C8208_ch04.indd 83C8208_ch04.indd 83 11/16/12 12:25 PM11/16/12 12:25 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

84 Chapter 4 Models of Computation

 processors has no positive effect on the running time. In the case of an n processor
system, we have already seen that the running time is Θ(1). In general, the
 worst-case running time of this algorithm is Θ(log (n/f (n))), and the cost is
Θ(f (n) log(n/f (n))). In particular, notice that if we use f (n) = Θ(log n) processors,
the worst-case running time will be Θ(log n), as in the case of the RAM, but pre-
sumably with a smaller constant of proportionality. In other words, this PRAM
implementation should run significantly faster if other factors such as chip speed,
optimized code, and so on, are the same. The cost of Θ(log2 n) will be very good,
though not quite optimal.

Distributed-Memory vs. Shared-Memory Machines

Multiprocessor machines, i.e., parallel computing systems, are typically con-
structed with some combination of shared and distributed memory. When we
 discuss such memory, it is important to note that we are discussing traditional, off-
chip, main memory. This memory is sometimes referred to as secondary memory
to differentiate it from the various on-chip or near-chip cache memories.

A shared-memory machine provides physically shared memory for the proces-
sors, as shown on the left side of Figure 4-7. For small shared-memory machines,

Memory Modules

Interconnection Network

M1 M2 Ml

P1

M1

P2

M2

Pk

Mk

P1 P2 Pk

Interconnection N
etw

ork

FIGURE 4-7 A traditional shared-memory machine is presented on
the left, in which all k processors operate through an interconnec-
tion network and have equal unit-time access to all l memory
 modules. A traditional distributed-memory machine is presented on
the right in which each of the k processing elements, i.e., processor
and memory pairs, communicates with every other processing
element through an interconnection network.

C8208_ch04.indd 84C8208_ch04.indd 84 11/16/12 12:25 PM11/16/12 12:25 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Interconnection Networks 85

networks can be constructed so that every processor can access every memory
location in the same amount of time. Unfortunately, such machines cannot cur-
rently scale to large numbers of processors while preserving uniformly fast access
time to memory.

In a distributed-memory machine, each processing element only has access to
its own private/local memory, as shown on the right side of Figure 4-7. That is, in
terms of the models discussed in this book, distributed-memory machines do not
have global memory. Instead, one can think of the total memory of a distributed-
memory multiprocessor system as being distributed among the processors. On
such machines, communication links are provided in order to allow processors to
communicate with each other. This set of communication links defines the archi-
tecture’s interconnection network. So, in order for two processors that are not
directly connected by a communication link to communicate, they must send data
through intermediate processors that form a path between the two processors of
interest. That is, processors that need to communicate must send messages to each
other through their architecture’s interconnection network, which consists of the
processing elements and their processor-to-processor bidirectional communica-
tion links.

Specifically, a distributed-memory parallel computer consists of a set of pro-
cessing elements, i.e., processor-memory pairs, and a well-defined set of bidirec-
tional interconnections between these processing elements. So, if processor Pi
needs a copy of some information stored in the memory of processor Pj, then this
information must be transported from processor Pj to processor Pi. This operation
can be performed by having Pi initiate a request for information, which is sent
through the interconnection network to processor Pj, followed by Pj sending the
requested information back through the interconnection network to processor Pi.
Such a communication can also be performed by a well thought-out algorithm in
which processor Pj simply sends the information through the interconnection net-
work to Pi without receiving such a request.

In particular, it is very important to note that transporting a message from Pi to
Pj might involve sending the message from Pi to Pa to Pb to Pc to . . . to Pj, where
consecutive pairs of processors in the sequence are directly connected by commu-
nication links. That is, it is important to recognize that there is no guarantee that Pi
and Pj are directly connected by the interconnection network, though there is a
guarantee that in a distributed-memory parallel computer there exists at least one
path between every pair of processors.

Interconnection Networks

In this section, we consider distributed-memory machines, which are con-
structed as processor-memory pairs connected by communication links to each
other in a well-defined pattern. As stated in the previous section, a distributed-
memory machine consists of a set of processors, where every pair of processors

C8208_ch04.indd 85C8208_ch04.indd 85 11/16/12 12:25 PM11/16/12 12:25 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

86 Chapter 4 Models of Computation

need not be connected, but in which there must exist a path between every pair
of processors.

These machines also have a global control unit, which is used to broadcast
instructions simultaneously to all processors in the network. Once an instruction is
broadcast, it is executed by every processor simultaneously before the next instruc-
tion is issued. An important form of an instruction is a conditional instruction,
which might act as a mask in terms of which processors perform operations of
substance. For example, an instruction might be of the form “if the contents of
register A is even, then add the contents of register B to the contents of register C
and put the result in register D.” So, given a distributed-memory system with n
processors, then all n processors will execute that instruction during the same
clock cycle. However, only a processor with an even value stored in register A will
add the contents of its register B to the contents of its register C and put the result
in its register D. So, if 1 ≤ m ≤ n processors have an even value stored in register A,
then m processors will simultaneously update the contents of their respective reg-
isters D. That is, m updates will occur simultaneously and depending on the values
of registers B and C in each of these m processors, this might result in m different
values being computed and stored throughout the distributed-memory machine.

These processor-memory pairs are often referred to as processing elements, or
PEs, or sometimes just as processors, when this term will not cause confusion.
The efficient use of an interconnection network to route data on a multiprocessor
machine is often critical in the development of an efficient parallel algorithm.
Interconnection networks can be characterized in a variety of ways. Some of the
terminology used for this purpose follows.

 1. Degree of the network: The term degree comes from graph theory. The
 degree of a processor is defined to be the number of bidirectional communica-
tion links attached to the processor. That is, the degree of processor A is the
number of other processors to which processor A is directly connected. If we
think of processors as corresponding to vertices and the communication links
as corresponding to edges in an undirected graph, the degree of a processor is
the degree of the corresponding vertex. Similarly, the degree of a network is the
maximum degree of any processor in the network. Naturally, networks of high
degree become very difficult to manufacture, even though high degree net-
works can be constructed to increase the efficiency of large data movement.
From a practical point of view, with current technology, it is desirable to use
networks of low degree whenever possible. In fact, if we are concerned with
scaling the network to extremely large numbers of processors, then a small
fixed degree is highly desirable.

 2. Communication diameter: The communication diameter of a network is
defined to be the maximum of the minimum distance between any pair of pro-
cessors. That is, the communication diameter represents the longest path
between any two processors, assuming that a shortest path between processors

C8208_ch04.indd 86C8208_ch04.indd 86 11/16/12 12:25 PM11/16/12 12:25 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Interconnection Networks 87

is always chosen. Therefore, a distributed-memory machine with a low com-
munication diameter is highly desirable, in that it allows for efficient commu-
nication between arbitrary pairs of processors.

 3. Bisection width: The bisection width of a network is defined to be the mini-
mum number of wires that have to be removed in order to disconnect the
 network into two approximately equal size subnetworks. In general, machines
with a high bisection width are more costly to build, but they provide the
 possibility of moving large amounts of data efficiently.

 4. I/O bandwidth: The input/output bandwidth is not a primary concern in
terms of the algorithms we consider in this book, as we typically assume that
the data is already in the machine before our algorithms are initiated. However,
when considering the construction of a real machine, I/O bandwidth is cer-
tainly important.

 5. Running time: When comparing models of computation, it is often enlight-
ening to consider the time required to perform fundamental operations. Such
operations include the following.

• Semigroup computations, such as min, max, sum, and so forth.
• Prefix computations, which will be defined later.
• Fundamental data movement operations, such as broadcast and sort.

 In fact, as we introduce some of the network models below, we will consider
the efficiency of such routines.

To summarize, we want to design the interconnection network, i.e., network of
processors, of a distributed-memory machine with certain characteristics. In order
to reduce the cost of building a processor, we would like to minimize the degree of
the network. In order to minimize the time necessary for individual messages to be
sent long distances, we want to minimize the communication diameter. Finally, in
order to reduce the probability of contention between multiple messages in the
system, we want to maximize the bisection width. Unfortunately, it is often diffi-
cult to balance these design criteria, which may be in conflict. For example, a
small network degree tends to result in a small bisection width and a large com-
munication diameter. In fact, we also would prefer to use a simple design, as sim-
plicity reduces the hardware and software design costs. Further, we would like the
network embedded in the machine to be scalable, so that machines of various sizes
can be manufactured in an economically feasible fashion.

Note that for the majority of parallel models of computation, it is assumed that
all processors in a given model are identical. That is, all processors in a given par-
allel model have the identical register/cache/memory structure, internal bus, speed
of computation, and so forth. It is also assumed that all processors have the same
number of interconnection ports, even if they are not all used for some processors.
In addition, it is assumed that the time it takes for data to travel across all commu-
nication links is identical.

C8208_ch04.indd 87C8208_ch04.indd 87 11/16/12 12:25 PM11/16/12 12:25 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

88 Chapter 4 Models of Computation

Processor Organizations

In this section, we introduce a variety of distributed-memory network models. A
network model consists of a set of processing elements and a well-defined set of
links that connect the processors so that there are no isolated processors. These
network models are characterized by i) the interconnection scheme between the
processors, and ii) the fact that the memory is distributed among the processors.
Again, it is very important to recognize that these network models are distributed-
memory systems and do not have any shared memory. In particular, it is the inter-
connection pattern that distinguishes these distributed-memory architectures from
one another.

As we introduce several such network models, we will consider some of the
measures discussed in the previous section. Notice, for example, that the commu-
nication diameter often serves as a limiting factor in the running time of an
 algorithm. This measure serves as an upper bound on the time required for an arbi-
trary pair of processors to exchange information, and therefore as a lower bound on
the running time of any algorithm that requires global exchanges of information.

Terminology: We say that two processors in a network are neighbors if and only if
they are directly connected by a communication link. We assume these communica-
tion links are bidirectional. That is, if processor A and processor B are connected by
a communication link, we assume that using this link, processor A can send data to
processor B and, simultaneously, processor B can send data to processor A. Since
sorting is a critical operation in network-based parallel machines, we need to define
what it means to sort on such architectures. Suppose we have a list, X = [x1, x2, . . . , xn],
with entries stored in the processors of a distributed-memory machine. In order for
the members of X to be considered ordered, there must be a meaningful ordering not
only of those entries that are stored in the same processor, but also of entries in dif-
ferent processors. We assume that there is an ordering of the processors. The nota-
tion R(i) is used to denote the ranking function for the processor labeled i. We say
the list X is in ascending order if i < j implies

 1. xi ≤ xj, and

 2. if xi is stored in Pr and xj is stored in Ps, then either r = s or R(r) < R(s).

Similar statements can be made for data stored in descending order.

Linear Array

A linear array of size n consists of a string of n processors, P1, P2, . . . , Pn, where
every generic processor is connected to its one or two neighbors (see Figure 4-8).
Specifically, processor Pi is connected to its two neighbors, processors Pi−1 and
Pi+1, for all 2 ≤ i ≤ n − 1. However, the two end processors, P1 and Pn, are each
only connected to one neighbor. Given a linear array of size n, let’s consider some
of the basic measures.

C8208_ch04.indd 88C8208_ch04.indd 88 11/16/12 12:25 PM11/16/12 12:25 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Processor Organizations 89

P1 P2 P3 . . . Pn�1 Pn

FIGURE 4-8 A linear array of size n.

Since n − 2 processors have degree 2 and two processors have degree 1, the
degree of the network is 2.

Now consider the communication diameter, i.e., the maximum over the mini-
mum distances between any two processors. Consider the minimum number of
communication links that need to be traversed in order for processors P1 and Pn to
exchange information. The only way that a piece of data originating in P1 can
reach processor Pn is by traversing through the other n − 2 processors. Therefore,
the communication diameter is Θ(n). This is important in that it tells us that time
linear in the number of processors is required to compute any function for which
all processors may need to know the final answer. Now consider the minimum
time required for a computation to be performed on two arbitrary pieces of data.
Notice that information from processors P1 and Pn could meet in processor P⎡n/2⎤.
However, this still requires ⎡n/2⎤ − 1 communication steps. Therefore, time linear
in the number of processors is required, even in the best case, to solve a problem
that requires arbitrary pairs of data to be combined.

Finally, we consider the bisection width of a linear array of size n. The bisec-
tion width of a linear array of size n is 1, as the communication link between
 processors Pn/2 and P(n/2)+1 can be severed, and the result would be two linear arrays,
each of size n/2. This is important when one considers an operation, such as sort-
ing, that might require data to move from one side of the linear array to the other.
The bisection width tells us that there is only one line to carry data between each
half of the linear array. This is similar to thinking about moving everyone as effi-
ciently as possible from exotic island A to exotic island B and everyone from exotic
island B to exotic island A if there exists only a one lane bridge between A and B.
So, if there are n/2 people on island A and n/2 people on island B, then regardless
of the algorithm, it must take at least time proportional to n to accomplish this task.

It is important to note that some of the terminology introduced in the last sec-
tion can be used to determine lower bounds on time required to solve a problem.
The distinction between a lower bound on the time to solve a problem and the
lower bound on the running time of an algorithm is critical.

A lower bound on the time to solve a particular problem requires one to prove
that a solution to the problem requires a minimum amount of time. When attempt-
ing to prove a lower bound on the time to solve a problem, one should not consider
particular algorithms for solving the problem. One should consider properties of
the problem, including input, output, required computations, number of proces-
sors, interconnection network, and so forth.

A lower bound on the running time of an algorithm requires a proof that the
algorithm requires a certain amount of time.

C8208_ch04.indd 89C8208_ch04.indd 89 11/16/12 12:25 PM11/16/12 12:25 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

90 Chapter 4 Models of Computation

Understanding this distinction is important when one is considering efficient
solutions to a problem. So, if we are able to construct an algorithm with a running
time that matches the lower bound on the time to solve a problem, then we know
that this algorithm is asymptotically optimal. That is, no other algorithm could
possibly be asymptotically faster. Conversely, if the best algorithm we can con-
struct to solve a problem does not match the lower bound for the running time to
solve the problem, then we cannot state that the algorithm is asymptotically opti-
mal. It may be that we are just not bright enough to provide an asymptotically
superior algorithm. Then again, it may be that we are not bright enough to prove a
higher lower bound on the running time to solve the problem.

Now let’s consider some basic operations on a linear array of size n. Assume
that a set of data, X = [x1, x2, . . . , xn], is distributed so that data element xi is stored
in processor Pi. First, we consider the problem of determining the minimum ele-
ment of array X. This can be done in several ways.

Our first approach is one in which all the data march left in lockstep fashion, and
as each data item reaches processor P1, this leftmost processor updates the running
minimum, as shown in Figure 4-9. That is, during the first step of the algorithm,

Initial
Configuration

3 4 2 6 1 5

P1 P2 P3 P4 P5 P6

Step 1 4 2 6 1 5

Step 2 2 6 1 5

Step 3 6 1 5

Step 4 1 5

Step 5 5

r
min

= 3

r
min

= 3

r
min

= 2

r
min

= 2

r
min

= 1

r
min

= 1

FIGURE 4-9 Computing the minimum of n items initially
distributed one per processor on a linear array of size n.
Notice that the data is passed in lockstep fashion to the
left during every time step. The leftmost processor, P1,
keeps the running minimum.

C8208_ch04.indd 90C8208_ch04.indd 90 11/16/12 12:25 PM11/16/12 12:25 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Processor Organizations 91

processor P1, viewed as the leftmost processor in the linear array, sets a register that
we call running_min to x1. During the second step of the algorithm, simultaneously
and in lockstep fashion, processors P2, . . . , Pn each send their data elements to the
left. Now processor P1 sets running_min = min {running_min, x2}. The procedure
continues so that after i steps, processor P1 has the value of min {x1, . . . , xi}.
Therefore, after n steps, the minimum of X is stored in processor P1.

Now, let’s assume that every processor needs to know this minimum value,
which is currently stored in processor P1. Initially, processor P1, viewed as the left-
most processor in the linear array, can send this value to processor P2, its right neigh-
bor. If this value continues to move to the right during each step, then after a total of
n − 1 such steps, all n processors will know the minimum of X. Therefore, the mini-
mum can be determined and distributed to all processors in Θ(n) time on a linear
array of size n. Note that this result holds true, in fact, for any semigroup operation.

Notice that computing and distributing the result of a semigroup operation on
a linear array of size n runs in Θ(n) time, which results in a cost of n × Θ(n) = Θ(n2).
This is not very appealing, considering that such problems can be easily solved in
Θ(n) time on a RAM. Therefore, we should consider whether or not it is possible
to do better on a linear array of size n. Notice that we simply cannot do better, due
to the Θ(n) communication diameter.

Next, consider whether or not we can reduce the communication diameter by
reducing the number of processors and arrive at a cost-optimal algorithm. We have
seen that if we use only one processor, given that all n data items are stored in the
processor, then computing the minimum of n items can be performed in Θ(n) time,
which would yield an optimal cost of Θ(n). However, this is not desirable if we
wish to use a parallel computer, since the running time has not been reduced over
that of the RAM. So, while we have considered the two extremes in terms of num-
bers of processors, i.e., both 1 and n, let’s now consider some intermediate value.

What value should we consider? We would like to balance the amount of work
performed by each processor with the work performed by the network. That is, we
would like to balance the number of data elements per processor, since the local
minimum algorithm runs in time linear in the number of elements, with the num-
ber of processors, since the communication diameter is linear in the number of
processors. Therefore, we consider a linear array of size n1/2, where each processor
is responsible for n1/2 items, as shown in Figures 4-10 and 4-11.

FIGURE 4-10 Partitioning the data in preparation for computing the
minimum of n items initially distributed on a linear array of size n1/2
in such a fashion that each of the n1/2 processors stores n1/2 items.

Processors:

Data:

. . .

.

P1

x1 x2 xnxn1/2+1xn1/2 x2n1/2 xn–n1/2+1

P2 Pn1/2

C8208_ch04.indd 91C8208_ch04.indd 91 11/16/12 12:25 PM11/16/12 12:25 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

92 Chapter 4 Models of Computation

An algorithm to compute the minimum of n data items, evenly distributed on
a linear array of size n1/2, can be constructed with two major steps. First, each pro-
cessor runs the standard sequential semigroup algorithm on its own set of data.
This step runs in time linear in the number of data elements stored in the proces-
sor. Next, the previous linear array semigroup algorithm is run on these n1/2 partial
results. At the end of the parallel algorithm, the final global result will be known.
Note that the final result is the minimum of the n1/2 local minima. Therefore, the
running time of this hybrid algorithm is dominated by the Θ(n1/2) time to perform
the RAM algorithm simultaneously on all processors, followed by the Θ(n1/2) time
to determine the minimum of these n1/2 local minima, distributed one per proces-
sor on a linear array of size n1/2. Hence, the running time of the algorithm is Θ(n1/2),
which results in an optimal cost of Θ(n).

Note that utilizing more processors does not always result in a faster algo-
rithm. This medium-grained algorithm that processes n data items with n1/2 pro-
cessors is actually faster than the earlier, fine-grained algorithm that processes n
data items with n processors for computing the minimum on a linear array.

Suppose we have a linear array of size n, but that the data does not initially
reside in the processors. That is, suppose we have to input the data as part of the
problem. For lack of a better term, we will call this model an input-based linear
array. Assume that the data is input to the leftmost processor, i.e., processor P1,
and only one piece of data can be input per unit time. Assume that the data is
input in reverse order and that at the end of the operation, every processor Pi

P1
P2

x1 xn 1/2.

. . .

. . . t1“local” min: t2

t2 t3

rmin = t1

. . .

P1 P2
. . . Pn 1/2

Pn 1/2

tn 1/2

FIGURE 4-11 Computing the minimum of n items initially
 distributed on a linear array of size n1/2 in such a fashion that
each of the n1/2 processors stores n1/2 items. In the first step,
every processor sequentially computes the minimum of the n1/2
items that it is responsible for. In the second step, the minimum
of these n1/2 minima is computed on the linear array of size
n1/2 by the typical lockstep algorithm.

C8208_ch04.indd 92C8208_ch04.indd 92 11/16/12 12:25 PM11/16/12 12:25 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Processor Organizations 93

must know both xi and the minimum of X. This can be accomplished by the fol-
lowing algorithm.

In the first step, processor P1 takes as input xn and initializes running_min to xn.
In the next step, processor P1 sends xn to processor P2, inputs xn−1, and assigns
running_min = min{running_min, xn−1}. In general, during each step of the algo-
rithm, the data continues to march in lockstep fashion to the right, and the leftmost
processor continues to store the running minimum, as shown in Figure 4-12. After
n steps, all processors have their data element, and the leftmost processor stores
the minimum of all n elements of X. As before, processor P1 can then broadcast

FIGURE 4-12 Computing the minimum on an input-based
linear array of size 6. During Step 1, processor P1 takes as
input x6 = 5 and initializes running_min to 5. During Step 2,
processor P1 sends x6 to processor P2, inputs xn−1 = 1, and
assigns running_min = min(running_min,xn−1) which is the
minimum of 5 and 1. The algorithm continues in this fashion
as shown, sending data to the right in lockstep fashion while
the first processor keeps track of the minimum value of the
input data.

Initial
Configuration

3,4,2,6,1,5

P1 P2 P3 P4 P5 P6

Step 1 3,4,2,6,1 5

Step 2 3,4,2,6 1 5

Step 3 3,4,2 6 1 5

Step 4 3,4 2 6 1 5

Step 5 3 4 2 6 1 5

3Step 6 4 2 6 1 5

r
min

= 5

r
min

= 1

r
min

= 1

r
min

= 1

r
min

= 1

r
min

= 1

r
min

= 1

C8208_ch04.indd 93C8208_ch04.indd 93 11/16/12 12:25 PM11/16/12 12:25 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

94 Chapter 4 Models of Computation

the minimum to all other processors in n − 1 additional steps. Therefore, we have
an optimal Θ(n) time algorithm for the input-based linear array to take in all input
and have every processor Pi store both xi and the minimum of X.

We introduced this input-based variant of the linear array so that we could
extrapolate an algorithmic strategy. Suppose we wanted to emulate this input-
based linear array algorithm on a traditional linear array of size n, in which the
data is initially stored in the array.

This could be done with a tractor-tread algorithm, where the data moves as one
might observe on the tractor-tread of many large construction vehicles or tanks. In
the initial phase, view the data as marching to the right, i.e., riding the top of the
tractor tread, so that when a data element hits the right wall, it turns around and
begins its march along the bottom of the tractor tread to the left (see Figure 4-13).

FIGURE 4-13 A tractor-tread algorithm. Data in the linear
array moves to the right until it hits the right wall, where it
reverses itself and starts to march to the left. Once the data
hits the left wall, it again reverses itself. A revolution of the
tractor-tread algorithm is complete once the initial data
resides in its original set of processors. Given a linear
array of size n, this algorithm allows every processor to
view all n data items in Θ(n) time.

Step 1

Initial
Data

Step 2

Step 3

3 4 2 6 1
5

5 1

5 1 6

Step 5 5

3

3 4 2 6

3 4 2

3 4

Step 4
5 1 6 2

6 2 4 3

1

1

6 2 4

3

5

4

Step 6

2

6

5 1

P
1

P
2

P
3

P
4

P
5

P
6

C8208_ch04.indd 94C8208_ch04.indd 94 11/16/12 12:25 PM11/16/12 12:25 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Processor Organizations 95

That is, every processor initially starts by sending its data to the right, with the
exception of the rightmost processor. When the rightmost processor receives data,
during the next step, the rightmost processor will send the data to the left so that the
data item can begin its journey to the left. When a data element hits the left wall,
i.e., a data element is taken into the leftmost processor, it will again reverse direc-
tion and begin its journey to the right.

In general, every processor will continue to pass all the data that it receives in
the direction it is going, with the exception of the first and last processors, which
emulate the walls in a goalless game of air hockey, and serve to reverse the direc-
tion of data. So, after the initial n − 1 steps, notice that processor P1 will store a
copy of xn, processor P2 will store a copy of xn−1, and so forth. That is, the data is
now positioned so that processor P1 is prepared to accept as “input” xn, as in the
input-based linear array algorithm. In fact, the input-based linear array algorithm
can now be emulated with a loss in running time of these initial n − 1 steps.
Therefore, the asymptotic running time of the algorithm remains as Θ(n).

Notice that this tractor-tread algorithm is quite powerful. It can be used, for
example, to rotate all of the data through all of the processors of the linear array.
This gives every processor an opportunity to view all of the data. Therefore, such
an approach can be used to allow every processor to compute the result of a semi-
group operation in parallel. Notice that we have traded off an initial setup phase
for the postprocessing broadcast phase. However, as we shall soon see, this
approach is even more powerful than it might initially appear.

We now consider the very important problem of sorting data. The communica-
tion diameter of a linear array of size n tells us that Ω(n) time is necessary to sort
n pieces of data distributed in an arbitrary fashion one item per processor.
Alternately, by considering the bisection width, we know that in the worst case, if
the n/2 items on the left side of the linear array belong on the right side of the
array, and vice versa, then in order for n items to cross the single middle wire,
Ω(n/1) = Ω(n) time is required.

We will now construct such a time-optimal sorting algorithm for this model. We
first consider a simple algorithm for the input-based linear array of size n. Notice
that the leftmost processor P1 will view all n data items as they come in. If that pro-
cessor retains the smallest data item and never passes it to the right, then at the end of
the algorithm, processor P1 will store the minimum data item. Further, if processor
P2 performs the same minimum-keeping algorithm, then at the end of the algorithm,
processor P2 will store the minimum data item of all n − 1 items that it viewed (see
Figure 4-14). That is, processor P2 would store the minimum of all items with the
exception of the smallest item, which processor P1 never passed along. Therefore, at
the end of the algorithm, processor P2 would store the second smallest data item.2

2 This algorithm can be illustrated quite nicely in the classroom. Each row of students can simulate
this algorithm running on such a machine, where the input comes from the instructor standing in the
aisle.

C8208_ch04.indd 95C8208_ch04.indd 95 11/16/12 12:25 PM11/16/12 12:25 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

96 Chapter 4 Models of Computation

3

5
3,4,2,6,1

3,4,2,6,1,5

3,4,2,6

3,4,2

3,4

3

4

6

P1 P2 P3 P4 P5 P6

1

4

5

2

1

5

6

6

1

1

2 6

5

1 2

5

4 6

3

51 2

4 6

1 2

3 5

51 2 3

64

61 2 3 4

5

1 2 3 4 5 6

5

Initial
Data

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

Step 9

Step 10

Step 11

FIGURE 4-14 Sorting data on an input-based linear
array. Every processor simply retains the item that
represents the minimum value it has seen to date. All
other data continues to pass in lockstep fashion to the
right. Notice that this is a minor generalization of the
minimum algorithm illustrated in Figure 4-12.

C8208_ch04.indd 96C8208_ch04.indd 96 11/16/12 12:25 PM11/16/12 12:25 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Processor Organizations 97

We now have an optimal Θ(n) time algorithm for the input-based linear array
of size n. By using the tractor-tread method, we can emulate this algorithm to pro-
duce a time-optimal Θ(n) time algorithm for a linear array of size n. As an aside,
we should mention that this sorting algorithm can be viewed as a parallel version
of Selection Sort. That is, the first processor views all of the data and selects the
minimum. The next processor views all of the remaining data and selects the mini-
mum, and so forth.

The final algorithm we consider for the linear array is that of computing the
parallel prefix of X = [x1, x2, . . . , xn]. Assume that initially, every processor Pi
stores data element xi. When the algorithm terminates, Pi must store the ith prefix,
x1 ⊗ . . . ⊗ xi, where ⊗ is a binary associative operator. The algorithm follows.

First, we note that processor P1 initially stores x1, which is its final value.
During the first step, processor P1 sends a copy of x1 to processor P2, which com-
putes and stores the second prefix, x1 ⊗ x2. During the second step, processor P2
sends a copy of its prefix value to processor P3, which computes and stores the
third prefix value, x1 ⊗ x2 ⊗ x3. The algorithm continues in this fashion for n − 1
steps, after which every processor Pi stores the ith prefix, as required. It is impor-
tant to note that during step i, the ith prefix is passed from processor Pi to processor
Pi+1. That is, processor Pi passes a single value, which is the result of x1 ⊗ . . . ⊗ xi,
to processor Pi+1. If processor Pi passed all of the components of this result,
x1, . . . , xi, to processor Pi+1, the running time for the ith step would be Θ(i), and
the total running time for the algorithm would therefore be Θ1a n−1

i=1 i2 = Θ(n2).
However, since only one data item is passed during every step, the running time of
this algorithm is Θ(n). Notice that this is optimal for a linear array of size n since
the data entries stored at maximum distance must be combined. In this case, no
argument can be made with respect to the bisection width, since this problem does
not require large data movement.

Ring

A ring is a linear array of processors in which the two end processors are con-
nected to each other, as shown in Figure 4-15. That is, a ring of size n consists of a
linear array of n processors, P1, . . . , Pn, where processors P1 and Pn are connected.
Specifically, processor Pi is connected to its two neighbors, Pi−1 and Pi+1, for
2 ≤ i ≤ n − 1, and processors P1 and Pn are connected to each other.

Let’s examine some of our measures to see what advantages the ring pro-
vides over the linear array. The degree of both networks is 2. The communica-
tion diameter of a ring of size n is approximately n/2, which compares favorably
with the n − 1 of the linear array. However, notice that this factor of approxi-
mately 1/2 is only a multiplicative constant. Thus, both architectures have the
same asymptotic communication diameter of Θ(n). Although the bisection
width does not really make sense in this model, if one assumes that the ring

C8208_ch04.indd 97C8208_ch04.indd 97 11/16/12 12:25 PM11/16/12 12:25 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

98 Chapter 4 Models of Computation

FIGURE 4-15 A ring of size 8. All
processors in a ring are connected
to 2 neighbors.

P1

P7 P3

P5

P4

P2 P8

P6

could be broken and then each subring sealed back up, this would require
 severing/patching Θ(1) communication links, which is the same as the linear
array. In fact, when we consider the ring compared to the linear array, the best
we could hope for is a multiplicative factor of two improvement in the running
time of algorithms.

In practice, being able to perform a task twice as fast is often a most welcome
improvement. However, since this book is concerned primarily with the design and
asymptotic analysis of algorithms, i.e., growth rate of the running time of algo-
rithms, the ring presents an uninteresting variant of the linear array, and will not be
discussed further.

Mesh

In this book, we will use the term mesh to refer to a 2-dimensional, checkerboard-type,
mesh-based computer, except where stated otherwise. A variety of 2-dimensional
meshes have been proposed in the literature. In a traditional mesh, each generic
processor has four neighbors, namely, the closest processor to its north, south,
east, and west. The mesh itself is constructed either as a rectangular or square
array of processors, as shown in Figure 4-16.

A simple variant of the four-connected mesh is an eight-connected mesh in
which each generic processor is connected to its north, south, east, and west
neighbors, as well as to its northeast, northwest, southwest, and southeast
 neighbors. Meshes have also been proposed in which each processor has six
 neighbors, i.e., a hexagonal mesh. Again, in this text, we use the term mesh to
refer to a traditional 4-connected square array of processors. Generally, the
6-connected and 8-connected variants do not have asymptotically different run-
ning times for algorithms to solve fundamental problems than are exhibited by
the 4-connected mesh.

C8208_ch04.indd 98C8208_ch04.indd 98 11/16/12 12:25 PM11/16/12 12:25 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Processor Organizations 99

In particular, we restrict our attention to a traditional 2-dimensional square
mesh, which will be referred to as a mesh of size n, where n = 4k, for k a positive
integer. Throughout the text, we will show how to utilize effectively a divide-and-
conquer solution strategy on the mesh. This will be done by showing how to divide
a problem into either two or four independent subproblems, map each of these
subproblems to a submesh, recursively solve the smaller subproblems on each
submesh, and then stitch the results together.

Now, let’s consider several of the measures that we have discussed. Given a
mesh of size n, the interior processors have degree 4, the four corner processors
have degree 2, and the remaining edge processors have degree 3. Therefore, the
degree of a mesh of size n is 4. That is, the mesh is a fixed degree network.

Consider the communication diameter, i.e., the maximum distance over every
pair of shortest paths in the network. Notice that on a mesh of size n, there are n1/2
rows and n1/2 columns. So, transporting a piece of data from the northwest processor
to the southeast processor requires traversing n1/2 − 1 rows and n1/2 − 1 columns.
That is, a message originating in one corner of the mesh and traveling to the oppo-
site corner of the mesh requires traversing a minimum of 2n1/2 − 2 communication
links. Therefore, the communication diameter of a mesh of size n is Θ(n1/2).

P1,1 P1,2 P1,3 P1,4

P2,1 P2,2 P2,3 P2,4

P3,1 P3,2 P3,3 P3,4

P4,1 P4,2 P4,3 P4,4

FIGURE 4-16 A mesh of size 16. Each generic processor in
a traditional mesh is connected to its four nearest neighbors.
Notice that there are no wraparound connections and that
the processors located along the edges of the mesh have
fewer than four neighbors. Processors are labeled by row
and column, as shown.

C8208_ch04.indd 99C8208_ch04.indd 99 11/16/12 12:25 PM11/16/12 12:25 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

100 Chapter 4 Models of Computation

Notice that if we are interested in combining information from two processors
at opposite corners of a mesh of size n, such information could be sent to one of
the middle processors in less than 2n1/2 − 2 steps. While the time to combine dis-
tant data may be an improvement over the time to transmit such data, notice that
the improvement is only by a constant factor.

Determining the bisection width of a mesh of size n is straightforward. If
we cut the links between the middle two columns, then we are left with two rect-
angular meshes of size n/2. If this is not intellectually satisfying, then we
could sever the links between the middle two rows and the middle two columns
and be left with four square meshes, each of size n/4. In any event, the bisection
width of a mesh of size n is Θ(n1/2). Before considering some fundamental oper-
ations, we should note that the bisection width can be used to provide a lower
bound on the worst-case time to sort a set of data distributed one piece
per processor.

For example, suppose all data elements initially stored in the leftmost n/2 col-
umns need to move to the rightmost n/2 columns and vice versa. Moving n pieces
of data between the middle two columns, which are joined by n1/2 communication
links, requires Θ(n/n1/2) = Θ(n1/2) time.

We now turn our attention to some fundamental mesh operations. Since the
mesh can be viewed as a collection of linear arrays stacked one on top of
the other and interconnected in a natural fashion, we start by observing that the
mesh can implement linear array algorithms independently in every row and/or
column of the mesh. Of immediate interest is the fact that the mesh can perform
a row (column) rotation simultaneously in every row (column), so that every
processor will have the opportunity to view all information stored in its
row (column).

Recall that a row rotation consists of sending data from every processor in lock-
step fashion to the right. When data reaches the rightmost processor, that rightmost
processor will reverse the direction of travel of the data so that it marches to the left.
When the data reaches the leftmost processor, that processor again reverses the
direction of movement of the data so that it moves to the right until it reaches the
processor where it originated, at which point the row rotation terminates.

Notice that at any point during the rotation algorithm, a processor is respon-
sible for at most two pieces of data that are involved in the rotation, one that is
moving from left to right, which is viewed as the top of the tractor tread, and the
other that is moving from right to left, which is viewed as the bottom of the tractor
tread. A careful analysis will show that exactly 2n1/2 − 2 steps are required to per-
form a complete rotation. Recall that this operation is asymptotically optimal for
the linear array.

Since a rotation allows every processor in a row (column) to view all other
pieces of information in its row (column), this operation can be used to solve a
variety of problems. For example, if it is required that all processors determine
the result of applying some semigroup operation to a set of values distributed

C8208_ch04.indd 100C8208_ch04.indd 100 11/16/12 12:25 PM11/16/12 12:25 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Processor Organizations 101

over all the processors in its row/column, a rotation can be used to provide a time-
optimal solution.

In the following, it is useful to refer to a processor of a mesh by the notation
Pi, j. The first subscript i represents the ith row of processors, 1 ≤ i ≤ n1/2, where the
rows are numbered from top to bottom. Similarly, the second subscript j represents
the jth column of processors, 1 ≤ j ≤ n1/2, where the columns are numbered from
left to right. See Figure 4-16.

We now provide an algorithm for performing a semigroup operation over a set
X = [x1,. . . ,xn], initially distributed one item per processor on a mesh of size n.
This operation consists of performing a sequence of rotations. First, a row rotation
is performed in every row so that every processor knows the result of applying the
operation to the data elements in its row. Next, a column rotation is performed so
that every processor can determine the final result, which is a combination of
every row-restricted result. Notice that if the operation ⊗ is commutative, i.e.,
u ⊗ v = v ⊗ u for all operands u,v, then we need not worry about which data value
is in which processor. However, if the operation is not commutative, then we
assume the data is distributed in row-major fashion, where we mean that the first
n1/2 items are distributed from left to right by index, one per processor, in the first
row, while the next n1/2 items are distributed from left to right by index, one per
processor, in the second row, and so on.

Mesh Semigroup Algorithm
Input: An input set X , consisting of n elements, such that every processor
Pi, j initially stores data value xi, j.
Output: Every processor stores the result of applying the semigroup
operation ⊗ to all of the input values.

Action:

a. Simultaneously, every row i performs a row rotation
so that every processor in row i knows the product
ri = ⊗ j=1

n1/2xi,j.

b. Simultaneously, every column j performs a column
rotation so that every processor in column j knows
the product p = ⊗ i=1

n1/2ri. Notice that this is the

 desired product of ⊗i=1
n1/2 ⊗j=1

n1/2 xi,j.

End Semigroup Algorithm

This algorithm runs in Θ(n1/2) time, which is optimal for a mesh of size n.
However, on a RAM, a simple scan through the data will solve the problem in Θ(n)
time. Since our Θ(n1/2) time algorithm on a mesh of size n has a cost of
Θ(n × n1/2) = Θ(n3/2) , it is not cost-optimal.

C8208_ch04.indd 101C8208_ch04.indd 101 11/16/12 12:25 PM11/16/12 12:25 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

102 Chapter 4 Models of Computation

So, let’s try to construct a cost-optimal semigroup algorithm for a mesh. In
order to balance the local computation time with communication time based on the
communication diameter, consider an n1/3 × n1/3 mesh, in which each processor
stores n1/3 of the data items. Initially, every processor can perform a sequential
semigroup operation on its set of n1/3 data items. Next, the n2/3 partial results, one
per processor on an n1/3 × n1/3 mesh, can be used as input to the fine-grained mesh
algorithm just presented. Notice that the sequential component of the algorithm,
which operates on n1/3 data items, can be performed in Θ(n1/3) time. The parallel
semigroup component also runs in Θ(n1/3) time. Therefore, the algorithm is com-
plete in Θ(n1/3) time on a mesh of size n2/3, which results in an optimal cost of
Θ(n2/3 × n1/3) = Θ(n).

Row and column rotations are also important components of a broadcast oper-
ation for the mesh. Suppose a data item x is stored in an arbitrary processor Pi, j of
a mesh of size n, and we need to broadcast x to all of the other n − 1 processors.
Then a single row rotation, followed by n1/2 simultaneous column rotations, can be
used to solve this problem, as follows. (See Figure 4-17.)

x x x x

x x x x

x x x x

x x x x

x x x x x

FIGURE 4-17 Broadcasting a piece of data on a mesh. First, a row rotation is performed in
order to broadcast the critical data item to all processors in its row. Next, column rotations
are performed simultaneously in every column in order to broadcast the critical data item to
all remaining processors.

Mesh Broadcast Algorithm
Procedure: Broadcast the data value x, initially stored in processor Pi, j, the
processor in row i and column j, to all processors of the mesh.

Action:

1. Use a row rotation in row i to broadcast x to all
processors in row i.

C8208_ch04.indd 102C8208_ch04.indd 102 11/16/12 12:25 PM11/16/12 12:25 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Processor Organizations 103

2. Simultaneously, for all columns j ∈ {1,2,...,n1/2},
use a column rotation to broadcast x to every
 processor in column j.

End Broadcast

An analysis of the running time of the broadcast operation is straightforward.
It consists of two Θ(n1/2) time rotations. Based on the communication diameter of
a mesh of size n, we know that the running time for the algorithm is optimal for
this architecture.

Tree

A tree of base size n is constructed as a full binary tree with n processors at the
base level. In graph terms, this is a tree with n leaves. Therefore, a tree of base size
n has 2n − 1 total processors (see Figure 4-18). The root processor is connected to
its two children. Each of the n leaf processors is connected only to its parent. All
other processors are connected to three other processors, namely, one parent and
two children. Therefore, the degree of a tree network is 3. Notice that a tree with n
leaves contains nodes at 1 + log2 n levels. Thus, any processor in the tree can send
a piece of information to any other processor in the tree by traversing O(log n)
communication links. This is done by moving the piece of information along the
unique path between the two processors involving their least common ancestor.
That is, information flows from one processor up the tree to their least common
ancestor and then down the tree to the other processor. Therefore, the O(log n)
communication diameter of a tree of base size n is far superior to the other network
models that we have considered.

FIGURE 4-18 A tree of base size 8. Notice that base processors have
only a single neighbor, i.e., their parent processors, the root only has
two neighbors, i.e., its children processors, and the remaining
 processors have three neighbors, namely, one parent and two children
processors.

C8208_ch04.indd 103C8208_ch04.indd 103 11/16/12 12:25 PM11/16/12 12:25 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

104 Chapter 4 Models of Computation

Now, let’s consider the bisection width of a tree of base size n. The bisection
width of a tree of base size n is Θ(1), since if the two links are cut between the root
and its children, a tree of base size n will be partitioned into two trees, each of
base size n/2.

A tree yields a nice (low) communication diameter, but a less than desirable
(low) bisection width. So, the good news is that fundamental semigroup opera-
tions can be performed in Θ(log n) time, but the bad news is that Θ(n) data items
cannot be moved efficiently between both halves of the tree.

Consider a semigroup operation on a tree of base size n. Assume that n pieces
of data are initially distributed one per base processor. Then in order to compute a
semigroup operation over this set of data, the semigroup operator can be applied to
disjoint pairs of partial results in parallel as data moves up the tree level by level.
Notice that after Θ(log n) steps, the final result will be known in the root proces-
sor. Naturally, if all processors need to know the final result, it can be broadcast
from the root to all processors in a straightforward top-down fashion in Θ(log n)
time. So, semigroup, broadcast, and combine-type operations can be performed in
Θ(log n) time and with Θ(n log n) cost on a tree of base size n. Notice that the run-
ning time of Θ(log n) is optimal for a tree of base size n, and that the cost of
Θ(n log n), while not optimal, is only a factor of Θ(log n) from optimal since a
RAM can perform these operations in Θ(n) time.

Now, consider the problem of sorting or any routing operation that requires
moving data from the leftmost n/2 base processors to the rightmost n/2 processors
and vice versa. Unfortunately, the root serves as a bottleneck, since it can only
process a constant amount of traffic during each clock cycle. Therefore, we need
Ω(n) time in order to move n pieces of data from one side of the tree to the other.

Hence, the tree provides a major benefit over the linear array and mesh in
terms of combining information, but is not well equipped to deal with situations
that require extensive data movement.

Based on the advantages of a tree over a mesh in terms of communication diam-
eter, and the advantages of a mesh over a tree in terms of bisection width, we will
consider architectures that combine the best features of these two architectures.

Pyramid

A pyramid of base size n combines the advantages of both the tree and the mesh
architectures (see Figure 4-19). It can be viewed as a set of processors connected
as a 4-ary tree. That is, a pyramid of base size n can be viewed as a tree in which
every generic node has one parent and four children, where at each level, the pro-
cessors are connected as a 2-dimensional mesh. Alternately, the pyramid can be
viewed as a tapering array of meshes, in which each mesh level is connected to
the preceding and succeeding levels with 4-ary tree-type connections. Thus, the
base level of the pyramid of base size n is a mesh of size n, the next level up is
a mesh of size n/4, and so on until we reach the single processor at the root.

C8208_ch04.indd 104C8208_ch04.indd 104 11/16/12 12:25 PM11/16/12 12:25 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Processor Organizations 105

A careful count of the number of processors reveals that a pyramid of base size n
contains (4n − 1)/3 processors. (An exercise at the end of this chapter asks the
reader to prove the latter claim.)

The root of a pyramid only has links to its four children. Each base processor
has links to its four base-level mesh neighbors and an additional link to a parent. A
generic processor in the middle of a pyramid has nine connections, namely, one
parent, four children, and four mesh-connected neighbors. Therefore, the degree of

FIGURE 4-19 A pyramid of base size n can be viewed as a set of
 processors connected as a 4-ary tree, where at each level in the pyramid,
the processors at that level are connected as a 2-dimensional mesh.
Alternately, it can be viewed as a tapering array of meshes. The root of
a pyramid only has links to its four children. Each base processor has
links to its four base-level mesh neighbors and an additional link to
a parent. In general, a generic processor somewhere in the middle of a
pyramid is connected to one parent, four children, and has four
 mesh-connected neighbors.

Apex Level 2

Level 1

Level 0Base

C8208_ch04.indd 105C8208_ch04.indd 105 11/16/12 12:25 PM11/16/12 12:25 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

106 Chapter 4 Models of Computation

the pyramid network is nine. The communication diameter of a pyramid of base
size n is Θ(log n), since a message can be sent from the northwest base processor to
the southeast base processor by traversing 2 log4 n links, which represents a worst-
case scenario. This data movement can be performed by sending a piece of data
upwards from the base to the root and then downwards from the root to the base.

Consider the bisection width of a pyramid of base size n. The reader might
picture a plane, i.e., a flat geometric object, passing through the pyramid, posi-
tioned so that it passes just next to the root and winds up severing connections
between the middle two columns of the base. We now need to count the number of
links that have been broken. There are n1/2 at the base, n1/2/2 at the next level, and
so on up the pyramid, for a total of Θ(n1/2) such links. Consider passing two planes
through the root, one that passes between the middle two rows of the base and the
other that passes through the middle two columns of the base. This will result in
four pyramids, each of base size n/4, with roots that were originally the children of
the root processor. Therefore, as with the mesh of size n, the bisection width of a
pyramid of base size n is Θ(n1/2).

Now consider fundamental semigroup and combination-type operations. Such
operations can be performed on a pyramid of base size n in Θ(log n) time by using
tree-type algorithms, as previously described. However, for algorithms that require
extensive data movement, such as moving Θ(n) data between halves of the pyra-
mid, the mesh lower bound of Ω(n1/2) applies. So, the pyramid combines the
advantages of both the tree and mesh architectures without a net asymptotic
increase in the number of processors. Note that one of the reasons that the pyramid
has not been more popular in the commercial marketplace is that laying out a scal-
able pyramid in hardware is a difficult process.

Mesh-of-Trees

We now consider another interconnection network that combines advantages of
tree and mesh connections. The mesh-of-trees is a standard mesh computer with a
tree above every row and a tree above every column, as shown in Figure 4-20.
Specifically, a mesh-of-trees of base size n consists of a mesh of size n at the base
with a tree above each of the n1/2 base columns and a tree above each of the n1/2
base rows. Notice that these 2n1/2 trees are completely disjoint except at the base.
That is, row tree i and column tree j only have base processor Pi, j in common. So,
the mesh-of-trees of base size n has n processors in the base mesh, 2n1/2 − 1 pro-
cessors in each of the n1/2 row trees, and 2n1/2 − 1 processors in each of the n1/2
column trees. Since the n base processors appear both in the row trees and the col-
umn trees, the mesh-of-trees has a total of 2n1/2(2n1/2 − 1) − n = 3n − 2n1/2 proces-
sors. Therefore, as with the pyramid, the number of processors in the entire
machine is linear in the number of base processors.

Consider the degree of a mesh of trees of base size n. A generic base proces-
sor is connected to four mesh neighbors, one parent in a row tree, and one parent

C8208_ch04.indd 106C8208_ch04.indd 106 11/16/12 12:25 PM11/16/12 12:25 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Processor Organizations 107

in a column tree. Notice that processors along the edge of the mesh have fewer
mesh connections. The root processor of every tree is connected to two children,
and interior tree nodes are connected to one parent and two children. Note that
leaf processors are mesh processors, which have already been discussed.
Therefore, the degree of the mesh-of-trees of base size n is six as defined by a
generic base processor. Such a processor has four mesh connections and serves as
a leaf processor in each of two distinct trees, namely, one column tree and one
row tree.

Next, consider the communication diameter of a mesh-of-trees of base size n.
Without loss of generality, assume that base processor Pa,b needs to send a piece of
information x to base processor Pc,d. Notice that processor Pa,b can use the tree
over row a to send x to base processor Pa,d in O(log n1/2) = O(log n) time. Now,

FIGURE 4-20 A mesh-of-trees of base size n consists
of a mesh of size n at the base, with a tree above each
of the n1/2 base columns, and a tree above each of the
n1/2 base rows. Notice that the trees are completely
disjoint except at the base. The mesh-of-trees of base
size n has n processors in the base mesh, 2n1/2 − 1
processors in each of the n1/2 row trees, and 2n1/2 − 1
processors in each of the n1/2 column trees.

Processing Element in the base

Processing Element in a tree over the base

Communication Link (solid and dashed lines)

C8208_ch04.indd 107C8208_ch04.indd 107 11/16/12 12:25 PM11/16/12 12:25 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

108 Chapter 4 Models of Computation

processor Pa,d can use the tree over column d to send x to base processor Pc,d in
O(log n1/2) = O(log n) time. Therefore, any two base processors can communicate
by exploiting one row tree and one column tree in O(log n) time.

The bisection width of a mesh-of-trees can be determined by passing a plane
through the middle two rows or columns, or both, of the base mesh. The analysis is
similar to the pyramid, where the total number of links severed is Θ(n1/2).

Therefore, some of the objective measures of the pyramid and mesh-of-trees
are similar. A difference between the two is that in a pyramid, the root of the pyra-
mid serves as a bottleneck, while for the mesh-of-trees, there is no such bottle-
neck. In fact, the mesh-of-trees offers more paths between processors. So, one
might hope that more efficient algorithms can be designed for the mesh-of-trees
than for the pyramid. However, the bisection width tells us that this is not possible
for problems that require significant data movement. For example, for problems
such as sorting, in which all data on the left half of the base mesh might need to
move to the right half, and vice versa, a lower bound of Ω(n/n1/2) = Ω(n1/2) still
holds. One can only hope that problems which require a moderate amount of data
movement can be solved faster than on the pyramid.

Let’s first consider the problem of computing a semigroup operation on a set
X = [x1, x2, . . . , xn], initially distributed one item per base processor in some rea-
sonable fashion. Within each row simultaneously, use the row tree to compute
the operation over the set of data that resides in the row. Once the result is known
in the root of a tree, it can be passed down to all base processors in the row.
So, in Θ(log n) time, every base processor will know the result of applying the
semigroup operation to the elements of X that are stored in its row. Next, per-
form a semigroup operation on this data simultaneously within each column by
using the tree above each column. Notice that when the root processors of the
column trees have their respective results, they all in fact have the identical final
result, which they can again pass back down to the base processors. Therefore,
after two Θ(log n) time tree-based semigroup operations, all processors know
the final answer. As with the tree and pyramid, this is a time-optimal algorithm.
However, the cost of the algorithm is again Θ(n log n), which is a factor of
Θ(log n) from optimal.

Next, we consider a very interesting problem of sorting a reduced amount of data.
This problem surfaces at times in the middle of a solution strategy. Formally, we
are given a unique set of data, D = [d1, d2, . . . , dn1/2], distributed one per processor
along the first row of the base mesh in a mesh-of-trees such that processor P1,i
stores di. We wish to sort the data so that the ith largest element in D will be stored
in processor P1,i.

The method we use will be that of Counting Sort. That is, for each element
d ∈ D, we will count the number of elements smaller than d in order to determine the
final position of d. In order to use Counting Sort, we first create a cross-product of
the data so that each pair (di, dj) is stored in some processor, as shown in Figure 4-21.

C8208_ch04.indd 108C8208_ch04.indd 108 11/16/12 12:25 PM11/16/12 12:25 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Processor Organizations 109

FIGURE 4-21 Creating a cross-product of
items <d1, d2, d3, d4>. Notice that processor
Pi, j will store a copy of di and dj. That is,
every processor in row i will store a copy
of d i and every processor in column j will
store a copy of dj.

(d1,d1) (d1,d2) (d1,d3) (d1,d4)

(d2,d1) (d2,d2) (d2,d3) (d2,d4)

(d3,d1) (d3,d2) (d3,d3) (d3,d4)

(d4,d1) (d4,d2) (d4,d3) (d4,d4)

Notice that since the number of elements in D is n1/2, we have room in the base mesh
to store all n1/2 × n1/2 = n such pairs. This cross-product is created as follows
(see Figure 4-22). First, use the column trees in parallel to broadcast dj in column j.
At the conclusion of this Θ(log n) time step, every base processor Pi, j will store a
copy of dj. Now, using the row trees in parallel, in every row i, broadcast item di from
processor Pi,i to all processors in row i. This operation also runs in Θ(log n) time.
Therefore, after a row and column broadcast, every processor Pi, j will store a copy
of dj, which was obtained from the column broadcast, and a copy of di, which
was obtained from the row broadcast. At this point, the creation of the cross-product
is complete.

Let row i be responsible for determining the rank of element di. Simultaneously
for every processor Pi, j, set register count to 1 if dj < di, and to 0 otherwise.
Now use the row trees to sum the count registers in every row. Notice that in every
row i, this sum, which we call r(i), corresponds to the rank of di, the number of
elements of D that precede di. Finally, a column broadcast is used within every
column to broadcast di from processor Pi,r (i)+1 to processor P1,r (i)+1, completing
the procedure.

The time to create the cross-product is Θ(log n), as is the time to determine the
rank of every entry and the time to broadcast each entry to its final position.
Therefore, the running time of the algorithm is Θ(log n), which is worst-case opti-
mal for the mesh-of-trees, due to the Θ(log n) communication diameter and the
fact that d1 and dn1/2 might need to change places, i.e., processors P1,1 and P1, n1/2
might need to exchange information. The cost of the algorithm is Θ(n log n).
Notice that the cost is not optimal since Θ(n1/2) items can be sorted in Θ(n1/2 log n)
time on a RAM.

C8208_ch04.indd 109C8208_ch04.indd 109 11/16/12 12:25 PM11/16/12 12:25 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

110 Chapter 4 Models of Computation

FIGURE 4-22 Sorting a reduced set of data on a mesh-of-trees (only the base
mesh is shown). (a) The initial distribution of data consists of a single row of
 elements. (b) The data after using the column trees to broadcast the data element
in every column. (c) The result after using the row trees to broadcast the diagonal
elements along every row. At this point, a cross-product of the initial data exists
in the base mesh of the mesh-of-trees. (d) The result of performing row-rankings
of the diagonal element in each row. This step is accomplished by performing a
comparison in the base mesh followed by a semigroup operation in every row
tree. (e) The result after performing the final routing step of the diagonal ele-
ments to their proper positions according to the rankings.

5 9

(a) Initial distribution
of data.

(b) After broadcasting
data through columns.

4 2 5 9 4 2

5 9 4 2

5 9 4 2

5 9 4 2

5,5 5,9

9,5 9,9

4,5 4,9

2,5

(c) After creating a
cross-product of data.

(d) After ranking the data.

2,9

5,4

9,4

4,4

2,4

5,2

9,2

4,2

2,2

2 4

(e) After redistributing data
by rank.

5 9

5,5 5,9

9,5 9,9

4,5 4,9

2,5 2,9

5,4

9,4

4,4

2,4

5,2

9,2

4,2

2,2

r(5)=2

r(9)=3

r(4)=1

r(2)=0

C8208_ch04.indd 110C8208_ch04.indd 110 11/16/12 12:25 PM11/16/12 12:25 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Processor Organizations 111

Hypercube

The final network model we consider is the hypercube, as shown in Figure 4-23.
The hypercube presents a topology that provides a desirable combination of a low
communication diameter and a high bisection width. The communication diameter
is logarithmic in the number of processors, which allows for fast semigroup and
combination-based algorithms. This is the same as for the tree, pyramid, and mesh-
of-trees. However, the bisection width of the hypercube is linear in the number of
processors, which is a significant improvement over the bisection width for the
mesh, pyramid, and mesh-of-trees. Therefore, there is the possibility of moving
large amounts of data quite efficiently.

1000

0110

0010
0000

0100

0101

0001

0011 1001 1011

1111

1101

1010

1100

1110

0111

FIGURE 4-23 A hypercube of size 16 with the processors indexed by the
integers {0,1, . . . ,15}. Pairs of processors are connected if and only if their
unique log2 16 = 4 bit strings differ in exactly 1 position.

Formally, a hypercube of size n consists of n processors indexed by the inte-
gers {0,1, . . . , n − 1}, where n > 0 is an integral power of 2. Processors A and B are
connected if and only if their unique log2 n-bit strings differ in exactly one posi-
tion. For example, suppose that n = 8. Then the processor with binary index 011 is
connected to three other processors, namely those with binary indices 111, 001,
and 010.

It is often useful to think of constructing a hypercube in a recursive fashion, as
shown in Figure 4-24. A hypercube of size n can be constructed from two hyper-
cubes of size n/2, which we refer to as H0 and H1, as follows. Place H0 and H1 side
by side, with every processor labeled according to its log2(n/2)-bit string. Notice
that there are now two copies of every index, one associated with H0 and one asso-
ciated with H1. We need to resolve these conflicts and also to connect H0 and H1 in
order to form a hypercube of size n. So, that we may distinguish the labels of H0
from those of H1, we will add a leading zero to every index of H0 and add a leading
1 to every index of H1. Finally, we need to connect the corresponding nodes of H0
and H1. That is, we need to connect those nodes that differ only in their (new) lead-
ing bit. This completes our construction of a hypercube of size n.

C8208_ch04.indd 111C8208_ch04.indd 111 11/16/12 12:25 PM11/16/12 12:25 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

112 Chapter 4 Models of Computation

1-cube

1-cube

1-cube

0 1

000

2-cube

2-cube

3-cube

2-cube

001

010 011

100 101

110 111

00 01

10 11

FIGURE 4-24 Constructing a hypercube of size n from two
subcubes each of size n/2. First, attach elements of subcube
A to elements of subcube B with the same index. Then pre-
pend, i.e., add to the beginning, a 0 to the indices of subcube
A and prepend a 1 to all indices of subcube B. Subcube A is
shaded in each diagram for ease of presentation.

Based on this construction scheme, the reader should note that the number of
communication links affiliated with every processor must increase as the size
of the network increases. In particular, unlike the mesh, tree, pyramid, and mesh-
of-trees, the hypercube is not a fixed degree network. Specifically, notice that a
processor in a hypercube of size n is labeled with a unique index of log2 n bits and
is therefore connected to exactly log2 n other processors. So, the degree of a hyper-
cube of size n is log2 n. This value is also called the dimension of the hypercube.
Further, in contrast to the mesh, pyramid, tree, and mesh-of-trees, all nodes of a
hypercube are identical with respect to the number of attached neighboring nodes.

Next, we consider the communication diameter of a hypercube of size n.
Notice that if processor 011 needs to send a piece of information to processor 100,
then one option is for the piece of information to move systematically along the
path of processors with the labels 011 → 111 → 101 → 100. Note that the piece
of information could just as easily move along the path 011 → 010 → 000 → 100.
Such traversal schemes work by “correcting,” if necessary, each bit in the proces-
sor labels between the source processor to the destination processor, specifically
from the leftmost bit to the rightmost bit, in the first case, and from the rightmost
bit to the leftmost bit, in the second case. Indeed, one could “correct,” if necessary,
the logarithmic number of bits in any order and this would represent a valid path
between neighboring processors.

The important point is that one can send a message from any processor to any
other by visiting a sequence of nodes that must be connected, by definition of a hyper-
cube, since they differ in exactly one bit position. Therefore, the communication

C8208_ch04.indd 112C8208_ch04.indd 112 11/16/12 12:25 PM11/16/12 12:25 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Processor Organizations 113

diameter of a hypercube of size n is log2 n. However, unlike the tree and pyramid,
multiple minimal-length paths traverse O(log n) communication links between many
pairs of processors. This is an appealing property in that the hypercube shows prom-
ise of avoiding some of the bottlenecks that occurred in the previously defined net-
work architectures.

Now consider the bisection width of a hypercube of size n. From the construc-
tion procedure described near the beginning of this section, it is clear that any two
disjoint subcubes of size n/2 are connected by exactly n/2 communication links.
That is, the bisection width of a hypercube of size n is Θ(n). Therefore, we now
have the possibility of being able to sort n pieces of data in Θ(log n) time, which
would be cost-optimal. In fact, in Chapter 5, “Combinational Circuits,” we present
a Bitonic Sort algorithm that demonstrates that n pieces of data, initially distrib-
uted one piece per processor on a hypercube of size n, can be sorted in Θ(log2 n)
time. This result represents a significant improvement over the mesh, tree, pyra-
mid, and mesh-of-trees.

Of course, a major drawback to the hypercube is that it does not maintain a
fixed interconnection network. Therefore, one cannot design and produce a generic
scalable hypercube processor.

We should note that the hypercube is both node- and edge-symmetric in that
nodes can be relabeled so that we can map one index scheme to a new index
scheme and preserve connectivity. This is a very nice property and also means that
unlike some of the other architectures, there are no special nodes. That is, there are
no special root nodes, edge nodes, or leaf nodes, and so forth. And yet, we can
often use algorithms designed for other architectures such as meshes or trees,
since if we merely ignore the existence of some of a hypercube’s interprocessor
connections, we may find the remaining connections form a mesh, tree, or other
parallel architecture, or in some cases, an “approximation” of another interesting
architecture.

In terms of fundamental operations, we will consider an efficient algorithm to
perform a semigroup computation, which will also serve to illustrate a variety of
algorithmic techniques for the hypercube. We will use the term k-dimensional
edge to refer to a set of communication links in the hypercube that connect
 processors that differ in the kth bit position of their indices. Without loss of gener-
ality, suppose we want to compute the minimum of X = [x0, x1, . . . , xn−1], where xi is
initially stored in processor Pi.

Consider the simple case of a hypercube of size 16, as shown in Figure 4-25.
In the first step, we send entries from all processors with a 1 in the most signifi-
cant bit to their neighbors that have a 0 in the most significant bit. That is, we use
the 1-dimensional edges to pass information. The processors that receive infor-
mation, compute the minimum of the received value and their element, and store
this result as a running minimum. In the next step, we send running minima from
all processors with a 1 in their next most significant bit and that received data dur-
ing the previous step, to their neighbors with a 0 in that bit position, using the

C8208_ch04.indd 113C8208_ch04.indd 113 11/16/12 12:25 PM11/16/12 12:25 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

114 Chapter 4 Models of Computation

(a) Initial distribution of data.
Data values are presented inside
the processors. Processor labels
are given as binary numbers that
are positioned beside the
 processors.

1000

Initial Configuration

0110

0010
0000

0100

0101

0001

0011 1001 1011

1111

1101

1010

1100

1110

0111

4

10

3

11

16

14

6 8 9

75

2 13

12 1

15

1000

Step 1

0110

0010
0000

0100

0101

0001

0011 1001 1011

1111

1101

1010

1100

1110

0111

4

2

3

11

1

7

6

5

(b) Step 1: Transmit-and-
compare along 1-dimensional
edges (i.e., processors that differ
in the most significant bit).

1000

Step 2

0110

0010
0000

0100

0101

0001

0011 1001 1011

1111

1101

1010

1100

1110

0111

4

2 1

6

(c) Step 2: Transmit-
and-compare along
2-dimensional edges.

1000

Step 3

0110

0010
0000

0100

0101

0001

0011 1001 1011

1111

1101

1010

1100

1110

0111

4

1

(d) Step 3: Transmit-and-
compare along 3-dimensional
edges.

C8208_ch04.indd 114C8208_ch04.indd 114 11/16/12 12:25 PM11/16/12 12:25 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Processor Organizations 115

1000

Step 4

0110

0010
0000

0100

0101

0001

0011 1001 1011

1111

1101

1010

1100

1110

0111

1

(e) Step 4: Transmit-and-
compare along 4-dimen-
sional edges. The result is
the global minimum stored
in processor 0000.

FIGURE 4-25 An example of computing a semigroup operation on a hypercube of size n. For
this example, we use minimum as the semigroup operation. In the first step, we send entries
from all processors with a 1 in the most significant bit to their neighbors that have a 0 in the
most significant bit. That is, elements from the right subcube of size 8 are sent to their
 neighboring nodes in the left subcube of size 8. The receiving processors compare the two
values and keep the minimum. The algorithm continues within the left subcube of size 8.
After log2 16 = 4 transmission-and-compare operations, the minimum value (1) is known in
processor 0000.

2-dimensional edges. The receiving processors again compute the minimum of
the value received and the value stored. The third step consists of sending data
along the 3-dimensional edges and determining the minima. That is, in the third
step, data is sent from processor 0011 to processor 0001 and simultaneously from
processor 0010 to processor 0000, where processors 0001 and 0000 each deter-
mine their running minimum. The final step consists of sending the running mini-
mum along the 4-dimensional edge from processor 0001 to processor 0000, which
computes the final global minimum. Therefore, after log2 n = log2 16 = 4 steps,
the final result is known in processor P0 (see Figure 4-26).

If we now wish to distribute the final result to all processors, we can simply
reverse the process and in the ith step, send the final result along (log2 n − i + 1)-
dimensional edges from processors with a 0 in the ith bit to those with a 1 in the ith
bit. Again, this takes log2 n = log2 16 = 4 steps. Clearly, a generalization of this
algorithm simply requires combining data by cycling through the bits of the indi-
ces and sending data appropriately in order to determine the final result. If desired,
this result can be distributed to all processors by reversing the communication
mechanism just described. Therefore, semigroup, reporting, broadcasting, and
general combination-based algorithms can be performed on a hypercube of size n
in Θ(log n) time.

C8208_ch04.indd 115C8208_ch04.indd 115 11/16/12 12:25 PM11/16/12 12:25 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

116 Chapter 4 Models of Computation

Coarse-Grained Multiprocessors

In much of the discussion above, we have made the theoretically pleasant, but
often unrealistic, assumption that we can scale the number of processors in a fine-
grained parallel computer, much as we assume we can scale the size of the memory
in a RAM. For example, in many problems, we assumed n data items were
 processed by n processors. For several decades, this was simply not practical with
the technology of the day. However, as of the writing of this text, General Purpose
Graphic Processing Units (GPGPUs) are providing critical value to the high-
performance computing market. As such, the fine-grained paradigms and algo-
rithms that are discussed in this text are extremely important in terms of utilizing
such machines to their fullest potential.

Current technology also provides for relatively small, yet cost-effective, com-
putational systems configured as coarse-grained parallel computers, where the
number of processors q is much smaller than the number of data items n. Small or
moderately sized coarse-grained multiprocessors are frequently used to solve
medium-scale problems in computational science and engineering. In fact, such
architectures are typically found on desktop workstations or in racks of multicore
nodes, where a processor/node might contain 32 or more “cores,” i.e., compute
elements. One can utilize coarse-grained algorithms that combine efficient sequen-
tial pre-processing steps with an overall fine-grained algorithmic approach, assum-
ing a large collection of such multi-core systems that can be programmed as a
single system.

A common strategy for the development of efficient coarse-grained algorithms
follows cost-effective strategies we have discussed earlier in this chapter, namely,

FIGURE 4-26 Data movement in a semigroup operation on a
 hypercube. The links of the hypercube of size 16 are labeled based
on the step in which they are used to move data in the semigroup
 operation shown in Figure 4-25.

2

3

1

1

1

1

1

1
1

1

3

4

2

2

2

00110001

0000 0010

0100 0110

01110101

10111001

1000 1010

1100 1110

11111101

C8208_ch04.indd 116C8208_ch04.indd 116 11/16/12 12:25 PM11/16/12 12:25 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Coarse-Grained Multiprocessors 117

that of reducing the number of processors, where there is a significant amount of
data per processor, and combining efficient sequential algorithms intertwined with
parallel communication strategies. Recall that for a problem where the solution
consists of Θ(1) data, the following strategy may be efficient.

 1. Each processor runs an efficient sequential algorithm on its share of the data to
obtain a partial solution.

 2. The processors combine their partial solutions to obtain the problem’s solution.

 3. If desired, broadcast the problem’s solution to all processors.

For problems in which the first step’s partial solutions consist of Θ(1) data per
processor, the second step can use a fine-grained algorithm to combine the partial
solutions.

The Coarse-Grained Multicomputer CGM(n, q) is a model for coarse-grained
parallel computing, for processing n data items on q processors. Thus, each pro-
cessor must have Ω(n/q) memory locations, sufficient to store the data for the
problem at hand. It is customary to take q ≤ n/q (equivalently, q2 ≤ n). This assump-
tion facilitates many operations. For example, a gather operation, in which one
data item from each processor is gathered into a designated processor Pi, requires
that the number of items gathered, q, not exceed the storage capacity Ω(n/q) of Pi.
Note that the description we give of a gather operation in Appendix 3 is more gen-
eral than the above.

The processors of a CGM make up a connected graph. That is, any processor
can communicate with any other processor, although exchanging data between pro-
cessors may take more than one communication step. This graph could be in the
form of a linear array, mesh, hypercube, pyramid, and so forth. The CGM model
can also be realized on a PRAM, in which case we assume that each processor is
directly connected, by means of the shared memory, to every other processor.

Suppose for a given problem, the best sequential solution runs in Tseq(n) time.
In light of our discussion of speedup in the next section, the reader should con-
clude that an optimal solution to this problem on a CGM(n, q) runs in time

Tpar(n) =
Tseq(n)

q
.

For many fundamental problems, CGM solutions make use of gather and scat-
ter operations. As discussed in Appendix 3, a gather operation collects a set S of
data items that are distributed among the processors of the CGM into one proces-
sor Pj. That is, for each x ∈ S, we bring a copy of x to Pj. A scatter operation may
be used to reverse a gather by returning each x ∈ S from Pj to the Pi that originally
contained x. This is useful, for example, when x is a record with components that
have been written into by Pj.

C8208_ch04.indd 117C8208_ch04.indd 117 11/16/12 12:25 PM11/16/12 12:25 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

118 Chapter 4 Models of Computation

Results of Appendix 3 imply that gather and scatter operations on sets of size
q can be performed on a CGM(n, q) in O(q) time. In the following discussion,
we make use of this fact. Consider the following algorithm for a minimum (or,
more generally, semigroup) computation on a CGM(n, q).

CGM(n, q) Minimum Algorithm
Input: Array X, stored with the subarray 5xi6jn

q

i=(j−1)n
q +1 in Pj, j ∈ {1, . . . q}

Output: Minimum entry of X, known to each processor.

Action:

1. In parallel, each processor Pj computes mj =

 min5xi6jnqi=(j−1)nq+1, using the sequential algorithm

 discussed above. This step runs in Θ(n/q) time.
2. Gather5mj6j=1

q
 into P1. This step runs in O(q) time.

3. P1 computes the desired minimum value, M =
min5mj6j=1

q
, using the sequential algorithm

discussed above, in Θ(q) time.
4. If desired, broadcast M to all processors. This can

be done by a “standard” broadcast operation in O(q)
time (see Exercises) or by attaching the value of M
to each mj record in Θ(q) time and scattering the
mj records to the processors from which they came,
in O(q) time.

End Minimum

Since q ≤ n/q, the algorithm runs in Θ(n/q) time. This is optimal, since an opti-
mal sequential solution runs in Θ(n) time.

Notice that if we assume a particular architecture, such as a PRAM, mesh,
hypercube, or other traditional models, for our CGM(n, q), the last three steps of
the algorithm above can be replaced by faster fine-grained computations of the
minimum that do not use gather/scatter operations. For example, on a mesh, the
last three steps of the algorithm can be replaced by fine-grained mesh semigroup
and broadcast operations that run in Θ(q1/2) time. Doing so, however, is likely to
yield little improvement in the performance of the algorithm, which would still run
in Θ(n/q) time. An advantage of our presentation above is that it covers all parallel
architectures that might be used for a CGM.

Network of Workstations (NOW)

Beginning in the 1970s and 1980s, commodity workstations were deployed with some
regularity. Some of these systems were relatively high-end Unix workstations, which

C8208_ch04.indd 118C8208_ch04.indd 118 11/16/12 12:25 PM11/16/12 12:25 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Coarse-Grained Multiprocessors 119

were typically used to solve scientific and engineering problems. In addition, per-
sonal computers were deployed in order to improve the efficiency of daily office-
type activities like word processing, maintaining spreadsheets, creating overheads
for presentations, and so forth. During this time, labs of workstations started to
emerge as a way for students or scientists to have shared access to such systems.

Scientists who relied on computation to perform leading-edge research, started
to consider ways in which the aggregate compute power of a collection of worksta-
tions found in such a laboratory could be harnessed in order to provide a cost-
effective system for solving computationally intensive problems. At the time, the
only real alternative for scientists to access high-end computational systems was to
expend a significant effort to gain access to supercomputers, which were typically
located at national labs and eventually at public government supported sites. This
required either knowing the right people and/or submitting a proposal to be
reviewed by a peer-reviewed committee. Once access was granted, these machines
were typically very difficult to program.

By contrast, in order to use a laboratory of SunTM workstations, for example,
one could write computer programs in traditional programming languages and use
a vendor-supplied system software package called Remote Procedure Call (RPC)
in order to allow the workstations to communicate with one another. Typically,
RPC was used to create a master/worker system where one workstation would be
designated as the master and would distribute jobs to available worker systems.
Each worker would report back to the master when its job was complete. Such a
configuration of workstations was ideal for computations that required many indi-
vidual jobs to be processed.

For example, in the late 1980s, the Shake-and-Bake algorithm for molecular
structure determination was deployed in a graduate student laboratory of Sun
workstations at the State University of New York at Buffalo. This procedure
required starting with a representation of a random set of atoms, applying con-
straints to update the set of atoms continually, and then produce a potential solu-
tion to the molecular structure in question. Shake-and-Bake belongs to a family of
multi-trial algorithms, where a large number of random starts is used and the
aggregate final results are evaluated in order to determine if a solution to the prob-
lem was produced by any of the random starts. Additional Monte Carlo-type cal-
culations were also deployed in such a fashion.

One concern was that sometimes a worker node would fail or that a user
would reboot such a machine. Therefore, such networks of workstations were
best used when the solution strategy could tolerate failures in some of the jobs
that were deployed.

For some problems where the specific random starting set of data was critical,
the master would keep track of the jobs and if a job did not complete after a certain
amount of time, it would simply re-deploy it. In other cases, such as Shake-and-Bake,

C8208_ch04.indd 119C8208_ch04.indd 119 11/16/12 12:25 PM11/16/12 12:25 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

120 Chapter 4 Models of Computation

the master would just continue to deploy jobs with random starts until the requisite
number of jobs was complete.

Simultaneously and independently, a group in the Computer Science Department
at the University of Wisconsin, led by Miron Livny, recognized that such a comput-
ing methodology could be more generally applied to a wide variety of computa-
tional requirements. The result of the work by one group in distributed resource
management and another in remote Unix systems led to the development of a proj-
ect called Condor.

According to the current Condor Web site, Condor is a specialized workload
management system for compute-intensive jobs. Like other full-featured batch
systems, Condor provides a job queueing mechanism, scheduling policy, priority
scheme, resource monitoring, and resource management. Users submit their jobs
to Condor, Condor places them into a queue, chooses when and where to run the
jobs based upon a policy, carefully monitors their progress, and ultimately informs
the user upon completion. It is important to note that in a traditional implementa-
tion of Condor on a NOW, it is perfectly acceptable for a program to fail on a
worker node and that the system was typically used as a compute farm where indi-
vidual jobs would be farmed out to available nodes that had cycles available.
Finally, Condor has been successfully implemented on a network consisting of
many thousands of workstations to serve as a compute farm in order to solve a
wide variety of problems.

Cluster

A compute cluster, also called a cluster for short, typically consists of a set of
compute nodes that are capable of working together in a highly integrated fashion.
The form factor of the nodes in a cluster can be standard desktop PCs, but they are
more often than not a set of nodes designed to be placed in a rack. At this writing,
a relatively standard rack is 42U high (~80 inches high), 19 internal inches wide
(~24 inches in terms of the external width), and ~40 inches deep. Note that 1U
(i.e., one rack unit) is 1.75 inches high and nodes typically range in size from
1U-6U, with 1U and 2U units being the most common. Larger units (3U-6U) are
currently more common for storage units, power distribution units, UPS units, or
fairly specialized compute units. See Figures 4-27 and 4-28.

A cluster is typically viewed as a single system that consists of the following.

 1. A head node, which typically is the single-point-of-contact to the outside world
and is used for debugging, maintains access to the external storage system, and
manages the batch queuing system.

 2. A set of heterogeneous worker nodes, which may differ in the number of pro-
cessors per node, the number of cores per processor, the amount of memory
per node/processor, the existence or lack thereof of an attached device, like a
GPGPU unit, and so forth.

C8208_ch04.indd 120C8208_ch04.indd 120 11/16/12 12:25 PM11/16/12 12:25 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Coarse-Grained Multiprocessors 121

 3. A storage system, which in its simplest form is connected solely to the head
node, but in a highly data intensive environment, might be connected as a par-
allel I/O system to a subset of the worker nodes.

 4. A very high speed interconnection network.

In fact, a cluster may be composed of subclusters with different processor
architectures, different interconnection networks, different versions of the operat-
ing system, and so forth, but is still managed by the same head node(s).

Compute clusters emerged as a result of convergence of trends, including the
availability of the following.

 1. Low-cost microprocessors, which are often referred to as commodity off-the-
shelf systems, or COTS.

 2. Affordable very high speed networks, which currently include Gigabit
 Ethernet, InfiniBand, Myrinet, and others.

 3. Software for high-performance distributed computing, including MPI (Mes-
sage Passing Interface), which is currently the most common means of
 programming clusters consisting of tens or hundreds of thousands of nodes.
MPI is an Application Programming Interface (API), that consists of a set of

FIGURE 4-27 One of the authors, R. Miller,
standing next to several racks of a
 computational cluster. Notice the racks
on the right side of the image consist of a
large number of 2U computational units.
The three racks on the left and behind R.
Miller consist primarily of networking
equipment and cables that provide
 connectivity within the cluster.

FIGURE 4-28 One aisle showing a number
of racks of a very large computational cluster.
Notice that the floor consists of perforated
tiles, which provide cooling from beneath the
raised floor. Note that the nodes in the rack
take cooling in from the front and export
warm air out of the back. Therefore, in most
computer rooms, you will notice alternating
cool and hot aisles, where each aisle consists
of either fronts (cool aisle; perforated tiles)
of two sets of racks, or backs (warm aisle;
no perforated tiles) of two sets of racks.

C8208_ch04.indd 121C8208_ch04.indd 121 11/16/12 12:25 PM11/16/12 12:25 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

122 Chapter 4 Models of Computation

subroutines or procedures that are easily invoked within standard program-
ming languages. For example, MPI contains a set of routines for sending and
receiving data between nodes, as well as a set of routines for performing fun-
damental communications within a multiprocessor system.

Clusters are usually deployed in an effort to provide significant compute power
in a cost-effective fashion to solve very large leading-edge problems. More often
than not, however, they are actually used as high-throughput devices that provide a
compute farm to a large community that runs large numbers of sequential codes.
The compute farm model is obviously quite similar to how a NOW is typically used.

In order to visualize the difference between a NOW and a cluster, consider the
following.

 1. A NOW may consist of a set of workstations situated throughout an entire
 campus. These workstations include those on faculty desks, in laboratories, in
student dorms, and so forth. In fact, some of the larger CONDOR systems
 contain thousands of such workstations.

 2. A cluster might consist of between one and one thousand racks of very thin
horizontal nodes stacked one on top of the other in each rack with a dedicated
interconnection, a set of cables, behind the racks. The large cables typically
use a large router to connect racks together, where each rack typically has a
smaller router that connects the nodes within the rack.

Finally, the reader should note that for the past couple of decades, the vast
majority of the world’s most powerful systems have been clusters. More recently,
the fastest systems contain GPGPU systems attached to the compute nodes. The
reader might find a look at the top500 list, along with some of the analysis and
associated data, to be quite interesting and insightful. The top500 list and related
materials, which is updated twice a year, may be found at www.top500.org.

Grid

A grid, as shown in Figure 4-29, allows a heterogeneous set of geographically dis-
tributed and independently operated resources to be linked together in a transpar-
ent fashion. Such resources include clusters, NOWs, data storage, sensors,
visualization devices, and a wide variety of Internet-ready instruments, to name a
few. The power of the grid lies in its ability to bring a variety of resources to bear
on a particular problem while hiding details of utilization and location of resources
from the user. For example, a user should be able to connect to a grid from any
Internet-ready device, e.g., a cell phone, and through a simple interface, initiate a
scientific experiment that requires applying an algorithm to a data set that is being
constructed from a set of sensors, the result of which will be rendered and then
returned to the user as an easy-to-evaluate image without knowledge of where
the computation is performed, where the data is stored, or where the image/video
is rendered.

C8208_ch04.indd 122C8208_ch04.indd 122 11/16/12 12:25 PM11/16/12 12:25 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Coarse-Grained Multiprocessors 123

FIGURE 4-29 A schematic representation of a grid. A grid provides a user
with seamless access to sensors, visualization devices, imaging systems,
computational resources, databases, applications, and a wide variety of
Internet-ready devices. A user need not know or care where all of these
components are physically located.

Data Acquisition Advanced Visualization Analysis

Imaging Instruments Large Scale
Databases

Internet Ready
Devices (Large

Hadron Collider)
Computational Resources

The term “grid” comes from an analogy to the electric grid, where a user can
simply plug a device into an outlet and get power without knowledge of where or
how the power is supplied from some source to the outlet. Grids are now a viable
solution to certain computationally- and data-intensive computing problems for
reasons that include the following.

 1. The Internet is reasonably mature and able to serve as fundamental infrastruc-
ture for network-based computing.

 2. Network bandwidth, which recently has been doubling approximately every
12 months, has increased to the point of being able to provide efficient and
reliable services.

 3. Storage devices have reached commodity levels, where one can purchase a
terabyte of disk for roughly the same price as a commodity PC.

 4. Many instruments are Internet-aware.

 5. Clusters, NOW, storage, and visualization devices are mainstream.

 6. Major applications, including critical scientific community codes, have been
parallelized.

Limited and controlled grids have moved out of the research laboratories and
are used as production systems. However, the focus of grid deployment continues
to be on the difficult issue of developing high quality middleware in order to
develop a general-purpose grid that coordinates resource sharing and problem
solving in a dynamic, multi-institutional scenario using standard, open, general-
purpose protocols and interfaces that deliver a high quality of service.

C8208_ch04.indd 123C8208_ch04.indd 123 11/16/12 12:25 PM11/16/12 12:25 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

124 Chapter 4 Models of Computation

Many types of computational tasks are naturally suited to grid environments,
including data-intensive applications. Grid-based research and development activities
have generally focused on applications where data is stored in files. However, in many
scientific and commercial domains, database management systems play a central role
in data storage, access, organization, and authorization for numerous applications.

As grid computing initiatives move forward, issues of interoperability, secu-
rity, performance, management, and privacy must be carefully considered. In fact,
security is concerned with various issues relating to authentication in order to
insure application and data integrity. Grid initiatives are also generating best prac-
tice scheduling and resource management documents, protocols, and API specifi-
cations to enable interoperability.

Cloud

The standard joke is that what some companies call a “cloud” is what the rest of us
call the “Internet.” On a serious note, while a cloud (c.f., Figure 4-30) has similarities
to clusters and grids, one distinguishing definition of a cloud is that it is used to
deliver computing as a service rather than as a product.

FIGURE 4-30 Software as a service includes application
software including popular media applications and
proprietary software, which sits on top of traditional
software platforms (communication protocols, security,
queueing systems, communication systems, operating
systems), which sit on top of hardware platforms
 (storage, compute systems, networking). One accesses
a cloud through cell phones, workstations, tablets,
 laptops, and servers, to name a few.

Softwareas a Service

Platforms

Infrastructure

C8208_ch04.indd 124C8208_ch04.indd 124 11/16/12 12:25 PM11/16/12 12:25 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Additional Terminology 125

Cloud computing is often a term that refers to systems that provide computa-
tion, applications, storage, access to data, visualization, and so forth, to users
without providing knowledge of the physical location and configuration of the
system that delivers the services to the user. That is, one of the standard defini-
tions of a cloud is the Internet while another definition of a cloud is that it is a
grid. Finally, many so-called clouds offered to the public are essentially special
purpose clusters. This includes cloud services for data backups, cloud services to
store your media, e.g., photos, videos, movies, and music, cloud services that pro-
vide access to computer programs and associated data, cloud services that provide
access to software, hardware, and data for performing computational experiments,
and so forth.

In an academic/research environment, one critical distinguishing feature of a
cloud is that it is a system, ranging from a simple processor to a small cluster to a
large grid, which typically involves provisioning of dynamically scalable and
 virtualized resources. Like a grid, a cloud must provide ease of access to users,
typically through a browser.

In the case of a physically small compute system, a cloud requires virtualiza-
tion in order to move systems and application software in and out of the compute
system easily in order to satisfy a wide variety of user demands.

In fact, the tremendous impact of cloud computing on business has resulted
in the reorganization of the IT infrastructure at organizations in order to decrease
IT budgets.

Since NOW, clusters, grids, and clouds are not generally restricted to using a
particular architecture or processors with uniform performance characteristics, it
is not possible to give a “one-size-fits-all” analysis of an algorithm executed on
such an environment. Tools developed in this book may help a user develop analy-
sis of an algorithm on a particular NOW, cluster, grid, or cloud.

Additional Terminology

In this chapter, we present an introduction to models of computation that will be
used throughout the book. We also present fundamental algorithms for these mod-
els so that the reader can appreciate some of the similarities and differences among
the models. We have intentionally avoided using too much terminology throughout
this chapter and will continue that practice throughout the book. However, we feel
it would be a disservice not to define some commonly used terminology, defini-
tions, and conjectures that are found in the scientific literature.

Flynn’s Taxonomy: In 1966, M.J. Flynn defined a taxonomy of computer archi-
tectures based on the concepts of both instruction stream and data stream. Briefly,
an instruction stream is defined to be a sequence of instructions performed by the
computer, while a data stream is defined to be the sequence of data items that are
operated on by the instructions. Flynn defines the instruction stream as being either

C8208_ch04.indd 125C8208_ch04.indd 125 11/16/12 12:25 PM11/16/12 12:25 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

126 Chapter 4 Models of Computation

single or multiple, and also defines the data stream as being either single or
 multiple. In particular, he defines the following.

A single instruction stream, single data stream (SISD) machine consists of a
single set of instructions executed one per cycle on a single set of data. The RAM
model is an SISD model, where most individual cores fall into this category. This is
the “von Neumann” model of computing.

A single instruction stream, multiple data stream (SIMD) machine consists of
a set of processors with local memory, a control unit, and an interconnection net-
work. The control unit stores the program and broadcasts the instructions, one per
clock cycle, to all processors simultaneously. All processors execute the same
instruction at the same time, but on the contents of their own local memory.
However, through the use of a mask, processors can be in either an active or inac-
tive state at any time during the execution of a program. Further, these masks can
be determined dynamically. Networks of processors, such as the mesh, pyramid,
and hypercube, can be built as SIMD machines. In fact, the algorithms that we
have described so far for these network models have been described in an SIMD
fashion. When one thinks about SIMD systems, one typically thinks of fine-
grained synchronous systems.

A multiple instruction stream, single data stream (MISD) machine is a
model that doesn’t make much sense. One might argue that systolic arrays fall
into that category, but such a discussion is not productive within the context of
this book.

A multiple instruction stream, multiple data stream (MIMD) machine typi-
cally consists of a set of processors with local memory and an interconnection
network. In contrast to the SIMD model, the MIMD model allows each processor
to store and execute its own program. However, in reality, in order for multiple
processors to cooperate to solve a given problem, these programs must at least
occasionally synchronize and cooperate. In fact, it is quite common for an algo-
rithm to be implemented in such a fashion that all processors execute the same
program. This is referred to as the single-program multiple-data (SPMD) program-
ming style. Notice that this style is popular since it is typically infeasible to write a
large number of different programs that will be executed simultaneously on differ-
ent processors. Most commercially available multiprocessor machines fall into the
MIMD category, including clusters, NOW, departmental servers, and so on. These
systems contain multiple processors and either a physically or virtually “shared
memory.” Further, most large codes implemented on such systems fall into the
SPMD category.

Granularity: Machines can also be classified according to their granularity.
That is, machines can be classified according to the number and/or complexity of
their processors. For example, a commercial machine with a dozen or so very fast
and complex processors would be classified as a coarse-grained machine, while a
machine with hundreds of thousands of very simple processors would be

C8208_ch04.indd 126C8208_ch04.indd 126 11/16/12 12:25 PM11/16/12 12:25 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Additional Terminology 127

classified as a fine-grained machine. Most commercially available multiprocessor
machines fall into the coarse-grained MIMD category. Of course, such terminol-
ogy is quite subjective and may change with time.

This terminology is also used to characterize the relationship between the
amount of data being processed, n, and the number of processors, q. When
n/q = Θ(1), we consider the machine to be fine-grained. When the ratio n/q is
larger, we speak of medium-grained or coarse-grained parallel computers. We
 usually call a computer medium-grained if n/q = ω (1) and q > n/q, and we call a
computer coarse-grained if q ≤ n/q.

We now define some general performance measures. These are common terms
that the user is likely to come across while reading the scientific literature.

Throughput: The term throughput refers to the number of results produced per
unit time. This is a critical measure of the effectiveness of our problem-solving
environment, which includes not only algorithms used to solve problems, the com-
puting system, i.e., processors, interconnection network, memory, disk, access to
disk, and so forth, but also the quality of any queueing system and other operating
system features.

Cost/Work: Let Tpar(n, q) represent the length of time that an algorithm oper-
ating on n data items with q processors takes to solve a problem. Then the
cost of such a parallel algorithm, as previously discussed, can be defined as
C(n, q) = q × Tpar(n, q). That is, the cost of an algorithm is defined as the number
of potential instructions that could be executed during the running time of the
algorithm, which is clearly the product of the running time and the number of pro-
cessors. A term that is related to cost is work, which is typically defined to be the
actual number of instructions performed regardless of the wall-clock time it takes
to perform these operations.

Speedup: We define speedup as the ratio between the time taken for the most
efficient sequential algorithm to perform a task and the time taken for the most
efficient parallel algorithm to perform the same task on a machine with n
 processors, which we denote as Sn,q = Tseq(n)/Tpar(n, q). The term linear speedup
refers to a speedup of Sn,q = q. In general, linear speedup cannot be achieved since
the coordination and cooperation of processors to solve a given problem must take
some time. However, we have seen that it is often possible to achieve a speedup
within a constant factor of linear, i.e., Sn,q = Θ(q). An interesting debate concerns
the concept of superlinear speedup, or the situation where Sn, q > q.

For example, if we consider asymptotic analysis, then it would seem that a
sequential algorithm could always be written to emulate the parallel algorithm with
O(q) slowdown, which implies that superlinear speedup is not possible. However,
assume that the algorithms are chosen in advance. Then several situations could
occur. First, in a nondeterministic search-type algorithm, a multiprocessor search

C8208_ch04.indd 127C8208_ch04.indd 127 11/16/12 12:25 PM11/16/12 12:25 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

128 Chapter 4 Models of Computation

might simply get lucky and discover the solution before such an emulation of the
algorithm might. That is, the parallel algorithm has an increased probability of get-
ting lucky in certain situations. Second, effects of memory hierarchy might come
into play. For example, a set of very lucky or unlucky cache hits could have a dras-
tic effect on running time.

Efficiency: The efficiency of an algorithm is a measure of how well utilized the
processors are. That is, efficiency is the ratio of sequential running time and the
cost on a q-processor machine, which is equivalent to the ratio between the q-pro-
cessor speedup and q. So, efficiency is given as En,q = Tseq(n)/C(n, q) = Sn,q /q.

Amdahl’s Law: While discussing speedup, we should define Amdahl’s Law,
which states that the maximum speedup achievable by an n-processor machine is
given by Sn ≤ 1/3 f + (1 − f)/n4 , where f is the fraction of operations in the compu-
tation that must be performed sequentially. So, for example, if five percent of the
operations in a given computation must be performed sequentially, then the
speedup can never be greater than 20, regardless of how many processors are used.
That is, a small number of sequential operations can significantly limit the speedup
of an algorithm on a parallel machine.

Fortunately, what Amdahl’s Law overlooks is the fact that for many algorithms,
the percentage of required sequential operations decreases as the size of the prob-
lem increases. Further, it is often the case that as one scales up a parallel machine,
scientists often want to solve larger and larger problems, and not just the same
problems more efficiently. That is, it is common enough to find that for a given
machine, scientists will want to solve the largest problem that fits on that machine,
and complain that the machine isn’t just a bit bigger so that they could solve the
larger problem they really want to consider.

Scalability: We say that an algorithm is scalable if the level of parallelism
increases at least linearly with the problem size. We say that an architecture is scal-
able if the machine continues to yield the same performance per processor as the
number of processors increases. In general, scalability is important in that it allows
users to solve larger problems in the same amount of time by purchasing a machine
with more processors.

Summary

In this chapter, we discuss a variety of models of computation. These include the
classical RAM model for single-processor computers, as well as several models of
parallel computation, including the PRAM, linear array, mesh, tree, pyramid,
hypercube, and others. For each model of computation, we discuss solutions to
fundamental problems and give analysis of our solutions’ running times. We also
discuss, for parallel models, factors that can limit the efficiency of the model, such
as the communication diameter and the bisection width. Finally, we discuss

C8208_ch04.indd 128C8208_ch04.indd 128 11/16/12 12:25 PM11/16/12 12:25 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter Notes 129

current coarse-grained systems, including Network of Workstations (NOW), clus-
ters, grids, and clouds, as well as some standard terminology and definitions.

Chapter Notes

The emphasis of this chapter is on introducing the reader to a variety of parallel
models of computation. A nice, relatively concise presentation is given in
“Algorithmic Techniques for Networks of Processors,” by R. Miller and Q.F.
Stout in the Handbook of Algorithms and Theory of Computation, M. Atallah, ed.,
CRC Press, Boca Raton, FL, 1994–1998. A general text targeted at undergradu-
ates that covers algorithms, models, real machines, and some applications, is
Parallel Computing Theory and Practice by M.J. Quinn (McGraw-Hill, Inc., New
York, 1994). For a book that covers PRAM algorithms at a graduate level, the
reader is referred to An Introduction to Parallel Algorithms by J. Já Já (Addison-
Wesley, Reading, MA., 1992), while advanced undergraduate students or gradu-
ate students interested primarily in mesh and pyramid algorithms might refer to
Parallel Algorithms for Regular Architectures: Meshes and Pyramids by R. Miller
and Q.F. Stout (The MIT Press, Cambridge, MA., 1996). For the reader interested
in a text devoted to hypercube algorithms, see Hypercube Algorithms for Image
Processing and Pattern Recognition by S. Ranka and S. Sahni (Springer-Verlag,
1990). A parallel algorithms book that focuses on models related to those pre-
sented in this chapter is Introduction to Parallel Algorithms and Architectures:
Arrays, Trees, Hypercubes by F.T. Leighton (Morgan Kaufmann Publishers, San
Mateo, CA., 1992).

While Amdahl’s law is discussed or mentioned in most texts on parallel algo-
rithms, it is worth mentioning the original paper, “Validity of the single processor
approach to achieving large scale computing capabilities” by G. Amdahl, AFIPS
Conference Proceedings, vol. 30, Thompson Books, pp. 483–485, 1967. Similarly,
Flynn’s taxonomy is a standard in texts devoted to parallel computing. The original
articles by Flynn are “Very high-speed computing systems” by M.J. Flynn,
Proceedings of the IEEE, 54 (12), pp. 1901–1909, 1966, and “Some computer
organizations and their effectiveness” by M.J. Flynn, IEEE Transactions on
Computers, C-21, pp. 948–960, 1972.

The coarse-grained multicomputer, CGM(n, q), was introduced in F. Dehne,
A. Fabri, and A. Rau-Chaplin, “Scalable parallel geometric algorithms for multi-
computers,” Proceedings 9th ACM Symposium on Computational Geometry (1993),
pp. 298–307, and has been used in many subsequent papers (see, e.g., F. Dehne,
ed., special edition of Algorithmica 24, no. 3–4, 1999, devoted to coarse grained
parallel algorithms). The proof that we give in Appendix 3 that gather and scatter
algorithms can be performed on a CGM(n, q) in time approximately proportional
to the amount of data being gathered or scattered appears in L. Boxer and R. Miller,
“Coarse grained gather and scatter operations with applications,” Journal of
Parallel and Distributed Computing 64 (2004), 1297–1320.

C8208_ch04.indd 129C8208_ch04.indd 129 11/16/12 12:25 PM11/16/12 12:25 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

130 Chapter 4 Models of Computation

For more about multiprocessor systems, see http://www.cloudbus.org/, a Web
site for the IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGrid), and also the book edited by P. Kacsuk, T. Fahringer and Z.
Nemeth, entitled Distributed and Parallel Systems: From Cluster to Grid
Computing, Springer Science+Business Media, New York, 2007.

The reader interested in additional information about a Network of Work-
stations (NOW) is referred to the Condor Web site, which is maintained at http://
research.cs.wisc.edu/condor/.

Two good references for additional information about clusters include the Web
site for IEEE Cluster, which is http://www.ieeecluster.org/, as well as the Web site for
an annual IEEE conference on cluster computing, at http://www.clustercomp.org/.

The reader interested in additional information about a grid might consider the
book Introduction to Grid Computing, by F. Magoules, J. Pan, K.-A. Tan and A.
Kumar, CRC Press, London, England, 2009, as well as the book by B. Wilkinson,
entitled Grid Computing: Techniques and Applications, Chapman & Hall/CRC,
Boca Raton, FL, 2010.

For more about cloud computing, see the following.

• IEEE Cloud: International Conference on Cloud Computing. http://www
.thecloudcomputing.org/

• G. Reese, Cloud Application Architectures: Building Applications and Infra-
structure in the Cloud, O’Reilly Media, Sebastopol, CA, 2009.

• B. Sosinsky, Cloud Computing Bible, Wiley Publishing, Inc., Indianapolis,
IN, 2011.

The reader interested in additional information about programming GPGPU
systems might consider Programming Massively Parallel Processors: A Hands-on
Approach (Applications of GPU Computing Series), by D. B. Kirk and W.-m. W.
Hwu, Morgan-Kaufmann Publishers, Burlington, Massachusetts, 2010. The reader
interested in programming NVIDIA GPGPUs should consider the book CUDA by
Example: An Introduction to General-Purpose GPU Programming, by J. Sanders
and E. Kandrot, Addison-Wesley, Reading, Massachusetts, 2011.

For more general books focused on multicore systems, the reader is referred to
the following.

• J. Kurzak, D.A. Bader, and J. Dongarra, Scientific Computing with Multicore
and Accelerators, CRC Press, Boca Raton, FL, 2010.

• T. Rauber and G. Rünger, Parallel Programming for Multicore and Cluster
Systems, Springer-Verlag Berlin Heidelberg, New York, 2010.

Exercises

 1. Consider the “star-shaped” architecture shown in Figure 4-31, which consists
of n processors, labeled from 0 to n − 1, where processor P0 is directly con-
nected to all other processors, but for i, j > 0, i ≠ j, processors Pi and Pj are not
directly connected.

C8208_ch04.indd 130C8208_ch04.indd 130 11/16/12 12:25 PM11/16/12 12:25 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Exercises 131

FIGURE 4-31 A star-shaped computer of size 6.

0

1

3

2 5

4

 a. Explain why this architecture has a “serial bottleneck” at processor P0 .
 b. How much time is required to compute a semigroup operation ⊗ i=0

n−1xi on
this architecture, where xi is stored in processor Pi?

 c. Does the star-shaped configuration seem to be a useful arrangement of
 processors for parallel computation?

 2. Consider an architecture consisting of n processors partitioned into two disjoint
subsets, A and B, each with n/2 processors. Further, assume that each processor
in A is joined to each processor in B, but no pair of processors having both mem-
bers in A or both members in B are joined. See Figure 4-32 for an example.

FIGURE 4-32 An architecture in which n processors
are partitioned into two disjoint subsets of n/2
 processors each.

A B

 a. Design and analyze an efficient parallel algorithm for computing a
 semigroup operation on this architecture that is faster than that possible for
a star-shaped architecture. Assume the semigroup operation is given as
⊗ i=0

n−1xi, where xi is stored in processor Pi.

 b. What is the bisection width of this architecture? What does this imply about
the practicality of this architecture?

C8208_ch04.indd 131C8208_ch04.indd 131 11/16/12 12:25 PM11/16/12 12:25 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

132 Chapter 4 Models of Computation

 3. Define an X-tree to be a tree machine in which neighboring processors on a
level are connected. That is, each interior processor has two additional links,
one to each of its left and right neighbors. Processors on the outer edge of the
tree, with the exception of the root, have one additional link, to its neighboring
node in its level.

 a. What is the communication diameter of an X-tree? Explain.
 b. What is the bisection width of an X-tree? Explain.
 c. Give a lower bound on sorting for the X-tree. Explain.

 4. Suppose that we have constructed a CRCW PRAM algorithm to solve prob-
lem A in O(t(n)) time. When we begin to consider solutions to problem A on a
CREW PRAM, what information will help us bound the running time to solve
this problem on a CREW PRAM? Justify your answer.

 5. Suppose that problem A can be solved on a CREW PRAM in Θ(t(n)) time. If
we now consider a solution to the same problem A on an EREW PRAM, how
does the CREW PRAM algorithm help us in determining a lower bound on the
running time to solve this problem on an EREW PRAM?

 6. Give an asymptotically optimal algorithm to sum n values on a 3-dimensional
mesh. Discuss the running time and cost of your algorithm. Give a precise
definition of your model.

 7. Give an efficient algorithm to sum n values on a hypercube.

 8. Define a linear array of size n with a bus to be a 1-dimensional mesh of size n
augmented with a single global bus. Every processor is connected to the bus,
and in each unit of time, one processor can write to the bus and all processors
can read from the bus. That is, the bus may be thought of as a CREW bus.

 a. Give an efficient algorithm to sum n values, initially distributed one per
processor. Discuss the time and cost of your algorithm.

 b. Give an efficient algorithm to compute the parallel prefix of n values, initially
distributed one per processor. Discuss the time and cost of your algorithm.

 9. Show that a pyramid computer with base size n contains (4n − 1)/3 processors.
Hint: Let n = 4k for integer k ≥ 0, and use mathematical induction on k.

 10. Why is it unrealistic to expect to solve an NP-complete problem on the PRAM
in polylogarithmic time using a polynomial number of processors?

 11. a. Show that a gather operation, in which one data item is collected from each
processor of a linear array of q processors, runs in Ω(q) time in the worst case.

 b. Devise an algorithm to gather one data item from each processor of a linear
array of q processors into any one of the processors. Analyze the running
time of your algorithm. Hint: an efficient algorithm will run in Θ(q) time.
Note this shows that Θ(q) is optimal for such an operation, and the O(q)
time we have claimed for a gather of q data items on a CGM(n, q) is opti-
mal in the worst case, i.e., with respect to the worst case architecture.

C8208_ch04.indd 132C8208_ch04.indd 132 11/16/12 12:25 PM11/16/12 12:25 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Exercises 133

 12. Given a set of q data items, assume that algorithms for gather and scatter oper-
ations are available to apply to a set of q data items that run in Θ(q) time on a
CGM(n, q). State and analyze the running time of an efficient algorithm to
broadcast a value from one processor of a CGM(n, q) to all processors.

 13. The model of computation for this problem is a fine-grained SIMD parallel
computer configured as a master set of n1/4 × n1/4 mesh of n1/4 × n1/4 base
meshes, as illustrated in Figure 4-33. That is, each processor of the master
n1/4 × n1/4 mesh serves as a communications processor for its n1/4 × n1/4 base
mesh. Each communications processor is connected to every processor of its
base mesh. For the sake of simplicity, assume all processors, master or base,
run at identical speed, and all communications links between any two proces-
sors carry a unit of data in the same constant amount of time.

 a. Give an efficient algorithm to broadcast a unit of data from a processor in a
base mesh to all processors in this architecture in optimal time.

 b. Suppose a list of numbers is distributed one member per base processor of
this architecture. Give an efficient algorithm to compute the total of these
numbers, and show its running time is optimal for this architecture. You
may make use of the fact that addition is commutative.

 c. Suppose a list of data records is distributed one member per base processor
of this architecture. Give a lower bound for the running time of any algo-
rithm to sort this list.

FIGURE 4-33 A cluster made up of a 2 × 2 mesh
of 2 × 2 meshes. The processors labeled a, b, c,
and d, are communications processors for each
of the processors in a base mesh.

a
b

c
d

C8208_ch04.indd 133C8208_ch04.indd 133 11/16/12 12:25 PM11/16/12 12:25 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Combinational Circuits and Sorting Networks

Bitonic Merge

Bitonic Sort

Summary

Chapter Notes

Exercises

5
Combinational
Circuits

Background Photo Credit © Spectral-Design / Shutterstock
All Images used within the chapter are © 2013 Cengage Learning

C8208_ch05.indd 134C8208_ch05.indd 134 11/15/12 10:14 AM11/15/12 10:14 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In this chapter, we present efficient algorithms to sort data on a PRAM and on a
hypercube. In addition, the methodology presented in this chapter is used later in the

book to provide sorting algorithms for mesh-based architectures.
A significant portion of the computing cycles in the 1960s and 1970s was devoted

to sorting/ordering data. As a result, a substantial effort has been put into developing
efficient sorting techniques.

The focus of this chapter is on a then-revolutionary Bitonic Sort algorithm intro-
duced in 1968 by Ken Batcher. The algorithm was proposed for a simple hardware
model, which we will present. We will also discuss implementations of Bitonic Sort on
several models of computation that we introduced in Chapter 4.

It is important to note that using hardware to sort data also provides an efficient
way to route data on circuit boards, which was one of Batcher’s motivations. In fact, in
his seminal 1968 paper, Batcher actually proposed two hardware-based sorting algo-
rithms, namely, Bitonic Sort and Odd-Even Merge Sort. Both of these algorithms are
based on a Merge Sort framework. Both algorithms are also presented for a simple
hardware model. Further, in the case of Bitonic Sort, Batcher makes the insightful
observation that such an algorithm would be very efficient on a parallel computer with
the interconnection properties of a hypercube.

C8208_ch05.indd 135C8208_ch05.indd 135 11/15/12 10:14 AM11/15/12 10:14 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

136 Chapter 5 Combinational Circuits

Combinational Circuits and Sorting Networks

We begin this chapter with a presentation of combinational circuits. A combina-
tional circuit is a hardware model that consists of a unidirectional flow of data
from input to output through a series of basic functional units. We present illustra-
tions of combinational circuits that show the flow of information. The input data
flows along communication lines, through functional units that perform basic
operations, and the results are finally presented as output. The functional units are
represented by boxes. It is understood that, in these diagrams, the information
flows from left to right.

After this introduction, we discuss Batcher’s Bitonic Merge Unit, as applied to
combinational circuits. We then present an in-depth analysis of the running time of
the Bitonic Merge routine on this model. Finally, we conclude with a combina-
tional circuit implementation and analysis of Bitonic Sort, which takes advantage
of this very interesting Bitonic Merge Unit.

Combinational circuits were among the earliest models developed in terms of
providing a systematic study of parallel algorithms. They have the advantage of
being simple, and many algorithms that are developed for combinational circuits
serve as the basis for algorithms presented elsewhere in this book for other models
of parallel computing.

A combinational circuit can be thought of as taking input from the left, allow-
ing data to flow through a series of functional units in a systematic fashion, and
producing output at the right. The functional units in the circuit are quite simple.
Each such unit performs a single operation in Θ(1) time. These operations include
logical operations such as and, or, and not, comparisons such as < , > , and = , and
fundamental arithmetic operations such as addition, subtraction, minimum, and
maximum.

These functional units are connected to each other by unidirectional links,
which serve to transport the data. These units are assumed to have constant fan-in
and constant fan-out. That is, the number of links entering a functional unit and the
number of links exiting a functional unit are both bounded by a constant.

In this chapter, we restrict our attention to comparison-based combinational
networks in which each functional unit simply takes two values as input and pres-
ents these values ordered on its output lines. Finally, it should be noted that there
are no cycles in these circuits.

Sorting Networks

We consider a comparison-based combinational circuit that can be used as a
 general-purpose sorting network. Such sorting networks are said to be oblivious to
their inputs since this model fixes the sequence of comparisons in advance. That
is, the sequence of comparisons is not a function of the input values. Notice that
some traditional sorting routines, such as Quicksort or Heapsort, are not oblivious
in that they perform comparisons that are dependent on the input data.

C8208_ch05.indd 136C8208_ch05.indd 136 11/15/12 10:14 AM11/15/12 10:14 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Combinational Circuits and Sorting Networks 137

While Bitonic Sort was originally defined in terms of sorting networks, it was
intended to be used not only as a sorting network, but as a simple switching net-
work for routing multiple inputs to multiple outputs. The basic element of a sorting
network is the comparison element, which receives two inputs, say, A and B, and
produces both the minimum of A and B and the maximum of A and B as output, as
shown in Figure 5-1.

FIGURE 5-1 An illustration of a comparison
element. This is the fundamental element of a
sorting network. The comparison element
receives inputs A and B and produces outputs
min(A,B) and max(A,B).

A min(A,B)

B max(A,B)

The reader should notice that by including the third case in the Definition, the
first two cases become equivalent, and thus redundant. The third case can be inter-
preted as stating that a circular rotation of the members of the sequence yields
an example of one of the first two cases. For example, the sequence 83, 2, 1, 6, 8, 24, 15, 109 is bitonic, since there is a circular rotation of the
sequence that yields 86, 8, 24, 15, 10, 3, 2, 19 , which satisfies case 1.

A bitonic sequence can therefore be thought of as a circular list that obeys the
following.

• Start a traversal at the entry in the list of minimal value, which we will refer
to as x.

• Traverse the list in either direction. During a traversal, we will encounter elements
in nondecreasing order until we reach a maximum element in the list, after which
we will encounter elements in nonincreasing order until we return to x. Notice
that if there are duplicate elements in the sequence, then there will be plateaus in
the traversal where multiple items of the same value appear contiguously.

Definition: A sequence a = 8a1, a2, . . ., ap9 of p numbers is said to be
bitonic if and only if

 1. a1 ≤ a2 ≤ . . . ≤ ak ≥ . . . ≥ ap, for some k, 1 < k < p, or

 2. a1 ≥ a2 ≥ . . . ≥ ak ≤ . . . ≤ ap, for some k, 1 < k < p, or

 3. a can be split into two parts that can be interchanged to give either of the
first two cases.

C8208_ch05.indd 137C8208_ch05.indd 137 11/15/12 10:14 AM11/15/12 10:14 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

138 Chapter 5 Combinational Circuits

Before introducing a critical theorem about bitonic sequences, we make an
important observation about two monotonic sequences. Given one ascending
sequence and one descending sequence, they can be concatenated to form a bitonic
sequence. Therefore, a network that sorts a bitonic sequence into monotonic order
can be used as a merging network. That is, such a network will take as input a
bitonic sequence and produce as output a sorted sequence. In particular, given any
of i) the concatenation of ordered list A and the reverse of ordered list B, ii) the
ordered list B concatenated to the reverse of ordered list A, iii) the reverse of ordered
list A concatenated to ordered list B, or iv) the reverse of ordered list B concatenated
to ordered list A, a bitonic merge network will produce a sorted list of A

∩

B.
The proof of the theorem that follows is critical to an understanding of bitonic

sequences and bitonic merge units. More importantly, the proof is constructive in
that it can be used to devise a combinational circuit of a bitonic merge unit or an
algorithm for performing Bitonic Merge. We urge the reader to comprehend fully
the intricacies of the proof in order to understand and appreciate the construction
of a wide variety of parallel sorting methods that will be presented in this text.

Theorem: Given a bitonic sequence a = 8a1, a2, . . ., a2n9 , the following hold.

a. d = 8min{ai, an+i}9 i=1
n = 8min{a1, an+1}, min{a2, an+2}, . . . , min{an, a2n}9 is

bitonic.

b. e = 8max{ai, an+i}9 i=1
n = 8max{a1, an+1}, max{a2, an+2}, . . . , max{an, a2n}9 is

bitonic.

c. max(d) ≤ min(e).

Proof: Let di = min{ai, an+i} and ei = max{ai, an+i}, 1 ≤ i ≤ n. We must prove that
i) d is bitonic, ii) e is bitonic, and iii) max(d) ≤ min(e). Without loss of generality,
we can assume that a1 ≤ a2 ≤ . . . ≤ aj−1 ≤ aj ≥ aj+1 ≥ . . . ≥ a2n, for some j such that
n ≤ j ≤ 2n.

• Suppose an ≤ a2n. For 1 ≤ i ≤ n, if n + i < j then the choice of j implies ai ≤ an+i,
while if n + i ≥ j then ai ≤ an ≤ a2n ≤ an+i. (See Figure 5-2.) Therefore, if
an ≤ a2n, we have di = ai and ei = an+i. Further, since max (d) = an and
min(e) = min(an+1, a2n), we also have max(d) ≤ min(e). This completes the
proof for the case where an ≤ a2n.

• Now consider the case where an > a2n. Since a is nondecreasing for i ≤ j and
nonincreasing for i ≥ j, and since aj−n ≤ aj, then there is an index k, j ≤ k < 2n,
for which ak−n ≤ ak and ak−n+1 > ak+1. This is illustrated in Figure 5-3.

First, consider the sequence d. For 1 ≤ i ≤ k − n, we have either

• i + n ≤ j, which implies ai ≤ ai+n, or

• i + n > j, in which case ai ≤ ak−n ≤ ak ≤ ai+n, the last inequality in the chain
following from

(i ≤ k − n) ⇒ (j < i + n ≤ k).

C8208_ch05.indd 138C8208_ch05.indd 138 11/15/12 10:14 AM11/15/12 10:14 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Combinational Circuits and Sorting Networks 139

Thus, for 1 ≤ i ≤ k − n, we have di = ai. Further, this subsequence of d is non-
decreasing. Next, notice that di = an+i for k − n < i ≤ n, since for such i,

ai ≥ ak−n+1 (since k − n + 1 ≤ i ≤ n ≤ j)

≥ ak+1 (by choice of k)

≥ ai+n (since j < k + 1 ≤ i + n).

Further, this subsequence of d is nonincreasing. Therefore, d is made of a non-
decreasing subsequence followed by a nonincreasing subsequence. By the first
part of the bitonic sequence definition, we know that d is bitonic.

Now consider the sequence e. Notice that ei = an+i for 1 ≤ i ≤ j − n. Further, this
subsequence of e is nondecreasing. Next, notice that ei = an+i for j − n ≤ i ≤ k − n.
Further, this subsequence is easily seen to be nonincreasing. Finally, notice that
ei = ai for k − n < i ≤ n. This final subsequence of e is nondecreasing. Therefore, e is
bitonic by case three from the definition since we also have that en = an ≤ an+1 = e1.
See Figure 5-3.

Now, consider the relationship between bitonic sequences d and e. Notice that
max(d) = max{ak−n, ak+1} and min(e) = min{ak, ak−n+1}. It follows easily that
max(d) ≤ min(e), completing the proof for the case of an > a2n.

FIGURE 5-2 An illustration of a bitonic
sequence <a> in which an ≤ a2n and aj is a
maximal element of <a> , where n ≤ j ≤ 2n.

1 i n j n�i 2n

FIGURE 5-3 An illustration of a bitonic
sequence <a> in which an > a2n, aj is a
maximal element of <a> , where n ≤ j ≤ 2n,
and there exists a pivot element k such that
ak−n ≤ ak and ak−n+1 > ak+1.

1 k�n

<d>

<e>

<d>

k�n�1
n j k k�1 2n

C8208_ch05.indd 139C8208_ch05.indd 139 11/15/12 10:14 AM11/15/12 10:14 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

140 Chapter 5 Combinational Circuits

Bitonic Merge

The theorem above gives the iterative rule for constructing a bitonic merge unit.
That is, a unit that will take a bitonic sequence as input and produce a monotonic
sequence as output. (See Figure 5-4.) It is important to note that this is only a
merge step, and that this merge step works only on bitonic sequences. After we
finish our discussion and analysis of the merge unit, we will show how to utilize
this merge unit to sort data in the Bitonic Sort algorithm.

We now present the Bitonic Merge algorithm. The input to the routine is a
bitonic sequence A and direction, i.e., ascending or descending, into which A will
be sorted. Notice this is unlike the merge algorithm used in Merge Sort, for which
two lists are input. The routine will produce a monotonic sequence Z, ordered as
requested.

Subprogram BitonicMerge(A, Z, direction)
Procedure: Merge bitonic list A, assumed at top level of recursion to be of
size 2n, to produce list Z, where Z is ordered according to the function
direction, which can be viewed as a Θ(1)-time function with values “<” or “>”.
Local variables: i: list index
Zd, Z 'd, Ze, Z 'e: lists, initially empty

Action:

 If 0A 0 < 2 then return Z = A {This is a base case
 of recursion}
 Else
 For i = 1 to n, do
 If direction(Ai,An+i), then
 append Ai to Zd and append An+i to Ze
 Else append An+i to Zd and append Ai to Ze
 End For

FIGURE 5-4 Input and output for a bitonic merge unit.

Input:

a bitonic
sequence

Output:

Bitonic Merge Unit

a monotonic
(ordered)
sequence

C8208_ch05.indd 140C8208_ch05.indd 140 11/15/12 10:14 AM11/15/12 10:14 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Bitonic Merge 141

 BitonicMerge(Zd,Z'd direction)
 BitonicMerge(Ze,Z'e, direction)
 Concatenate(Z'd,Z'e,Z)
 End Else 0A 0 ≥ 2
End BitonicMerge

Notice the strong resemblance in algorithmic structure between Bitonic Merge
and both Merge Sort and Quicksort, c.f., Chapter 9.

• Bitonic Merge is similar to Merge Sort in that it requires a list of elements to
be split into two even sublists, recursively sorted, and then concatenated. Be
aware, though, that Merge Sort takes as input an unordered list, which is sorted
to produce an ordered list, while Bitonic Merge takes as input a bitonically
ordered list and produces an ordered list.

• Bitonic Merge is similar to Quicksort in that it splits a list into sublists,
recursively solves the problem on the sublists, and then concatenates the sub-
lists into the final list. In fact, notice that for each of Bitonic Merge and
Quicksort, the two intermediate sublists that are produced both have the
property that every element in one of the lists is greater than or equal to
every element in the other list. As above, we observe that Quicksort is less
restrictive than Bitonic Merge, in that the input to Quicksort is a list that
need not have any order, while the input to Bitonic Merge must be a bitoni-
cally ordered list.

As described, a Bitonic Merge unit for 2n numbers is constructed from n com-
paritors and two n-item Bitonic Merge units. Two items can be merged with a sin-
gle comparison unit. In fact, n pairs of items can be simultaneously merged using
one level of merge units. That is, if L(x) is the number of levels of comparitors
required to merge simultaneously x/2 pairs of items, we know that the base case is
L(2) = 1. In general, to merge two bitonic sequences, each of size n, requires
L(2n) = L(n) + 1 = log2 2n levels.

In terms of our analysis of running time, we assume that a comparison unit
performs its operation in Θ(1) time. So, each level of a sorting network contributes
Θ(1) time to the total running time. Therefore, a bitonic merge unit for 2n numbers
performs a Bitonic Merge in Θ(log n) time.

Now consider implementing Bitonic Merge on a sequential machine. The
algorithm employs Θ(log n) iterations of a procedure that makes n com parisons.
Therefore, the total running time for this merge routine on a sequential machine is
Θ(n log n). As a means of comparison, recall that i) the time for Merge Sort to
merge two lists with a total of n items is Θ(n), and ii) the time for Quicksort to
partition a set of n items is, as we show later in the book, Θ(n).

In Figure 5-5, we present a 2n-item bitonic merge unit. It is important to note
that the input sequence, a, is bitonic and that the output sequence, c, is sorted. The

C8208_ch05.indd 141C8208_ch05.indd 141 11/15/12 10:14 AM11/15/12 10:14 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

142 Chapter 5 Combinational Circuits

c1

c2

c3

cn+1

cn+2

cn+3

cn–2

cn–1

cn

c2n–2

c2n–1

c2n

a1

a2
a3

an–2
an–1

an

an+1

an+2
an+3

a2n–2
a2n–1
a2n

n-item

Bitonic

Merge

n-item

Bitonic

Merge

L
H

L
H

L
H

L
H

L
H

L
H

.

.

.

FIGURE 5-5 The iterative rule for constructing a bitonic merge unit. The input
sequence <a> consists of 2n items and is bitonic. The 2n item output sequence
<c> is sorted.

boxes represent the comparitors that accept two inputs and produce two outputs,
namely, L, which represents the minimum of the two input values, and H, which
represents the maximum of the two input values. The reader might think of L as
being the “lower” value of the pair of inputs and H as being the “higher” value of
the pair.

Figures 5-6 and 5-7 present examples of a four-element bitonic merge unit and
an eight-element bitonic merge unit, respectively. The input sequence <a> in both
figures is assumed to be bitonic. Further, as in Figure 5-5, we let L denote the
minimum result of the comparison, and we let H represent the maximum result. As
mentioned in the text, the reader might think of L as being the “lower” value of the
pair of inputs and H as being the “higher” value of the pair.

Bitonic Sort

Bitonic Sort is a sorting routine based on Merge Sort. Given a list of n elements,
Merge Sort can be viewed in a bottom-up fashion as first merging n single ele-
ments into n/2 pairs of ordered elements. The next step consists of pair-wise merg-
ing these n/2 ordered pairs of elements into n/4 ordered quadruples. This process
continues until the last stage, which consists of merging 2 ordered groups of

C8208_ch05.indd 142C8208_ch05.indd 142 11/15/12 10:14 AM11/15/12 10:14 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Bitonic Sort 143

a1

a2

a3

a4

a5

a6

a7

a8

c1

c2

c3

c4

c5

c6

c7

c8

An 8-item bitonic merge unit performs a comparison-interchange
on items 4 apart (comparing a1 and a5, a2 and a6, a3 and a7, and
simultaneously a4 and a8) and then sends the minima into a 4-item
bitonic merge unit and the maxima into a 4-item bitonic merge unit.

Comparison-
Interchange
Level

A pair of 4-item
bitonic merge
units

FIGURE 5-7 An 8-item bitonic merge unit. Note that the input sequence 8a1, . . ., a89 is bitonic and the output sequence 8c1, . . ., c89 is sorted.
The number of levels L(2n) can be determined as
L(2n) = L(2 × 4) = 1 + L(4) = 1 + 2 = 3 = log2 8 = log2 (2n).

FIGURE 5-6 A four-item bitonic merge unit. Note that 8a1, a2, a3, a49
is the bitonic input sequence and 8c1, c2, c3, c49 is the sorted output
sequence. The number of levels L(2n) can be determined as
L(2n) = L(2 × 2) = 1 + L(n) = 1 + L(2) = 2 = log2 (2n).

c1

c2

c3

c4

a1

a2

a3

a4

L
H

L
H

L
H

Comparison-
Interchange
Level

A pair of 2-item
bitonic merge
units

L

A 4-item bitonic merge unit performs a
comparison-interchange on items 2 apart
(comparing a1 and a3 and simultaneously
a2 and a4) and then sends the minima into
a 2-item bitonic merge unit and the maxima
into a 2-item bitonic merge unit.

H

C8208_ch05.indd 143C8208_ch05.indd 143 11/15/12 10:14 AM11/15/12 10:14 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

144 Chapter 5 Combinational Circuits

elements, each of size n/2, into a single ordered list of size n. Bitonic Sort works in
much the same way.

Given an initial input list of random elements, notice that every pair of ele-
ments is bitonic. Therefore, in the first stage of Bitonic Sort, bitonic sequences of
size 2 are merged to create ordered lists of size 2. Notice that if these lists alternate
between being ordered into increasing and decreasing order, then at the end of this
first stage of merging, we actually have n/4 bitonic sequences of size 4. In the next
stage, bitonic sequences of size 4 are merged into sorted sequences of size 4, alter-
nately into increasing and decreasing order, so as to form n/8 bitonic sequences of
size 8. Given an unordered sequence of size 2n, notice that exactly log2 2n stages
of merging are required to produce a completely ordered list. Note that we have
assumed, for the sake of simplicity, that 2n = 2k, for some positive integer k. See
Figure 5-8.

FIGURE 5-8 An example of Bitonic Sort on 8 data items. Note that the input
sequence <a> is initially unordered, and the output sequence <c> is sorted
into nondecreasing order. The symbol “I” means that the comparison is done
so that the items appear in increasing order. That is, the top output item is less
than or equal to the bottom output item. The symbol “D” represents that the
comparison is done so that the items appear in decreasing order. That is, the
top output item is greater than or equal to the bottom output item.

a1

a2

a3

a4

a5

a6

a7

c1

c3

c2

c4

c6

c5

c7

a8 c8

I I I I I I

D I I I I I

I D D I I I

D D D I I I

Now consider the merging stages. Each of the log2 2n stages of Bitonic Sort
utilizes a different number of comparitors. In fact, notice that in stage 1, each
bitonic list of size 2 is merged with one comparitor. In stage 2, each bitonic
sequence of size 4 is merged with two levels of comparitors, as per our previous
example. In fact, at stage i, the Bitonic Merge requires i levels of comparitors.

C8208_ch05.indd 144C8208_ch05.indd 144 11/15/12 10:14 AM11/15/12 10:14 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Bitonic Sort 145

We now consider the total number of levels of comparitors required to sort an
arbitrary set of 2n input items with Bitonic Sort. Again, there are log2 2n stages of
merging, and each stage i requires i levels of comparisons. Therefore, the number
of levels of comparitors is given by

a

log2 2n

i=1

i =
1log2 2n21log2 2n + 12

2
=

log2
2 (2n)

2
+

log2 (2n)

2
.

So, Θ(log2 n) levels of comparitors are required to sort completely an initially
unordered list of size 2n. That is, an input list of 2n values can be sorted under this
combinational circuit model with Θ(log2 n) delay.

Now, consider how this algorithm compares to traditional sorting algorithms
operating on a RAM. Notice that for 2n input values, each of the Θ(log2 n) levels
of comparitors actually uses n comparitors. That is, a total of Θ(n log2 n) compari-
tors is required to sort 2n input items with Bitonic Sort. Therefore, this algorithm
runs in Θ(n log2 n) time on a sequential machine.

Subprogram BitonicSort(X)
Procedure: Sort the list X [1, . . . , 2n], using the Bitonic Sort algorithm.
Local variables: integers segmentLength, i

Action:

 segmentLength = 2
 Do
 For i = 1 to n/segmentLength, do in parallel
 BitonicMerge(
 X[(2i − 2) × segmentLength + 1,...,2i ×

segmentLength],
 X[(2i − 2) × segmentLength + 1,...,2i ×
 segmentLength],
 ascending = odd(i))
 End For
 segmentLength = 2 × segmentLength
 While segmentLength < 2n {End Do}
End BitonicSort

There is an alternative view of sorting networks that some find easier to
grasp. We present such a view in Figure 5-9 for Bitonic Sort, as applied to an
eight-element unordered sequence. The input elements are given on the left of the
diagram. Each line is labeled with a unique three-bit binary number. Please do
not confuse these labels with the values that are contained on the lines, which are
not shown in this figure. Horizontal lines are used to represent the flow of data

C8208_ch05.indd 145C8208_ch05.indd 145 11/15/12 10:14 AM11/15/12 10:14 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

146 Chapter 5 Combinational Circuits

from left to right. A vertical line is used to illustrate a comparison between the
elements on the endpoints of its line. In particular, the vertical line will compare
the two elements and either leave them on their current lines or swap them so as
to place them in the required order. This is called a comparison-exchange opera-
tion. The letters next to the vertical lines indicate whether the comparison being
performed is ≤ , represented as I, giving the intuition of increasing, or ≥ , repre-
sented as D, giving the intuition of decreasing. Note that dashed vertical lines are
used to separate the 3 = log2 8 merge stages of the algorithm. The reader might
want to draw a diagram of an eight-element bitonic sorting network using the
lines and comparitors that have been used previously in this chapter and verify
that such a diagram is consistent with this one.

FIGURE 5-9 An alternative view of Bitonic Sort for
8 elements. The horizontal lines represent wires and
the vertical lines represent comparison-exchange
elements. That is, the vertical lines represent points
in time at which two items are compared and
ordered according to the label I or D. Notice that
the log2 8 = 3 bitonic merge stages are separated by
dotted vertical lines.

000

001

010

011

100

101

110

111

I I I

I

D

Merge into
pairs

Merge into
quadruples

Merge into
8s

I

D

D

D

I

I

I

I

I

I

I

I I

I

D

D

I

I

I

Bitonic Sort on Parallel Computers

Finally, Batcher made a very interesting observation in his seminal 1968 paper that
included Bitonic Sort and Odd-Even Merge Sort. Consider the alternative view of
Bitonic Sort just presented. Batcher noticed that at each stage of the algorithm, the
only elements ever compared are those on lines that differ in exactly one bit of
their line labels. Suppose that we are given a parallel machine consisting of a set of
2n processors and we have one item per processor that we wish to sort. Batcher
noted that if every processor were connected to all other processors that differ in

C8208_ch05.indd 146C8208_ch05.indd 146 11/15/12 10:14 AM11/15/12 10:14 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Summary 147

exactly one bit position, the sorting would be performed in Θ(log2 n) time. In fact,
such a model corresponds to the interconnection of a hypercube, which was intro-
duced in Chapter 4.

Processor Entry Neighbor processors

000 a0 001, 010, and 100
001 a1 000, 011, and 101
010 a2 011, 000, and 110
011 a3 010, 001, and 111
100 a4 101, 110, and 000
101 a5 100, 111, and 001
110 a6 111, 100, and 010

111 a7 110, 101, and 011

Naturally, in addition to being able to sort efficiently on a hypercube, the
Bitonic Sort algorithm can be applied to a PRAM, where “neighboring” proces-
sors can communicate directly through the shared memory. As we discuss later in
the text, the communication pattern and general algorithmic strategy of Bitonic
Sort can be applied to medium- and coarse-grained machines, including hyper-
cubes, meshes, clusters, and networks of workstations, to name a few. In such
cases, each processor has a packet of m fundamental data items. After an initial
sort of the m data items in O(m log m) time, exchanges of packets between proces-
sors run in a total of Θ(m) time instead of Θ(1) time, and a merge, for example, of
2 data packets is performed in asymptotically optimal Θ(m) time by using a stan-
dard merge.

Concluding Remarks. We have shown the following.

• Bitonic Sort will sort n items in Θ(log2 n) time using a sorting network.

• Bitonic Sort will sort n items in Θ(log2 n) time on a hypercube of size n.

• Bitonic Sort will sort n items in Θ(log2 n) time on a parallel machine with n
processors that allows any two processors to communicate in constant time.
That is, Bitonic Sort will sort n items on a PRAM of size n.

• Bitonic Sort will sort n items in Θ(n log2 n) time on a sequential machine
(RAM).

Summary

In this chapter, we present one of Batcher’s sorting networks for combinational
circuits and their natural extension to parallel machines with certain well-defined
interconnection networks. These are pioneering ideas in the history of parallel com-
puting, illustrating the time efficiencies that are possible by using an appropriate

C8208_ch05.indd 147C8208_ch05.indd 147 11/15/12 10:14 AM11/15/12 10:14 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

148 Chapter 5 Combinational Circuits

combination of architectures and algorithms. We illustrate Batcher’s Bitonic Merge
and Bitonic Sort algorithms and analyze their running times on hardware networks,
as well as sequential and parallel architectures. We also observe that Batcher’s algo-
rithms are easily modified to other parallel architectures, as will be discussed later
in the book.

Chapter Notes

In 1968, Ken Batcher presented a short paper that introduced Bitonic Sort and
Odd-Even Merge Sort, and made the insightful observation that both sorting net-
works would operate efficiently on a hypercube network of processors. The work
from this paper, “Sorting networks and their applications,” (K.E. Batcher,
Proceedings of the AFIPS Spring Joint Computer Conference 32, 1968, 307–314)
has been covered in traditional courses on data structures and algorithms by many
instructors in recent decades. The material has become more integral for such
courses as parallel computing has reached the mainstream. This material has
recently been incorporated into textbooks. A nice presentation of this material can
be found in Introduction to Algorithms, by T.H. Cormen, C.E. Leiserson, R.L.
Rivest, and C. Stein (3rd ed.: MIT Press, Cambridge, MA, 2009).

Exercises

 1. Define a transposition network to be a comparison network in which com-
parisons are only made between elements on adjacent lines. Prove that sorting
n input elements on a transposition network requires Ω(n2) comparison units.

 2. What is the smallest number of elements for which you can construct a
sequence that is not bitonic? Prove your result.

 3. Consider a comparison network C that takes a sequence of elements
X = {x1, x2, . . . , xn} as input. Further, suppose that the output of C is the same
set of n elements, but in some predetermined order. Let the output sequence be
denoted as {y1, y2, . . . , yn}.

 a. Given a monotonically increasing function F, prove that if C is given
the sequence {F(x1), F(x2), . . . , F(xn)} as input, it will produce {F(y1),

 F(y2), . . . , F(yn)} as output.

 b. Suppose that input set X consists only of 0’s and 1’s. That is, the input is a
set of n bits. Further, suppose that the output produced by C consists of all
the 0’s followed by all the 1’s. That is, C can be used to sort any permutation
of 0’s and 1’s. Prove that such a circuit (one that can sort an arbitrary
sequence of n bits) can correctly sort any sequence of arbitrary numbers
(not necessarily 0’s and 1’s). This result is known as the 0–1 sorting
principle.

C8208_ch05.indd 148C8208_ch05.indd 148 11/15/12 10:14 AM11/15/12 10:14 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Exercises 149

 4. Use the 0–1 sorting principle to prove that the following odd-even merging
network correctly merges sorted sequences {x1, x2, . . . , xn} and {y1, y2, . . . , yn}.

 • The odd-indexed elements of the input sequences, that is {x1, x3, . . . , xn−1}
and {y1, y3, . . . , yn−1}, are merged to produce a sorted sequence
{u1, u2, . . . , un}.

 • Simultaneously, the even-indexed elements of the input sequences,
{x2, x4, . . . , xn} and {y2, y4, . . . , yn}, are merged to produce a sorted
sequence {v1, v2, . . . , vn}.

 • Finally, the output sequence {z1, z2, . . . , z2n} is obtained from z1 = u1,
z2n = vn, z2i = min(ui+1, vi), z2i+1 = max(ui+1, vi), for all 1 ≤ i ≤ n − 1.

C8208_ch05.indd 149C8208_ch05.indd 149 11/15/12 10:14 AM11/15/12 10:14 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Matrix Multiplication

Gaussian Elimination

Roundoff Error

Summary

Chapter Notes

Exercises

6
Matrix Operations

Background Photo Credit © Spectral-Design / Shutterstock
All Images used within the chapter are © 2013 Cengage Learning

C8208_ch06.indd 150C8208_ch06.indd 150 11/15/12 10:47 AM11/15/12 10:47 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Computational science and engineering (CS&E) is a discipline that utilizes high-end
computing and mathematics to solve problems in science and engineering.

Computational science and engineering is the third scientific paradigm, complementing
theoretical science and laboratory science. Academic programs in computational
 science and engineering are widespread at universities, colleges, and even in the kinder-
garten through high-school (i.e., K–12) curriculum.

The thrust of computational science and engineering is on simulation and model-
ing, which has led to breakthroughs in a wide variety of scientific and engineering
disciplines. In fact, numerical simulation has been used to study complex systems that
would be too expensive, time-consuming, or dangerous to study by direct, physical,
experimentation. The importance of simulation can be found in “grand challenge”
problems in areas such as structural biology, materials science, high-energy physics,
economics, fluid dynamics, and global climate change, to name a few. For example,
designers of automobiles and airplanes rely heavily on simulation in an effort to reduce
the costs of prototypes, to test models, and as an alternative to expensive wind
tunnels.

Computational science and engineering is an interdisciplinary subject, uniting
computing, which includes hardware, software, algorithms, and a wide variety of com-
putational tools, with mathematics and disciplinary efforts in biology, chemistry, phys-
ics, and other applied scientific and engineering fields. Computationally intensive
operations such as matrix multiplication and solving systems of linear or differential
equations are at the heart of many problems in computational science and engineering.
In this chapter, we consider the problems of matrix multiplication and Gaussian elimi-
nation on a variety of models of computation.

C8208_ch06.indd 151C8208_ch06.indd 151 11/15/12 10:47 AM11/15/12 10:47 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

152 Chapter 6 Matrix Operations

Matrix Multiplication

Suppose matrix A has p rows and q columns. We will alternately denote this matrix
as Ap,q or Ap×q. Given matrices Ap,q and Bq,r, the matrix product of A and B is writ-
ten informally as C = A × B and more formally as Cp,r = Ap,q × Bq,r. The element
ci, j, which represents the element of C in the ith row and jth column, for 1 ≤ i ≤ p
and 1 ≤ j ≤ r, is defined as the dot product of the ith row of A and the jth column
of B. That is,

ci, j = a
q

k=1

ai,kbk, j.

Notice that the number of columns of A must be the same as the number of
rows of B, since each entry of the product corresponds to the dot product of one
row of A and one column of B. In fact, in order to determine the product of A and
B, the dot product of every row of A with every column of B is typically computed.
See Figure 6-1.

FIGURE 6-1 An example of matrix multiplication. For example, c2,3 is
the dot product of the second row of A, (5, 6, 7, 8), and the third
 column of B, (2, 0, 2, 0), which is computed as
c2,3 = 5 × 2 + 6 × 0 + 7 × 2 + 8 × 0 = 24.

A3 � 4

=

B4 � 5

1 2 3 4

5 6 7 8

9 10 11 12

1 0 2 0

0 1 0 2

1 0 2 0

4

0

4

0 1 0 2 0

C3 � 5

4 6 8 12

12 14 24 28

20 22 40 44

16

48

80

A traditional, sequential dot product of two vectors, each of length q, requires
q multiplications and q − 1 additions. Therefore, such a sequential operation can
be performed in Θ(q) time. Hence, the p × r dot products, each of length q, used to
perform a traditional matrix multiplication can be computed in a straightforward
fashion in Θ(prq) time on a RAM. So, the total number of operations performed in
a brute-force matrix multiplication on a RAM, as described, is Θ(prq). Such an
algorithm follows.

C8208_ch06.indd 152C8208_ch06.indd 152 11/15/12 10:47 AM11/15/12 10:47 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Matrix Multiplication 153

Input: A p × q matrix A and a q × r matrix B.
Output: The matrix product Cp,r = Ap,q × Bq,r.

Action:

 For i = 1 to p, do {Loop through rows of A}
 For j = 1 to r, do {Loop through columns of B}

{Perform the dot product of a row of A and
a column of B}

 C[i,j] = 0
 For k = 1 to q, do
 C[i,j] = C[i,j] + A[i,k] × B[k,j]
 End For k
 End For j
 End For i

We now consider matrix multiplication on a variety of models of computation.
For simplicity, we will assume that all matrices are of size n × n.

RAM: A traditional sequential algorithm, as given above, will multiply
An×n × Bn×n to produce Cn×n in Θ(n3) time. The importance of matrix multiplica-
tion and its relatively large running time led to Strassen’s 1968 breakthrough of a
divide-and-conquer algorithm to perform matrix multiplication in O(n2.81) time.
Subsequently, algorithms have been developed that run in o(n2.81) time. We give a
reference to Strassen’s algorithm at the end of this chapter as the details of this
highly advanced algorithm are beyond the scope of this book.

PRAM: Consider the design of an efficient matrix multiplication algorithm for
a CR PRAM. Suppose we are given a PRAM with n3 processors, where each
processor has a unique label, (i, j, k), where 1 ≤ i, j, k ≤ n are integers. That is, we
assume that the n processors are given as P1,1,1, . . . , Pn,n,n.

We associate processor Pi,k, j with ai,kbk, j, the kth product between the ith row of
A and the jth column of B. Notice that this product is one of the terms that contributes
to ci, j. So, suppose that initially every processor Pi,k, j computes the result of ai,kbk, j.
After this Θ(1) time parallel step, notice that all Θ(n3) multiplications have been
performed.

Now we must compute the summation of each dot product’s Θ(n) terms. This
can be done in Θ(log n) time by performing Θ(n2) independent and simultaneous
semigroup operations, where the operator is addition. So, in Θ(log n) time, proces-
sors Pi,k, j, k ∈ {1, 2, . . . , n}, can perform a semigroup operation to determine
the value of ci, j. Therefore, the running time of the algorithm is Θ(log n) and the
total cost is Θ(n3 log n).

Unfortunately, while efficient, this algorithm is not cost-optimal. Therefore,
we can consider trying to reduce the running time by a factor of Θ(log n) or the
number of processors by a factor of Θ(log n). Since reducing the running time is a

C8208_ch06.indd 153C8208_ch06.indd 153 11/15/12 10:47 AM11/15/12 10:47 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

154 Chapter 6 Matrix Operations

difficult challenge, let’s consider a CR PRAM with n3/log2 n processors. First, let
each processor be responsible for a unique set of Θ(log n) multiplications.
For example, processor P1 can perform the multiplication operations that proces-
sors P1, . . . , Plog2 n performed in the previous algorithm, processor P2 can perform
the multiplication operations that processors P1+log2 n, . . . , P2 log2 n performed in the
previous algorithm, and so on. Next, each processor can sum the products it com-
puted above in Θ(log n) time. Finally, in Θ(log n) time, each of the n2 values ci, j
can be computed by parallel semigroup operations (addition), with each semi-
group operation performed by a group of Θ(n/log n) of the Θ(n3/log n) processors
associated with ci, j. The algorithm follows.

PRAM Matrix Product Algorithm using Θ(n3/log n) processors
Input: A p × q matrix A and a q × r matrix B.
Output: The matrix product Cp,r = Ap,q × Bq,r.

Action:

To simplify our analysis, we assume p = q = r = n.

1. For each processor, determine the logarithmic number
of products for which it is responsible. That is,
logically determine a partition of the triples
(i,k,j), 1 ≤ i ≤ n, 1 ≤ j ≤ n, 1 ≤ k ≤ n, so each processor
knows the subset of Θ(log n) products for which it
is responsible. This determination can be done by a
programmer in advance, and therefore does not utilize
any computing time.

2. In parallel, each processor computes its Θ(log n)
products pi,j,k = ai,j × bj,k. This computation can be
 performed in Θ(log n) time.

3. Compute each of the n2 values ci,j = a
n

k=1 pi,k,j by
 parallel semigroup operations, as described above.

This computation can be performed in Θ(log n) time.

Therefore, the running time of the algorithm is Θ(log n) and the cost of the
algorithm is Θ(n3), which is optimal when compared to the traditional matrix mul-
tiplication algorithm.

Finally, we consider a CR PRAM with n2 processors. The algorithm is straight-
forward. Every processor simultaneously computes the result of a distinct entry in
matrix C. Notice that every processor implements a traditional sequential algorithm
for multiplying a row of A by a column of B. This is performed in Θ(n) time, simul-
taneously for every row and column. Therefore, the n2 entries of C are determined
in Θ(n) time with n2 processors, which results in a cost-optimal Θ(n3) operations
algorithm, with respect to the traditional matrix multiplication algorithm.

C8208_ch06.indd 154C8208_ch06.indd 154 11/15/12 10:47 AM11/15/12 10:47 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Matrix Multiplication 155

Mesh: Consider the problem of determining C = A × B on a mesh computer, where
A, B, and C are n × n matrices. Initially, we will consider a 2n × 2n mesh, where
matrix A is stored in the lower-left quadrant of the mesh, matrix B is stored in the
upper-right quadrant, and matrix C will be produced in the mesh’s lower-right
quadrant, as shown in Figure 6-2. Let’s consider the operations necessary to com-
pute the entries of C in place. That is, let’s design an algorithm so that the entries
of A and B flow through the lower-right quadrant of the 2n × 2n mesh and arrive in
processors where they can be of use at an appropriate time.

Consider the first step of the algorithm. Notice that if all processors containing
an element of the first row of A send their entries to the right and all processors
containing an entry of the first column of B simultaneously send their entries down,
the processor responsible for c1,1 will have entries a1,n and bn,1 (see Figures 6-3a
and 6-3b). Since a1,n × bn,1 is one of the terms necessary to compute c1,1, this partial
result can be used to initialize the running sum for c1,1 in the northwest processor
of the lower-right quadrant. Notice that initially, a1,n and bn,1 represent the only pair
of elements that could meet during the first step and produce a useful result.

FIGURE 6-2 Matrix multiplication on a 2n × 2n mesh.
Matrix An×n initially resides in the lower-left quadrant and
matrix Bn×n initially resides in the upper-right quadrant of
the mesh. The matrix product Cn×n = An×n × Bn×n is stored
in the lower-right quadrant of the mesh.

b1,1 b1,2 b1,3 b1,n . . .

b2,1 .
.
.

b2,2 b2,3

B

b2,n . . .

bn,1 bn,2 bn,3 bn,n . . .

a1,1 a1,2 a1,3 a1,n . . .

a2,1 .
.
.

a2,2 a2,3

A

a2,n . . .

an,1 an,2 an,3 an,n . . .

c1,1 c1,2 c1,3 c1,n . . .

c2,1 .
.
.

c2,2 c2,3

C

c2,n . . .

cn,1 cn,2 cn,3 cn,n . . .

Now, consider the second step of such an algorithm. Notice that if the elements in
row 1 of A move to the right again, and that if the elements of column 1 of B move
down again, then a1,n−1 and bn−1,1 will meet in the processor responsible for c1,1,
which can add a1,n−1 × bn−1,1 to its running sum. In addition, notice that if the second
row of A and the second column of B begin to move to the right and down, respec-
tively, during this second time step, then the processors responsible for entries c2,1 and
c1,2 can begin to initialize their running sums with a partial result (see Figure 6-3c).

In general, notice that we can extrapolate this process so that at time i, the ith
row of A and the ith column of B initiate their journeys to the right and down,

C8208_ch06.indd 155C8208_ch06.indd 155 11/15/12 10:47 AM11/15/12 10:47 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

156 Chapter 6 Matrix Operations

respectively. Further, at time i, rows 1. . . i − 1 and columns 1. . . i − 1 will continue
on their respective journeys. Eventually, all of the elements of C will be computed.

Now, let’s consider the running time of the algorithm. Notice that at time n, the
last row of A and the last column of B begin their journeys. During every subsequent
time step, the last row of A will continue to move one position to the right, and the
last column of B will continue to move one position down. At time 3n − 2, elements
an,1 and b1,n will finally meet in the processor responsible for computing cn,n, the last
element to be computed. Therefore, the running time for this algorithm is Θ(n). Is
this good? Consider that in the sequential matrix multiplication algorithm that is the
basis of our current algorithm, every pair of elements (ai,k,bk, j) must be combined.
Therefore, it is easy to see that this algorithm is asymptotically optimal in terms of
running time on a mesh of size 4n2. This is due to the Θ(n) communication diameter
of a mesh of size 4n2. Now, consider the total cost of the algorithm. Since this algo-
rithm runs in Θ(n) time on a machine with Θ(n2) processors, the total cost of the

b1,2 b1,1

b2,2 b2,1

a1,2 a1,1

a2,2 a2,1

b1,2

b2,2 b1,1

a1,1 a1,2
b2,1

a2,2 a2,1

a2,1
b1,2

a2,1
b1,1

a2,2
b2,2

a1,1
b1,2

b1,2

a1,2
b2,2

a1,1
b1,1

a2,1 a2,2
b2,1

(a) Initial distribution
of data.

(b) Step 1. First column
of B moves down and
first row of A moves right.

(c) Step 2. First and second
column of B move down and
first and second row of A
move to the right.

(d) Step 3. Both columns of B
continue to move down while
both rows of A continue to
move right.

(e) Step 4. Both columns of B
continue to move down while
both rows of A continue to
move right.

FIGURE 6-3 Data flow for matrix multiplication on a 2n × 2n mesh.

C8208_ch06.indd 156C8208_ch06.indd 156 11/15/12 10:47 AM11/15/12 10:47 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Matrix Multiplication 157

algorithm is Θ(n3). Therefore, this algorithm is cost-optimal with respect to the
tradi tional sequential algorithm.

While the previous algorithm is time- and cost-optimal on a 2n × 2n mesh
computer, let’s consider a matrix multiplication algorithm targeted at an n × n
mesh. Assume that processor Pi, j initially stores element ai, j of matrix A and
 element bi, j of matrix B. When the algorithm terminates, processor Pi, j will store
element ci, j of the product matrix C. Since we already have an optimal algorithm
for a slightly expanded mesh, we consider adapting the algorithm just presented to
an n × n mesh. To do this, we simply use row and column rotations, as we did when
we adapted the Selection Sort algorithm from the input-based linear array to run
on the traditional linear array. Specifically, in order to prepare to simulate the pre-
vious algorithm, start by performing a row rotation so that processor Pi, j contains
element ai,n−j+1 of matrix A, followed by a column rotation so that processor Pi, j
contains element bn−i+1, j of matrix B (see Figure 6-4).

FIGURE 6-4 Row and column rotations, which are used as preprocessing
steps for matrix multiplication on an n × n matrix.

a
2,2

b
2,2

a
2,1

b
2,1

a
1,2

b
1,2

a
1,1

b
1,1

(a) Initial distribution
of data.

a
2,1

b
2,2

a
2,2

b
2,1

a
1,1

b
1,2

a
1,2

b
1,1

(b) Result of row
rotation of A.

a
2,1

b
1,2

a
2,2

b
1,1

a
1,1

b
2,2

a
1,2

b
2,1

(c) Result of column
rotation of B.

At this point, the strategy described in the previous algorithm can be followed
while we make the natural adjustments to accommodate the rotations that are nec-
essary to continue moving the data properly, as well as the fact that data is starting
in the first row and the first column. Notice that the additional rotations, which can
be thought of as serving as a “preprocessing” step, run in Θ(n) time. Therefore, the
asymptotic analysis of this algorithm results in the same time- and cost-optimal
results as previously discussed.

CGM(n2, q): Notice that we need Ω(n2) memory to store n × n factor and
product matrices, so we use a CGM(n2, q) rather than a CGM(n, q). The basic strat-
egy of the algorithm we present is to imitate the RAM algorithm given above.
Notice, however, that the lower bound for each processor’s memory is Ω(n2/q), so
a processor may not be able to store the factor matrices An×n and Bn×n. Therefore,
to achieve our target running time of Θ(n3/q), we must be able to move data among
the processors efficiently. In particular, we need to rotate blocks of, say, rows of A
among the processors. We will show this can be done efficiently by a permutation
exchange operation.

C8208_ch06.indd 157C8208_ch06.indd 157 11/15/12 10:47 AM11/15/12 10:47 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

158 Chapter 6 Matrix Operations

In a parallel computer of q processors, suppose there is an array list[1, . . . , n]
whose members are evenly distributed among the processors, i.e., each processor
has Θ(n/q) members of list. For convenience, we will abbreviate by assuming each
processor has n/q members of list. In a permutation exchange operation, for some
permutation f : S → S, we have each processor Pi send copies of its members of
list to Pf (i). We have the following algorithm for a permutation exchange.

Input: An array, list[1, . . . , n], distributed such that processor Pi has

list cin
q

+ 1, . . . ,
(i + 1)n

q
d , and a permutation f : S = {0,1, . . . , q − 1} → S.

Output: copies of list elements are redistributed among the processors in
realization of a permutation exchange.

A permutation is a one-to-one and onto function from a finite set of inte-
gers to itself. We say a function f : X → Y is one-to-one if for every x0, x1 ∈ X ,
x0 ≠ x1 implies f (x0) ≠ f (x1). A function f : X → Y is onto if for every y ∈ Y
there exists x ∈ X such that f (x) = y. For example, let X = {−1, 0, 1}, and
 consider the functions F : X → X and G : X → X defined by F(x) = x and
G(x) = 0 x 0 . It is easy to show that F(x) is both one-to-one and onto. G(x) is not
one-to-one, since G(−1) = G(1). Also, G(x) is not onto, since there is no x ∈X
such that G(x) = −1.

If we use the set of indices of the processors S = {0, 1, . . . , q − 1} as the
domain of concern, a permutation of S is a one-to-one, onto function f : S → S.
Let’s define the n-fold composition of such a function inductively, as follows.
For each s ∈ S,

f (n)(s) = e s for n = 0;

f 1f (n−1)(s)2 for n > 0.

A circular permutation is a permutation f such that for each s ∈ S,

5 f (n)(s)6 n=0

q−1
= S.

For example, the function defined by f (s) = (s + 1) mod q is a circular per-
mutation. The function g : {0,1,2,3} → {0,1,2,3} defined by

g(0) = 1, g(1) = 0, g(2) = 3, g(3) = 2

is a permutation, but is not circular.

C8208_ch06.indd 158C8208_ch06.indd 158 11/15/12 10:47 AM11/15/12 10:47 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Matrix Multiplication 159

Action:

 For i = 0 to q − 1, processor Pf(i) gathers

 list c in
q

+ 1,. . . ,
(i + 1)n

q
d from processor Pi.

End algorithm

It follows from our discussion of the gather operation in Appendix 3 that this
algorithm runs in Θ(n) time.

Another tool useful in our calculation of a matrix product on a coarse-grained
parallel computer is an algorithm for computing the transpose BT of a matrix B. BT
is the matrix obtained from B by interchanging the roles of rows and columns. For
example,

C1 2 3

4 5 6

7 8 9

S T

= C1 4 7

2 5 8

3 6 9

S .

This operation is important for computing a matrix product, for the follow-
ing reason. We might initially have both n × n matrices A and B stored in a

CGM(n2, q) such that processor Pi holds the rows indexed
in
q

+ 1, . . . ,
(i + 1)n

q
 of

both A and B. However, we want the columns of B, i.e., the rows of BT, with

 indices
in
q

+ 1, . . . ,
(i + 1)n

q
, in Pi to compute entries of the matrix product A × B.

An algorithm for CGM(n2, q) computation of BT is given below.

CGM(n2,q) algorithm for computing BT

Input: n × n matrix B such that processor Pi holds the rows indexed
in
q

+ 1, . . . ,
(i + 1)n

q
 of B.

Output: matrix BT such that processor Pi holds the rows indexed
in
q

+ 1, . . . ,
(i + 1)n

q
 of BT.

Action:

 For i = 0 to q − 1
 Processor Pi gathers the columns of B indexed

C8208_ch06.indd 159C8208_ch06.indd 159 11/15/12 10:47 AM11/15/12 10:47 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

160 Chapter 6 Matrix Operations

in

q
+ 1,. . . ,

(i + 1)n
q

, i.e., the rows of BT indexed

in

q
+ 1,. . . ,

(i + 1)n
q

.

 End For
End algorithm

Each gather operation in the loop body gathers n/q columns of n items apiece,
for a total of n2/q matrix entries. It follows from our discussion of gather opera-
tions in Appendix 3 that the algorithm runs in Θ(n2) time.

We can now give our CGM(n2, q) algorithm for computing the product A × B
of two n × n matrices. Assume each of A and B is initially distributed so that

 processor Pi holds the rows of both A and B indexed
in
q

+ 1, . . . ,
(i + 1)n

q
. Assume

f : S → S is any circular permutation of the processor indices. Let Ri be the set of

rows of A indexed
in
q

+ 1, . . . ,
(i + 1)n

q
. Do the following.

Begin matrix product algorithm for CGM(n2, q)

Let f : {0,1, . . . , q − 1} → {0,1, . . . , q − 1} be a circular permutation.

1. Compute BT. As described above, this takes Θ(n2)
time. Now, each processor Pi holds the columns of B

indexed
in

q
+ 1,. . . ,

(i + 1)n
q

.

2. For blockNum = 1 to q
a. In parallel, each processor Pj does the following.

Let Ri be the set of rows of A currently in Pj.
Then Ri was originally in Pi, so we know the
 indices of its rows, and can proceed as follows.

 For a =
in

q
+ 1 to

(i + 1)n
q

 For b =
jn

q
+ 1 to

(j + 1)n
q

 Compute ca,b as the dot product of row a of A
and column b of B. This operation can be
 performed in Θ(n) time.

 End For b. This loop runs in Θ(n2/q) time.
 End For a. This loop runs in Θ(n3/q2) time.
End parallel. This step runs in Θ(n3/q 2) time.

C8208_ch06.indd 160C8208_ch06.indd 160 11/15/12 10:47 AM11/15/12 10:47 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Gaussian Elimination 161

b. If blockNum < q, perform a permutation exchange so
that for each processor Pj, the set of rows Ri
 currently in Pj is sent to Pf(j). Since this means
the entire n × n matrix A is shuffled, the running
time is Θ(n2).

 End For blockNum. Since f is a circular permutation,
each set of rows Rj visits every processor, so all
the necessary dot products are computed. Since, for a
CGM(n2,q) we have q ≤ n, it follows that n2 ≤ n3/q.
Hence, this loop runs in Θ(n3/q + n2q) time.

End algorithm

The running time for this algorithm is Θ(n3/q + n2q). In order to realize our
target running time of Θ(n3/q), it suffices for n2q ≤ n3/q, or q ≤ n1/2. Thus, we
achieve our target running time of Θ(n3/q) for 1 < q ≤ n1/2. Although this is not the
full range of the number of processors for a CGM(n2, q), this is still a very useful
result, as in practice, n will grow more rapidly than q.

We also observe that the algorithm discussed above is for an arbitrary
CGM(n2, q). If a CGM(n2, q) is implemented by a PRAM, mesh, or hypercube, it is
possible to obtain a Θ(n3/q) running time for a larger range of processors.

Gaussian Elimination

The technique of Gaussian elimination is widely used for applications such as
finding the inverse of a matrix and solving a system of n linear equations in n
unknowns. In this section, we focus on the problem of finding the inverse of an
n × n matrix.

The n × n matrix In, called the identity matrix, is the matrix in which the entry
in row i and column j is

1 if i = j, and

0 otherwise.

Fundamentals from Linear Algebra include the following. Given an n × n
matrix A, we know that A × In = A and In × A = A. We say an n × n matrix A is
invertible if there is an n × n matrix B such that A × B = B × A = In. If such a
matrix B exists, it is called the inverse of A, and we write B = A−1.

The following are called elementary row operations on an n × n matrix A.

• Interchange distinct rows of A (see Figure 6-5).

• Multiply a row of A by a nonzero constant. That is, for some c ≠ 0, replace
each element ai, j of row i by cai, j (see Figure 6-6).

• Add a constant multiple of row i to row j for i ≠ j. That is, for some constant c,
replace each element aj,k of row j by aj,k + cai,k (see Figure 6-7).

C8208_ch06.indd 161C8208_ch06.indd 161 11/15/12 10:47 AM11/15/12 10:47 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

162 Chapter 6 Matrix Operations

Again, from Linear Algebra, we know that if a sequence s of elementary row
operations applied to an n × n matrix A transforms A into In, then the same
sequence s of elementary row operations applied to In transforms In into A−1.
Thus, we can implement an algorithm to find A−1 by finding a sequence s of ele-
mentary row operations that transforms the “augmented matrix” [A 0 In] to [In 0A−1].

Consider an example. Let

A = C 5 −3 2

−3 2 −1

−3 2 −2

S .

We can find A−1 as follows. Start with the augmented matrix

[A 0 I3] = C 5 −3 2

−3 2 −1

−3 2 −2

 3 1 0 0

0 1 0

0 0 1

S .

FIGURE 6-5 Interchange of row 1
and row 3.

FIGURE 6-6 Replace row 1 by
0.2 × row 1.

FIGURE 6-7 Replace row 2 by
row 2 + 5 × row 1.

C8208_ch06.indd 162C8208_ch06.indd 162 11/15/12 10:47 AM11/15/12 10:47 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Gaussian Elimination 163

The first phase of our procedure is the “Gaussian elimination” phase. One
column at a time from left to right, we perform elementary row operations to cre-
ate entries of 1 along the diagonal, the set of entries for which the row and column
indices have the same value, and 0s below the diagonal. In this example, we use
row operations to transform column 1 so that a1,1 = 1 and a2,1 = a3,1 = 0. Next, we
use row operations that do not change column 1 but result in a2,2 = 1 and a2,3 = 0.
Finally, we use a row operation that does not change columns 1 or 2 but results in
a3,3 = 1. More generally, after Gaussian elimination on An×n, all ai,i = 1, 1 ≤ i ≤ n,
and all ai, j = 0, 1 ≤ j < i ≤ n. That is, there are 1’s along the diagonal and 0’s below
the diagonal, as shown below.

 1. Divide row 1 by 5 to obtain

£
1 −0.6 0.4

−3 2 −1

−3 2 −2

 3 0.2 0 0

0 1 0

0 0 1

§ .

 2. Add 3 times row 1 to row 2, and 3 times row 1 to row 3, to obtain

£
1 −0.6 0.4

0 0.2 0.2

0 0.2 −0.8

 3 0.2 0 0

0.6 1 0

0.6 0 1

§ .

 Notice column 1 now has the desired form. We continue with Gaussian elimi-
nation steps on column 2.

 3. Divide row 2 by 0.2 to obtain

£
1 −0.6 0.4

0 1 1

0 0.2 −0.8

 3 0.2 0 0

3 5 0

0.6 0 1

§ .

 4. Subtract 0.2 times row 2 from row 3 to obtain

£
1 −0.6 0.4

0 1 1

0 0 −1

 3 0.2 0 0

3 5 0

0 −1 1

§ .

 Note column 2 now has the desired form.

C8208_ch06.indd 163C8208_ch06.indd 163 11/15/12 10:47 AM11/15/12 10:47 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

164 Chapter 6 Matrix Operations

 5. Divide row 3 by −1 to obtain

£
1 −0.6 0.4

0 1 1

0 0 1

 3 0.2 0 0

3 5 0

0 1 −1

§ .

 This completes the Gaussian elimination phase of the procedure.

Now we proceed with the “back substitution” phase, in which, for one column
at a time from right to left, we use elementary row operations to eliminate nonzero
entries above the diagonal. In a sense, this is more Gaussian elimination, as we use
similar techniques, now creating 0’s above the diagonal. We proceed as follows.

 1. Subtract 0.4 times row 3 from row 1, and 1 times row 3 from row 2, to obtain

£
1 −0.6 0

0 1 0

0 0 1

 3 0.2 −0.4 0.4

3 4 1

0 1 −1

§ .

 2. Add 0.6 times row 2 to row 1, to obtain

£
1 0 0

0 1 0

0 0 1

 3 2 2 1

3 4 1

0 1 −1

§ .

Since the left side of the augmented matrix is now I3, the right side is the desired

inverse, namely, A−1 = C2 2 1

3 4 1

0 1 −1

S . This can be verified easily by showing

that the products A × A−1 and A−1 × A both coincide with I3.
The example given above illustrates our general algorithm for finding the

inverse of an n × n matrix A. In the algorithm presented below, we assume that
array A[1. . . n,1. . . n] is used to represent the matrix we wish to invert, and the
matrix I[1. . . n,1. . . n] is initialized to represent the n × n identity matrix. Here we
state a procedure for either finding the inverse of A or determining that such an
inverse does not exist.

 1. {Gaussian elimination phase: create in A an upper triangular matrix, a matrix
with 1 on every diagonal entry and 0 on every entry below the diagonal.}
For i = 1 to n, do

a. If A[i,i] = 0 and A[m,i] = 0 for all m > i, conclude that A−1 does not exist
and halt the algorithm.

C8208_ch06.indd 164C8208_ch06.indd 164 11/15/12 10:47 AM11/15/12 10:47 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Gaussian Elimination 165

b. If A[i,i] = 0 and A[m, i] ≠ 0 for some smallest m > i, interchange rows i and
m in the array A and in the array I.

c. Due to the previous step, we assume A[i, i] ≠ 0. Divide row i of A and row
i of I by A[i, i]. That is, let scale = A[i, i] and then for j = 1 to n, replace
A[i, j] by A[i, j]/scale. Note that it suffices to make these replacements for
j = i to n, since the Gaussian elimination has caused A[i, j] = 0 for j < i.
Similarly, for j = 1 to n, replace I[i, j] by I[i, j]/scale. Note we now have
A[k, k] = 1 for k ≤ i, and A[m, j] = 0 if j < i, j < m (0 below the diagonal in
columns indexed less than i).

d. Now we have A[i, i] = 1. If i < n, then for r > i, subtract A[r, i] times row i
from row r in both the arrays A and I. This zeroes out the entries in A of
column i below the diagonal without destroying the 0s below the diagonal
in columns further to the left. That is,

If i < n, then
 For row = i + 1 to n
 factor ← A[row,i]
 For col = 1 to n
 A[row,col] ← A[row,col] − factor × A[i,col]
 I[row,col] ← I[row,col] − factor × I[i,col]
 End For col
 End For row
End If
{Note we now have A[k,k] = 1 for k ≤ i, and A[m,j] = 0
if j ≤ i,j < m (0 below the diagonal in columns
indexed ≤ i).}

End For i

 2. {Back substitution phase: eliminate the nonzero entries above the diagonal
of A. We use zeroingCol as both a row and column index; it represents both the
column we are “zeroing” off the diagonal, and the row combined with the cur-
rent row to create the desired matrix form.}

For zeroingCol = n downto 2
 For row = zeroingCol − 1 downto 1
 factor ← A[row,zeroingCol]
 For col = 1 to n
 A[row,col] ← A[row,col] − factor × A[zeroingCol,col]
 I[row,col] ← I[row,col] − factor × I[zeroingCol,col]
 End For col
 End For row
End For zeroingCol

C8208_ch06.indd 165C8208_ch06.indd 165 11/15/12 10:48 AM11/15/12 10:48 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

166 Chapter 6 Matrix Operations

We now discuss the analysis of Gaussian elimination on sequential and paral-
lel models of computation.

RAM: A straightforward implementation of the algorithm given above on a
RAM runs in Θ(n3) time in the worst case, when the matrix inverse exists and is
determined. The best case running time is Θ(n), when it is determined by exam-
ining the first column that an inverse does not exist.

Parallel models: We must be careful. For example, it is easy to see how some
of our inner loops may be parallelized, but some of the outer loops appear to be
inherently sequential. Thus, on a PRAM it is easy to see how to obtain signifi-
cant speedup over the RAM. However, it is not clear how to obtain optimal per-
formance. Further, on distributed memory models such as the mesh, some of the
advantages of parallelism may seem negated by delays needed to broadcast key
data values throughout rows or columns of the mesh. Below, we discuss how the
basic algorithm we have presented can be implemented efficiently on various
 parallel models.

PRAM of n2 processors: Let’s assume we are using a PRAM with the EW
property. Then each decision on whether or not to halt, as described in the algo-
rithm, can be performed by a semigroup operation in Θ(log n) time. This is per-
formed by a semigroup AND operation across all entries of the current column
to determine if the column has only 0 entries. Now, consider the situation when
the algorithmic decision is to continue, which leads to the results that ai,i = 1 and
ai, j = 0 for j < i. A row interchange can be performed in Θ(1) time. Scalar multi-
plication or division of a row can be performed on a CR PRAM in Θ(1) time.
However, scalar multiplication or division of a row on an ER PRAM runs in
Θ(log n) time, since a broadcast of the scalar to all processors associated with a
row is required. Notice that the row subtraction of the last step of the Gaussian
elimination phase may be done in parallel. That is, the outer For-row-loop can be
parallelized as there is no sequential dependence between the rows in its opera-
tions. Further, the inner For-col-loop parallelizes. As in the scalar multiplication
step, the outer For-row-loop executes its operations in Θ(1) time on a CR PRAM
and in Θ(log n) time on an ER PRAM. Thus, a straightforward implementation
of the Gaussian elimination phase runs in O(n log n) time on a PRAM (CR
or ER).

For the back substitution phase, we can similarly parallelize the inner and the
intermediate-nested loop to conclude this phase, which runs in Θ(n) time on a CR
PRAM and in Θ(n log n) time on an ER PRAM. Thus, a straightforward imple-
mentation of this algorithm runs in Θ(n log n) time on an EW PRAM of size n2.
The total cost is Θ(n3 log n). Note that relative to the cost of our RAM

C8208_ch06.indd 166C8208_ch06.indd 166 11/15/12 10:48 AM11/15/12 10:48 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Gaussian Elimination 167

implementation, the PRAM implementation of Gaussian elimination to invert a
matrix is not optimal.

Mesh of size n2: Assume that entries of the arrays A and I are distributed among
the processors of the mesh so that the processor Pi, j in row i and column j of the
mesh contains both A[i, j] and I[i, j].

Several of the steps of our general algorithm require communication of data
across a row or column of the mesh. For example, scalar multiplication of a row
requires communication of the scalar across the row. If every processor in the row
waits for this communication to finish, the scalar multiplication step would run in
Θ(n) time. This would yield a running time of Θ(n2), which is not optimal, since
the total cost is then Θ(n2 × n2) = Θ(n4).

We obtain better mesh performance by pipelining and pivoting. The fol-
lowing is true of each of the steps of the inner loops of our algorithm. Once a
processor has the data it needs to operate upon, its participation in the current
step runs in Θ(1) additional time, after which the processor can proceed to its
participation in the next step of the algorithm, regardless of whether other pro-
cessors have finished their work for the current step. Therefore, if we could be
sure that every processor experiences a total of O(n) time waiting for data to
reach it, it would follow that the algorithm runs in Θ(n) time, as each processor
would run in O(n) time for waits and in Θ(n) time for the “active” execution of
instructions.

However, there is one place where the algorithm as described above could
have processors that experience ω (1) delays of O(n) time apiece to receive data.
That is, the step that calls conditionally for exchanging a row of A having a 0
diagonal entry with a row below it having a nonzero entry in the same column. In
order to ensure this situation does not cost us too much time due to frequent
occurrence, we modify our algorithm by the technique of pivoting, which we
describe now. If processor Pi,i detects that A[i, i] = 0, then Pi,i sends a message
down column i to search for the first nonzero A[j, i] with j > i. If such a j is
found, row j is called the pivot row, and plays the role similar to that otherwise
played by row i. That is, in this situation, row j is used for Gaussian elimination in
the rows below it, which creates 0 entries in the ith column of each such row. In
rows between row i and row j, if there exist entries of 0 in column i, then no row
combination is required at this stage. Finally, row j “bubbles up” to row i in a
wave-like fashion, using both vertical and horizontal pipelining, while row i bub-
bles down to row j, executing the row interchange.

On the other hand, if no such j is found, then processor Pi,n broadcasts a mes-
sage to halt throughout the mesh.

In this fashion, we pipeline the row interchange step with the following steps
of the algorithm in to order ensure that each processor spends O(n) time awaiting
data. It follows, as described above, that we can compute the inverse of an n × n

C8208_ch06.indd 167C8208_ch06.indd 167 11/15/12 10:48 AM11/15/12 10:48 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

168 Chapter 6 Matrix Operations

matrix or decide, when appropriate, that it is not invertible, through Gaussian elim-
ination on an n × n mesh in Θ(n) time, which is optimal relative to our RAM
implementation.

Roundoff Error

It should be noted that the Gaussian elimination algorithm is sensitive to roundoff
error. Roundoff error occurs whenever an exact calculation requires more decimal
places, or, equivalently, binary bits, than are actually used for storage of the result.
Occasionally, roundoff error can cause an incorrect conclusion with respect to
whether or not the input matrix has an inverse, or with respect to which row should
be the pivot row. Such a situation could be caused by an entry that should be 0,
computed as having a small nonzero absolute value. Also, a roundoff error in a
small nonzero entry could have a powerfully distorting effect if the entry becomes
a pivot element, since the pivot row is divided by the pivot element and combined
with other rows.

It is tempting to think such problems could be corrected by selecting a small
positive number ε and establishing a rule that whenever a step of the algorithm
computes an entry with absolute value less than ε , the value of the entry is set to 0.
However, such an approach can create other problems since a nonzero entry in the
matrix with an absolute value less than ε may be correct.

Measures used to prevent major errors due to roundoff errors in Gaussian
elimination are beyond the scope of this book. However, a crude test of the accu-
racy of the matrix B computed as the inverse of A is to determine the matrix prod-
ucts A × B and B × A. If all entries of both products are sufficiently close to the
respective entries of the identity matrix In to which they correspond, then B is
likely a good approximation of A−1.

Summary

In this chapter, we study the implementation of the fundamental matrix operations,
matrix multiplication and Gaussian elimination, the latter a popular technique for
solving an n × n system of linear equations and for finding the inverse of an n × n
matrix. We give algorithms to solve these problems and discuss their implementa-
tions on several models of computation.

Chapter Notes

A traditional sequential algorithm to multiply An×n × Bn×n runs in Θ(n3) time. This
algorithm is suggested by the definition of matrix multiplication. However, in
1968, the paper “Gaussian elimination is not optimal,” by V. Strassen, Numerische
Mathematik 13(4), 1969, pp. 354–356, showed that a divide-and-conquer

C8208_ch06.indd 168C8208_ch06.indd 168 11/15/12 10:48 AM11/15/12 10:48 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Exercises 169

algorithm could be exploited to perform matrix multiplication in O(n2.81) time. The
mesh matrix algorithm presented in this chapter is derived from the one presented
in Parallel Algorithms for Regular Architectures by R. Miller and Q.F. Stout (The
MIT Press, Cambridge, Mass., 1996). The algorithm we present for matrix multi-
plication on a CGM(n2, q) comes from the paper “Efficient Coarse Grained
Permutation Exchanges and Matrix Multiplication,” by L. Boxer, Parallel
Processing Letters 19, 2009, 477–484.

The algorithm we present for Gaussian elimination is a traditional algorithm
found in many introductory textbooks for the mathematical discipline of Linear
Algebra. Its presentation is similar to that found in Parallel Algorithms for Regular
Architectures.

Two additional books that concentrate on algorithms for problems in compu-
tational science are G.S. Almasi and A. Gottlieb’s Highly Parallel Computing
(The Benjamin/Cummings Publishing Company, New York, 1994) and G.W.
Stout’s High Performance Computing (Addison-Wesley Publishing Company,
New York, 1995).

Exercises

 1. The PRAM algorithms presented in this chapter for matrix multiplication are
simpler under the assumption of the CR property. Why? In other words, in
what step or steps of the algorithms presented in this chapter is there a compu-
tational advantage in assuming the CR property as opposed to the ER
property?

 2. Give an algorithm for a CR PRAM with n processors that solves the matrix
multiplication problem in Θ(n2) time.

 3. In this chapter, we present a mesh algorithm for computing the product of
two n × n matrices on an n × n mesh. A somewhat different algorithm for an
n × n mesh can be given, in which we more closely simulate the algorithm

 given above for a 2n × 2n mesh. If we compress matrices A and B into
n

2
×

n

2

 submeshes, it becomes easy to simulate the 2n × 2n mesh algorithm given in
this chapter.

 a. Give an algorithm that runs in Θ(n) time to compress the matrix A, where A
is initially stored so that ai, j is in processor Pi, j, 1 ≤ i ≤ n, 1 ≤ j ≤ n. At the
end of the compression, A should be stored so that processor Pi, j,
1 ≤ i ≤ n/2, 1 ≤ j ≤ n/2, stores ak,m, for k ∈ {2i − 1, 2i}, m ∈ {2j − 1, 2j}.
Show that your algorithm is correct.

 b. Give an algorithm that runs in Θ(n) time to inflate the matrix C, where the

 initial storage of the matrix is such that processor Pi, j,
n

2
< i ≤ n,

n

2
< j ≤ n,

C8208_ch06.indd 169C8208_ch06.indd 169 11/15/12 10:48 AM11/15/12 10:48 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

170 Chapter 6 Matrix Operations

 contains ck,m, for k ∈ {2i − n − 1,2i − n}, m ∈ {2j − n − 1,2 j − n}. At the
end of the inflation, processor Pi, j should store ci, j for 1 ≤ i ≤ n, 1 ≤ j ≤ n.
Show that your algorithm is correct.

 4. Show how our algorithm for Gaussian elimination to invert an n × n matrix
can be implemented on a PRAM of n2/log n processors in Θ(n log n) time.

 5. Show how the array changes (as determined by pipelining, pivoting, and
replacement computations) via our matrix inversion algorithm as implemented
on a 3 × 3 mesh for the matrix

A = C 0 2 5

4 −1 1

−8 2 1

S .

 That is, you should show the appearance of A at each time step, in which a
processor performs any of the following operations:

 • Send a unit of data to an adjacent processor (if necessary, after a Θ(1) time
decision).

 • Receive a unit of data from an adjacent processor (if necessary, after a Θ(1)
time decision).

 • Calculate in Θ(1) time and store a new value of its entry of A (if necessary,
after a Θ(1) time decision).

 6. Devise an efficient algorithm for computing the matrix multiplication
Cn×n = An×n × Bn×n on a linear array of n processors, and analyze its running
time. You should make the following assumptions.

 • The processors P1, . . . , Pn of the linear array are numbered from left to
right.

 • For each j, 1 ≤ j ≤ n, the j th column of A and the j th column of B are ini-
tially stored in Pj.

 • At the end of the algorithm, for each j, 1 ≤ j ≤ n, the j th column of C is
stored in Pj.

 Your algorithm may take advantage of the fact that addition is commutative.
For example, if n = 4, your algorithm may compute

c1,2 = a1,2b2,2 + a1,1b1,2 + a1,4b4,2 + a1,3b3,2

rather than using the “usual” order

c1,2 = a1,1b1,2 + a1,2b2,2 + a1,3b3,2 + a1,4b4,2.

C8208_ch06.indd 170C8208_ch06.indd 170 11/15/12 10:48 AM11/15/12 10:48 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Exercises 171

 7. In order to implement Gaussian elimination efficiently on a CGM(n2, q), we
should be able to implement each of the three types of elementary row opera-
tions efficiently. Suppose A is an n × n matrix such that each processor has n/q
columns (not rows) of A. Suppose also that 1 < q ≤ n1/2. Show that

 a. Interchanging distinct rows of A can be done in Θ(n/q) time.

 b. Multiplying a row of A by a non-zero constant can be done in Θ(n/q) time.

 c. Adding a constant multiple of row u to row v can be done in Θ(n/q) time.

C8208_ch06.indd 171C8208_ch06.indd 171 11/15/12 10:48 AM11/15/12 10:48 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Parallel Prefix

Maximum Sum Subsequence

Array Packing

Interval Broadcasting

Point Domination Query

Computing Overlapping Line Segments

Parallel Prefix on a NOW, Cluster, or Grid

Summary

Chapter Notes

Exercises

7
Parallel Prefix

Background Photo Credit © Spectral-Design / Shutterstock
All Images used within the chapter are © 2013 Cengage Learning

C8208_ch07.indd 172C8208_ch07.indd 172 11/15/12 8:23 AM11/15/12 8:23 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Parallel prefix is a powerful operation that can be used to sum elements, find the
minimum or maximum of a set of data, broadcast values, compress data, and per-

form numerous seemingly complex tasks. We will find many uses for the parallel pre-
fix operation as we go through the remaining chapters of this book. In fact, parallel
prefix is such an important operation that it has been implemented at the lowest levels
on many machines and is typically available to the user as a library call. In this chapter
we will i) develop efficient algorithms to perform the parallel prefix computation and
ii) demonstrate the power of parallel prefix by using it in a variety of applications.

C8208_ch07.indd 173C8208_ch07.indd 173 11/15/12 8:23 AM11/15/12 8:23 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

174 Chapter 7 Parallel Prefix

Parallel Prefix

First, we review the definition of parallel prefix. Let X = {x1, x2, . . . , xn} be a set of
elements contained in a set Y. Let ⊗ be a binary associative operator that is closed
with respect to Y. Recall that the term binary means that the operator ⊗ takes two
operands, say xi and xj, as input. The term associative means that the operator ⊗
obeys the relation

(xi ⊗ xj) ⊗ xk = xi ⊗ (xj ⊗ xk).

The term closed means that the result of xi ⊗ xj is a member of Y. Note there is
no requirement for ⊗ to be commutative. That is, we do not require xi ⊗ xj to be
equal to xj ⊗ xi.

The result of x1 ⊗ x2 ⊗ . . . ⊗ xk is referred to as the kth prefix. The computation
of all n prefixes, x1, x1 ⊗ x2, x1 ⊗ x2 ⊗ x3, . . . , x1 ⊗ x2 ⊗ . . . ⊗ xn, is the result of the
parallel prefix computation. Since parallel prefix can be performed by making a
straightforward pass through the data, it is sometimes referred to as a scan or
sweep operation. The operator ⊗ is typically a unit-time operator. That is, ⊗ is an
operation that can be computed in Θ(1) time. Sample operators include addition,
multiplication, minimum, maximum, and, or, and xor.

Lower Bound: The number of operations required to perform a complete
parallel prefix computation is Ω(n), since the value of the nth prefix is based on
all n values.

RAM Algorithm: Let’s consider a straightforward sequential algorithm for
computing the n prefix values p1, p2, . . . , pn, where p1 = x1 and pi+1 = pi ⊗ xi+1, for
i ∈ {1, 2, . . . , n − 1}. The algorithm follows.

p1 = x1 {A constant time assignment}
For i = 1 to n − 1, do {A linear time scan through
 the elements}
 pi+1 = pi ⊗ xi+1 {A constant time operation}
End For

Since the running time of the sequential parallel prefix algorithm is dominated
by the work performed within the loop, it is easy to see that this algorithm runs in
Θ(n) time. Further, this algorithm is asymptotically optimal since parallel prefix
requires Ω(n) operations (see Figures 7-1 and 7-2).

Parallel Algorithms

For shared-memory models of computation, it is common for the input data to be
stored in a contiguous set of memory locations. For distributed-memory models of
computation, this is not necessarily the case.

C8208_ch07.indd 174C8208_ch07.indd 174 11/15/12 8:23 AM11/15/12 8:23 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Parallel Prefix 175

Parallel Prefix on the CREW PRAM

The first parallel model of computation we consider is the CREW PRAM. In this
section, we will use the term segment to refer to a nonempty subset of con secutively
indexed entries of an array. We denote a segment covering entries i through j, i ≤ j,
as si, j. Using this notation, the parallel prefix problem can be defined as comput-
ing the prefix of s1,k, for all k ∈ {1, 2, . . . , n}. We also use the notation Si, j to repre-
sent the final prefix value over the segment si, j. So, we have Si, j = xi ⊗ xi+1 ⊗ . . . ⊗ xj
and pk = S1,k.

The algorithm we present is reminiscent of Merge Sort in terms of its overall
flow of combining single items into pairs, then pairs into pairs of pairs, and so on.
We initialize single prefix values <x1, x2, . . . , xn> . Next, we combine the single
prefix values to determine prefix values of pairs, resulting in the determination
of < S1,2, S3,4, . . . , Sn−1,n> . Then we combine pairs of prefix values in order to
determine prefix values of pairs of pairs, which results in the determination of
<S1,4, S5,8, . . . , Sn−3,n> , and so forth. The algorithm continues for ⎡log2 n⎤ itera-
tions, at which point all prefix values have been determined for segments that
have lengths that are powers of 2 or that end at xn. See Figure 7-3 for an
example.

In an additional Θ(log n) time, in parallel every processor Pi can build up the
prefix pi by a process that mimics the construction of the value i as a string of
binary bits, from the prefix values computed in previous steps. For example,
 processor P7 computes p7 = S1,4 ⊗ S5,6 ⊗ S7,7 while processor P12 computes
p12 = S1,4 ⊗ S5,8. These examples show the use of the Concurrent Read property of
the CREW PRAM, as P7 and P12 will simultaneously read S1,4 for their
calculations.

FIGURE 7-2 An example of parallel prefix on a
set X of 6 items. The operation ⊗ is minimum.
The resulting prefixes are given in array P.

X

P

4 3 6 2 1 5

4 3 3 2 1 1

X

P

4 3 6 2 1 5

4 7 13 15 16 21

FIGURE 7-1 An example of parallel prefix on
a set X of 6 items. The operation ⊗ is addition.
The resulting prefix sums are given in array P.

C8208_ch07.indd 175C8208_ch07.indd 175 11/15/12 8:23 AM11/15/12 8:23 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

176 Chapter 7 Parallel Prefix

Notice that the cost of this algorithm, which is a product of the running time
and number of available processors, is Θ(n log n). Unfortunately, this is not cost-
optimal since we know from the running time of the RAM algorithm that this
problem can be solved with Θ(n) operations.

Now, let’s consider options for developing a time- and cost-optimal CREW
PRAM algorithm for computing a parallel prefix. With respect to the algorithm
just introduced, we can either try to reduce the running time from Θ(log n) to Θ(1),
which is unlikely, or reduce the number of processors from n to Θ(n/log n) while
retaining the Θ(log n) running time. The latter approach is the one we will take.
This is similar to the approach we took earlier in the book when we introduced a
time- and cost-optimal PRAM algorithm for computing a semigroup operation.

That is, we let every processor assume responsibility for a logarithmic number
of data items. Initially, every processor sequentially computes the parallel prefix
over its set of Θ(log n) items. A global prefix is then computed over these
Θ(n/log n) final, local prefix results. Finally, each processor uses the global prefix
associated with the previous processor to update each of its Θ(log n) prefix values.
The algorithm follows. (See the example shown in Figure 7-4.)

FIGURE 7-3 An example of computing parallel prefix by
continually combining results of disjoint pairs of items. The
operation ⊗ used in this example is addition. Notice that the
algorithm requires ⎡log2 11⎤ = 4 steps. At the conclusion of
Step 1, we have computed S1,2, S3,4, S5,6, S7,8, S9,10, and S11,11.
At the end of Step 2, we have computed S1,4, S5,8, and S9,11.
At the end of Step 3, we have computed S1,8 and S9,11. At the
end of Step 4, we have computed p11 = S1,11.

Initial data

1

2

3

4

5

6

7

8

9

10

11

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

Step 1

1

3

3

7

5

11

7

15

9

19

11

Step 2

1

3

6

10

5

11

18

26

9

19

30

Step 3

1

3

6

10

15

21

28

36

9

19

30

Step 4

1

3

6

10

15

21

28

36

45

55

66

C8208_ch07.indd 176C8208_ch07.indd 176 11/15/12 8:23 AM11/15/12 8:23 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Parallel Prefix 177

Step 1:

For i = 1 to
n

log2 n
, every processor Pi does in parallel

 p[(i−1)log2 n]+1 = x[(i−1)log2 n]+1

 For j = 2 to log2 n, do
 p[(i−1)log2 n]+j = p[(i−1)log2 n]+j−1 ⊗ x[(i−1)log2 n]+j

End For i

Comment: After Step 1, processor P1 has the correct final prefix values
stored for the first log2 n prefix terms. Similarly, processor P2 now knows
the local prefix values of the log2 n entries stored in processor P2, and so
forth. In fact, every processor Pi stores p[(i−1)log2 n]+j, the prefix computed
over the segment of the array X indexed by [(i − 1)log2 n + 1, . . . ,
(i − 1)log2 n + j], for all j ∈ {1, 2, . . . , log2 n}.

Step 2: Compute the global prefixes over the n/log2 n final prefix
values, currently stored one per processor. Let

 r1 = plog2 n,

 ri = ri−1 ⊗ pi log2 n, i ∈ e 2, 3, . . . ,
n

log2 n
 f .

Comment: Note that ri is a prefix over the segment of the array X
indexed by 1 . . . i log2 n. This prefix computation over n/log2 n terms is
computed in Θ(log (n /log n)) = Θ(log n) time by the fine-grained CREW
PRAM algorithm presented above, since the step uses one piece of data
stored in each of the n/log2 n processors.

FIGURE 7-4 An example of computing the parallel prefix on a CREW
PRAM with Θ(n/ log n) processors. In this example, we are given n = 16
data items, the operation is addition, there are log2 n = 4 processors,
and each processor is responsible for n/log2 n = 16/4 = 4 data items.

x
i

p
i
 (step 1)

r
i
 (step 2)

p
i
 (step 3)

1

1

1

2

3

3

3

6

6

4

10

10

5

5

15

6

11

21

7

18

28

8

26

36

36

9

9

45

10

19

55

11

30

66

12

42

78

78

13

13

 91

14

27

105

15

42

120

16

58

136

13610

P
1

P
2

P
3

P
4

C8208_ch07.indd 177C8208_ch07.indd 177 11/15/12 8:23 AM11/15/12 8:23 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

178 Chapter 7 Parallel Prefix

The input to our parallel prefix problem consists of a data set X = {x1, x2, . . . , xn},
distributed one item per processor on an n1/2 × n1/2 mesh. That is, processor Pi,
denoted by its row-major index, initially contains xi, 1 ≤ i ≤ n. When the algorithm
terminates, processor Pi should contain the ith prefix x1 ⊗. . . ⊗ xi. We describe the
algorithm in terms of mesh operations that we developed earlier in the book. Note
that in this example, the data items need not be in adjacent processors. That is,

Step 3: The final stage of the algorithm consists of distributing, within
each processor, the final prefix value determined by the previous processor.

For i = 2 to
n

log2 n
, processors Pi do in parallel

 For j = (i − 1)log2 n + 1 to i log2 n, do
 pj = ri−1 ⊗ pj
 End For i
End Parallel

Comment: Note that pj has the desired final value, as it is now calculated
over the segment s1, j of X.

Mesh

In this section, we consider the problem of computing the parallel prefix on a mesh
computer. As discussed earlier, when considering an operation that involves an
ordering imposed on the data, we must first consider an ordering of the processors.
In this section, we will consider a simple row-major ordering of the processors.
Formally, the row-major index of processor Pi, j, i, j ∈ {1, 2, . . . , n1/2}, is (i − 1)n1/2 + j
(see Figure 7-5).

FIGURE 7-5 The row-major index scheme
imposed on a mesh of size 16.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

C8208_ch07.indd 178C8208_ch07.indd 178 11/15/12 8:23 AM11/15/12 8:23 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Parallel Prefix 179

there are items xi and xi+1 that are not in adjacent processors, when xi is in the
rightmost processor of its row in the mesh and xi+1 is in the leftmost processor of
the next row.

First, perform a row rotation within every row. At the conclusion of this rota-
tion, the rightmost processor in every row knows the final prefix value of the
contiguous subset of n1/2 elements of X in its row. Notice that this step is similar
to Step 1 of the algorithm just described for a PRAM with a reduced number of
processors, in which every processor computes the prefix of entries initially
stored in its processor. Next, using only the processors in the rightmost column,
perform a column rotation to determine the parallel prefix of these row-restricted
final prefix values. Again, note that this step is similar to Step 2 of the PRAM
algorithm, which computes the global parallel prefix of the partial results deter-
mined in Step 1.

At this point, notice that the rightmost processors in every row contain their
correct final answers. Furthermore, the value stored in the rightmost processor of
row i, denoted as ri, must be prepended to all of the partial prefix values deter-
mined by the processors in row i + 1 during Step 1. This can be done by first mov-
ing, in parallel, the appropriate prefix values ri determined at the end of Step 2
down one processor, from the rightmost processor in row i, 1 ≤ i ≤ n1/2 − 1, to the
rightmost processor in row i + 1. Once this is done, every row with index greater
than 1 can perform a broadcast from the rightmost processor in its row to all other
processors in its row. Finally, all processors in row i + 1 can prepend ri to their
respective current prefix values.

Therefore, the algorithm consists of a row rotation, a column rotation, a com-
munication step between neighboring processors, and a final row broadcast. Each
of these steps can be performed in O(n1/2) time on a mesh of size n. In fact, since
the rotations run in Θ(n1/2) time, the running time of the algorithm is Θ(n1/2). Of
course, we are now presented with what is becoming a routine question, namely,
“How good is this algorithm?” Since the mesh of size n has a Θ(n1/2) communica-
tion diameter, and since every pair of data elements is required for the determina-
tion of the nth prefix, we can conclude that the running time is optimal for this
architecture. Now, consider the cost. The algorithm has a running time of Θ(n1/2),
using a set of Θ(n) processors, which results in a cost of Θ(n3/2). Since we know
that only Θ(n) operations are required, we can conclude that this is not
cost-optimal.

So, this brings us to one of our favorite questions. Can we design an algorithm
that is more cost-effective than our current algorithm? The major limitation for the
mesh, in this case, is the communication diameter. That is, there is no inherent
problem with the bisection width. In order to reduce the communication diameter,
we must reduce the size of the mesh. This will have the effect of increasing the
number of data elements that each processor is responsible for, including the
 number of input elements, the number of final results, and the number of interme-
diate results.

C8208_ch07.indd 179C8208_ch07.indd 179 11/15/12 8:23 AM11/15/12 8:23 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

180 Chapter 7 Parallel Prefix

Notice that at the extreme, we could consider a mesh of size 1, i.e., a RAM.
The algorithm would run in a very slow Θ(n) time, but would also have an opti-
mal cost of Θ(n). However, this is not quite what we envisioned when we thought
about reducing the size of a mesh. Instead, consider keeping the cost of the mesh
optimal, but improving the running time from that of a fine-grained mesh. In
such a case, we want to balance the communication diameter with the amount of
work each processor must perform. Given an n1/3 × n1/3 mesh, notice that each of
these n2/3 processors would store n1/3 elements of X and would be responsible for
storing n1/3 final prefix results. This is similar to the PRAM algorithm in which
we required every processor to be responsible for Θ(log n) input elements and
final results.

So, let’s consider an n1/3 × n1/3 mesh, where each processor initially stores
n1/3 entries of X. The algorithm follows the time- and cost-optimal PRAM algo-
rithm presented in the last section, combined with the global operations and
techniques presented in the non-optimal n1/2 × n1/2 mesh algorithm just pre-
sented. First, every processor computes the prefix of its n1/3 entries in Θ(n1/3)
time by the standard sequential algorithm. Now, consider the final restricted
prefix value in each of the n2/3 processors. The previous mesh algorithm can be
applied to these n2/3 entries, stored one per processor on the n1/3 × n1/3 mesh.
Since this mesh algorithm runs in time proportional to the communication
diameter of the mesh, this step runs in Θ(n1/3) time. At the conclusion of this
step, every processor will now have to obtain the previous prefix value and go
through and determine each of its final n1/3 results, as we did in the PRAM algo-
rithm. Clearly, this can be performed in Θ(n1/3) time. Therefore, the running
time of the algorithm is Θ(n1/3).

This is due to the fact that we balanced the time required for data movement
with the time required for sequential computing. Since the algorithm runs in
Θ(n1/3) time on a machine with Θ(n2/3) processors, the cost of the algorithm is
Θ(n1/3 × n2/3) = Θ(n), which is optimal.

Hypercube

In this section, we consider the problem of computing the parallel prefix on a
hypercube computer. As with the mesh, when considering an operation that
involves an ordering imposed on the data, we must first consider an ordering of the
processors. In this section, we assume that the data set X = {x0, x1, . . . , xn−1} is dis-
tributed so that processor Pi initially contains data item xi. Notice that we have
changed the indexing of the set X from [1, . . . , n], which was used for the RAM,
Mesh, and PRAM, to [0, 1, . . . , n − 1] for the hypercube. This change of indexing
allows us to accommodate the natural indexing of a hypercube of size n, in which
the log2 n-bit indices are in the range of [0, 1, . . . , n − 1]. So we assume that every
processor Pi initially contains data item xi, and at the conclusion of the algorithm,
every processor Pi will store the ith prefix, x0 ⊗. . . ⊗ xi, 0 ≤ i ≤ n − 1.

C8208_ch07.indd 180C8208_ch07.indd 180 11/15/12 8:24 AM11/15/12 8:24 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Parallel Prefix 181

The procedure we present is similar to the recursive doubling algorithm we pre-
sented for broadcasting on a hypercube. The algorithm operates by cycling through
the log2 n bits of the processor indices. At iteration i, every processor determines the
prefix for the subhypercube that it is in with respect to the i least significant bits of
its index. In addition, every processor uses this partial information, as appropriate,
to compute its required prefix value. The algorithm follows (see Figure 7-6).

Input: Processor Pi contains data element xi, 0 ≤ i ≤ n − 1.
Output: Processor Pi contains the ith prefix x0 ⊗ . . .⊗ xi.

In Parallel, every processor Pi does the following.
 subcube_prefix = xi {prefix for current subcube}
 processor_prefix = xi {prefix of desired result}
 {lsb = least significant bit and
 msb = most significant bit}
 For b = lsb to msb, do
 {In this loop, we consider the binary
 processor indices from the rightmost
 bit to the leftmost bit.}
 send subcube_prefix to b-neighbor
 receive temp_prefix from b-neighbor
 If the bth bit of processor Pi is a 1, then
 processor_prefix = temp_prefix ⊗ processor_prefix
 subcube_prefix = temp_prefix ⊗ subcube_prefix
 Else
 subcube_prefix = subcube_prefix ⊗ temp_prefix
 {We compute subcube_prefix differently
 than in the previous case, since ⊗ need
 not be commutative.}
 End If
 End For
End Parallel

Analysis

The analysis of this algorithm is fairly straightforward. Notice that the n processors
are uniquely indexed with log2 n bits. The algorithm iterates over these bits, each
time performing Θ(1) operations, which include sending/receiving data over a link
and performing a fixed number of unit-time operations on the contents of local
memory. Therefore, given n elements initially distributed one per processor on a
hypercube of size n, the running time of the algorithm is Θ(log n). Since the com-
munication diameter of a hypercube of size n is Θ(log n), the algorithm is optimal
for this architecture. However, the cost of the algorithm is Θ(n log n), which is not
optimal. In order to reduce the cost to Θ(n), we might consider reducing the

C8208_ch07.indd 181C8208_ch07.indd 181 11/15/12 8:24 AM11/15/12 8:24 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

182 Chapter 7 Parallel Prefix

010 011

000 001

110 111

100 101

(a) Indexing of a hypercube
of size 8.

(b) Initial set of data.

(c) First step: Communicating
along 3-dimensional edges.

(e) Third step: Communicating
along 1-dimensional edges.

(d) Second step: Communication
along 2-dimensional edges.

2 3

0 1

6 7

4 5

25 55

01 11

613
1313

49 99

36 66

06
16

1522 2222

422
922

328 628

028
128

2128 2828

1028
1528

FIGURE 7-6 An example of computing the parallel prefix on a hypercube of
size 8 with the operation of addition. Processor prefix values are shown large
in (c), (d), and (e), and subcube prefix values are small.

C8208_ch07.indd 182C8208_ch07.indd 182 11/15/12 8:24 AM11/15/12 8:24 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Maximum Sum Subsequence 183

number of processors from n to n/log2 n while still maintaining a running time of
Θ(log n). We leave this problem as an exercise.

Coarse Grained Multicomputer

By making use of efficient gather and scatter operations, one may modify the algo-
rithm presented above for the CREW PRAM with n/log2 n processors or for the
n1/3 × n1/3 mesh in order to obtain an algorithm for the parallel prefix computation
on a CGM(n, q) that runs in optimal Θ(n/q) time. See the Exercises, where a more
precise statement of the problem is given.

Maximum Sum Subsequence

In this section, we consider an application of the parallel prefix computation. The
problem we consider is that of determining a subsequence of a data set that sums
to the maximum value with respect to any subsequence of the data set. Formally,
we are given a sequence X = 8x0, x1, . . . , xn−19 , and we are required to find a set of
indices u and v, u ≤ v, such that the subsequence 8xu, xu+1, . . . , xv9 has the largest
possible sum, xu + xu+1 +g+ xv, among all possible subsequences of X. Note that
by a subsequence of X we mean a subset of X made up of consecutively indexed
entries. Note also that while the largest sum is unique, there may be multiple sub-
sequences that correspond to the same largest sum.

If all the elements of X are nonnegative, then the problem is trivial, as the
entire sequence represents the solution. Similarly, if all elements of X are nonposi-
tive, an empty subsequence is the solution, since, by convention, the sum of the
elements of an empty set of numbers is 0. So, this problem is interesting only when
both positive and negative values are present. This is the case we now consider for
several models of computation.

RAM

The lower bound to solve this problem on a RAM is Ω(n), since if any one element
is not examined, it is possible that an incorrect solution may be obtained. We will
now attempt to develop an optimal Θ(n) time solution to this problem. Consider
the situation of scanning the list from the first element to the last while maintain-
ing some basic information about the maximum subsequence observed and the
contribution that the current element can make to the current subsequence under
investigation. A first draft of the algorithm follows.

 1. Solve the problem for 8x0, x1, . . . , xi−19 .
 2. Extend the solution to include the next element, xi. Notice that the maximum

sum in 8x0, x1, . . . , xi9 is the maximum of

a. the sum of a maximum sum subsequence in 8x0, x1, . . . , xi−19 , which we refer
to as Global_Max, and

b. the sum of a subsequence ending with xi, which we refer to as Current_Max.

C8208_ch07.indd 183C8208_ch07.indd 183 11/15/12 8:24 AM11/15/12 8:24 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

184 Chapter 7 Parallel Prefix

The five initialization steps each run in Θ(1) time. Each pass through the For-
loop also runs in Θ(1) time. Since the loop is performed Θ(n) times, it follows that
the running time of the algorithm is Θ(n), which is optimal, as all n entries of the
input array X must be examined.

CREW PRAM

Consider an efficient solution to the maximum sum subsequence problem for the
CREW PRAM. Let’s attempt to design a CREW PRAM algorithm that is efficient

The details of the algorithm are straightforward. (Also see the example pre-
sented in Figure 7-7.)

Global_Max ← x0
u ← 0 {Start index of global max subsequence}
v ← 0 {End index of global max subsequence}
Current_Max ← x0
q ← 0 {Initialize index of current subsequence}
For i = 1 to n − 1, do {Traverse list}
 If Current_Max ≥ 0 Then
 Current_Max ← Current_Max + xi
 Else
 Current_Max ← xi
 q ← i {Reset index of current subsequence}
 End Else
 If Current_Max > Global_Max Then
 Global_Max ← Current_Max
 u ← q
 v ← i
 End If
End For

FIGURE 7-7 An example of the maximum sum
 subsequence problem.

i x Global_Max u v Current_Max q

0 5 5 0 0 5 0

1 3 8 0 1 8 0

2 –2 8 0 1 6 0

3 4 10 0 3 10 0

4 –6 10 0 3 4 0

5 –5 10 0 3 –1 0

6 1 10 0 3 1 6

7 10 11 6 7 11 6

8 –2 11 6 7 9 6

C8208_ch07.indd 184C8208_ch07.indd 184 11/15/12 8:24 AM11/15/12 8:24 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Maximum Sum Subsequence 185

in its running time and cost-optimal. Based on our previous experience with
designing cost-effective PRAM algorithms, it makes sense to target a Θ(log n)
time algorithm on a machine with Θ(n/log n) processors. Such an algorithm would
be time- and cost-optimal.

Suppose we first compute the parallel prefix sums S = {p0, p1, . . . , pn−1} of
X = {x0, x1, . . . , xn−1}, where pi = x0 ⊗ . . . ⊗ xi. This can be performed in Θ(log n)
time by the cost-optimal parallel prefix algorithm presented in the previous section.

Next, compute the parallel postfix maximum of S so that for each index i, the
maximum pj, j ≥ i, is determined, along with the value j. Given data values
{y0, . . . , yn−1}, we define the parallel postfix computation as an algorithm that deter-
mines the n values y0 ⊗ y1 ⊗ . . . ⊗ yn−1, y1 ⊗ y2 ⊗ . . . ⊗ yn−1, y2 ⊗ . . . ⊗ yn−1, . . . ,
yn−2 ⊗ yn−1, yn−1. Notice that when computing the desired parallel postfix maxi-
mum, one can simply compute parallel prefix maximum on {pn−1, pn−2, . . . , p0}
since the maximum operation is commutative.

Let mi denote the value of the postfix-max at position i, and let ai be the asso-
ciated index, i.e., pai

= max {pi, pi+1, . . . , pn−1}. This parallel postfix is computed in
Θ(log n) time by the algorithm presented in the previous section.

Next, for each i, compute bi = mi − pi + xi, the maximum prefix value of any-
thing to the right minus the prefix sum plus the current value. Note that xi must be
added back in since it appears in term mi as well as in term si. This operation can
be performed in Θ(log n) time by having each processor compute the value of b
for each of its Θ(log n) entries. Finally, the solution corresponds to the maximum
of the bi’s, where u is the index of the position where the maximum of the bi’s is
found and v = au. This final step can be computed by a semigroup operation in
Θ(log n) time.

Therefore, the algorithm runs in optimal Θ(log n) time on a CREW PRAM
with n/log2 n processors, which yields an optimal cost of Θ(n).

We now give an example for this problem. Consider the input sequence
X = 8−3, 5, 2, −1, −4, 8, 10, −29 . The parallel prefix sum of X is S = 8−3, 2, 4, 3, −1,
 7, 17, 159 .

m0 = 17 a0 = 6 b0 = 17 − (−3) + (−3) = 17

m1 = 17 a1 = 6 b1 = 17 − 2 + 5 = 20

m2 = 17 a2 = 6 b2 = 17 − 4 + 2 = 15

m3 = 17 a3 = 6 b3 = 17 − 3 + (−1) = 13

m4 = 17 a4 = 6 b4 = 17 − (−1) + (−4) = 14

m5 = 17 a5 = 6 b5 = 17 − 7 + 8 = 18

m6 = 17 a6 = 6 b6 = 17 − 17 + 10 = 10

m7 = 15 a7 = 7 b7 = 15 − 15 + (−2) = −2

As the example shows, we have a maximum subsequence sum of b1 = 20. This
corresponds to u = 1 and v = a1 = 6, or the subsequence 85, 2, −1, −4, 8, 109 . It is

C8208_ch07.indd 185C8208_ch07.indd 185 11/15/12 8:24 AM11/15/12 8:24 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

186 Chapter 7 Parallel Prefix

also interesting to observe that the maximum sum subsequence for this example is
a subsequence that contains positive and negative terms.

Mesh

We now consider a mesh. Notice that an optimal CREW PRAM algorithm for
solving the maximum sum subsequence problem relies on a parallel prefix opera-
tion, a parallel postfix operation, a semigroup operation, and some local unit-time
computations. Also notice that a semigroup computation can be implemented by a
parallel prefix computation. Therefore, the maximum sum subsequence problem
can be solved by using three parallel prefix operations and some local computa-
tions. Recall that one of these parallel prefix operations is actually a parallel post-
fix operation, which performs parallel prefix from the end to the beginning of the
list of data. Therefore, in designing an algorithm for the mesh, we can simply fol-
low the general guidelines of the CREW PRAM algorithm while implementing the
appropriate mesh steps in an efficient manner. So, we know that we can solve the
maximum sum subsequence problem in Θ(n1/3) time on an n1/3 × n1/3 mesh. Since
this algorithm runs in Θ(n1/3) time on a machine with n2/3 processors, the cost is
Θ(n1/3 × n2/3) = Θ(n), which is optimal. Further, as discussed previously, this is the
minimal running time on a mesh for a cost-optimal solution.

Array Packing

In this section, we consider an interesting problem, the result of which is a global
rearrangement of data. The problem consists of taking an input data set, in which a
subset of the items are marked, and rearranging the data set so that all of the
marked items precede all of the unmarked items. Formally, we are given an array X
of items. Each item has an associated label field that is initially set to one of two
values, namely, marked or unmarked. The task is to pack the items so that all of the
marked items appear before all of the unmarked items in the array. Notice that this
problem is equivalent to sorting a set of 0s and 1s. In fact, if we consider 0 to rep-
resent marked and 1 to represent unmarked, then this problem is equivalent to sort-
ing a set of 0s and 1s into nondecreasing order.

RAM

The first model of computation that we consider is the RAM. Since this problem is
equivalent to sorting a set of 0’s and 1’s, we could solve this problem quite simply
in O(n log n) time by any one of a number of Θ(n log n) worst-case running time
sorting routines. However, since we know something about the input data, we
should consider the possibility of constructing a RAM sorting algorithm that runs
in o(n log n) time. In this case, we know that the sort field consists of a restricted
set of values. In fact, the keys used to sort the data can only take on one of two
values. Using this information, we can consider scan-based sorts such as Counting
Sort or Radix Sort.

C8208_ch07.indd 186C8208_ch07.indd 186 11/15/12 8:24 AM11/15/12 8:24 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Array Packing 187

Consider Counting Sort. If we are sorting an array of n entries, we could sim-
ply make one pass through the array and count the number of 0’s and the number
of 1’s. Suppose we count X zeros and Y ones. Then we could simply write out the
value zero X times followed by writing out the value one Y times. However, the
situation we are presented with is slightly more complicated since each key is part
of a larger record.

In such a case, we could initialize two linked lists, one for those records with a
zero as key and one for those records with a one as key, and then traverse the array
element by element. As we encounter each element in the array, we create and ini-
tialize a record with the pertinent information and add it in Θ(1) time to either the
0’s list or the 1’s list, as appropriate. This traversal is complete in Θ(n) time.

We can then scan through the 0’s list, element by element, and overwrite the
pertinent information into the next available place in the array. After exhausting the
0’s list, we continue similarly with the 1’s list. Again, this step of writing the lists
onto the array is done in Θ(n) time, and hence the algorithm is complete in asymp-
totically optimal Θ(n) time. The reader should observe that this algorithm is closely
related to the Bin Sort algorithm discussed in Chapter 1, “Asymptotic Analysis.”

Suppose we are given an array of n records, and we are required to perform
array packing in place. That is, suppose that the space requirements in the machine
are such that we cannot duplicate more than some fixed number of items. In this
case, we can use the array-based Partition routine from Quicksort (see Chapter 9,
“Divide-and-Conquer”) to rearrange the items. This partition routine is imple-
mented by considering one index L that moves from the beginning toward the end
of the array, i.e., from left to right, and another index R that moves from the end
toward the beginning of the array, i.e., from right to left. Index L stops when it
encounters an unmarked item, while index R stops when it encounters a marked
item. When both L and R have found an out-of-place item, and L precedes R in the
array, then the items are swapped and the search continues. When L does not pre-
cede R, the algorithm terminates. The running time of the algorithm is linear in the
number of items in the array. That is, the running time is Θ(n).

CREW PRAM

Now consider the CREW PRAM. As with the maximum sum subsequence prob-
lem, we realize that in order to obtain an efficient and cost-effective algorithm, we
should try to develop an algorithm that runs in Θ(log n) time using only Θ(n/log n)
processors. This problem is easily solved using a parallel prefix sum to determine
the rank of each 0 with respect to all 0’s and the rank of each 1 with respect to all 1’s.

That is, suppose we first determine for each 0 the number of 0’s that precede
it. Similarly, suppose we determine for each 1 the number of 1’s that precede it.
Further, assume that the total number of 0’s is computed as part of the process of
ranking the 0’s. Then during a write stage, every 0 can be written to its proper loca-
tion, the index of which is one more than the number of 0’s that precede it. Also,
during this write state, every 1 can be written to its proper location, the index of

C8208_ch07.indd 187C8208_ch07.indd 187 11/15/12 8:24 AM11/15/12 8:24 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

188 Chapter 7 Parallel Prefix

which is one plus the number of 1’s that precede it plus the number of 0’s that also
precede it.

Let’s consider the running time of such an algorithm. Given a CREW PRAM
with Θ(n/log n) processors, the parallel prefix computation can be performed in
Θ(log n) time, as previously described. Along with this computation, the total
number of 0’s is easily determined in an additional Θ(log n) time. Therefore, the
write stage of the algorithm runs in Θ(log n) time. Note that each processor is
responsible for writing out Θ(log n) items. Hence, the total running time of the
algorithm is Θ(log n), and the cost of the algorithm on a machine with Θ(n/log n)
processors is Θ(log n × n / log n) = Θ(n), which is optimal. It is important to note
that this algorithm can be easily adapted to sort a set of values chosen from a con-
stant size set. In fact, the algorithm can be easily adapted to sort records, where all
keys are chosen from a set of constant size.

Network Models

Now, let’s consider the problem of array packing for the general network model.
Suppose one simply cares about sorting the data set, which consists of 0’s and 1’s.
Then the algorithm is straightforward. Using either a semigroup operation or a
parallel prefix computation, determine the total number of 0’s and 1’s. These val-
ues are then broadcast to all processors. Assume there are k 0’s in the set. Then all
processors Pi, i ≤ k, record their final result as 0, while all other processors record
their final result as 1. This results in all 0’s appearing before all 1’s in the final
sorted list. Notice that this is a simple implementation of the Counting Sort algo-
rithm we have used previously.

Suppose that instead of simply sorting keys, one needs the actual data to be
rearranged. That is, assume that we are performing array packing on labeled
records where all records that are marked are to appear before all records that are
not marked. This is a fundamentally different problem from sorting a set of 0’s and
1’s. Notice that for this variant of the problem, it may be that all of the records are
on the “wrong” half of the machine under consideration. Therefore, the lower
bound for solving the problem is a function of the bisection width. For example, on
a mesh of size n, if all n records need to move across the links that connect the
middle two columns, a lower bound on the running time is Ω(n/n1/2) = Ω(n1/2). On
a hypercube of size n, the bisection width gives us a lower bound of
Ω(n/(n/2)) = Ω(1). However, the communication diameter yields a better lower
bound of Ω(log n). The reader should consider bounds on other machines, such as
the pyramid and mesh-of-trees.

Since the record-based variant of the array packing problem reduces to sort-
ing, the solution can be obtained by performing an efficient general-purpose sort-
ing algorithm on the architecture of interest. Such algorithms will be discussed
later in this book.

C8208_ch07.indd 188C8208_ch07.indd 188 11/15/12 8:24 AM11/15/12 8:24 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Interval Broadcasting 189

Interval Broadcasting

In this section, we consider a variant of the parallel prefix problem. Assume that
we are given a sequence of data items. Further, we assume that some subset of
these items is “marked.” For example, given a list of 20 items, we might find that
items 3, 7, 9, 15, and 18 are marked.

We can view these marked data items as separating the complete sequence of
data items into logical subsequences, where the first item of every subsequence is
a marked data item. The problem we consider is that of broadcasting a marked data
item to all of the records in its subsequence. It is important to note that in each
subsequence, there is one and only one marked data item, and, in fact, it is the first
item of the subsequence. So, in the example given above, the data in item 3 would
be broadcast to items 4, 5, and 6. The data in item 7 would be broadcast to item 8.
The data in item 9 would be broadcast to items 10 through 14, and so forth. For
this reason, the marked data items are often referred to as “leaders.” We now give
a more concise description of the problem.

Suppose we are given an array X of n data items with a subset of the elements
marked as “leaders.” We then broadcast the value associated with each leader to all
elements that follow it in X up to but not including the next leader. Another exam-
ple, which is slightly more visual, is given below.

The top table in Figure 7-8 gives the information before the segmented broad-
cast. The leaders are those entries for which the “Leader” component is equal to 1.
In the table at the bottom of Figure 7-8, we show the information after this seg-
mented broadcast. At this point, every entry knows its leader and the information
broadcast from its leader.

Processor Index: 0 1 2 3 4 5 6 7 8 9

Leader 1 0 0 1 0 1 1 0 0 0

Data 18 22 4 36 -3 72 28 100 54 0

Processor Index: 0 1 2 3 4 5 6 7 8 9

Leader 1 0 0 1 0 1 1 0 0 0

Data 18 22 4 36 -3 72 28 100 54 0

LeaderIndex 0 0 0 3 3 5 6 6 6 6

LeaderData 18 18 18 36 36 72 28 28 28 28

FIGURE 7-8 An example of segmented broadcast. The top table shows the initial
state, i.e., the information before the segmented broadcast. Thus, by examining
the Leader field in each processor, we know the interval leaders are processors
0, 3, 5, and 6. In the bottom table, we show the information after the segmented
broadcast. Information from each leader has been propagated to all processors
to the right, up to, but not including, the next leader.

C8208_ch07.indd 189C8208_ch07.indd 189 11/15/12 8:24 AM11/15/12 8:24 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

190 Chapter 7 Parallel Prefix

Solution Strategy

The interval broadcasting problem can be solved in a fairly straightforward fashion
by exploiting a parallel prefix computation, as follows. For each leader xi in X,
 create the record (i, xi). For each data item xi that does not correspond to a leader in
X, create the record (−1, xi). Now define our prefix operator ⊗ as

(i, a) ⊗ (j, b) = e (i, a) if i > j;

(j, b) otherwise.

The reader should verify that ⊗ has all properties necessary to be an operator
for parallel prefix. That is, the reader should verify that this operator is binary,
closed, and associative. Recall that ⊗ need not be commutative. Notice that a
straightforward application of a parallel prefix will now serve to broadcast the data
associated with each leader to the members of its interval.

Analysis

Consider the RAM. A parallel prefix is implemented as a linear time scan operation,
making a single pass through the data. So given an array X of n elements, the run-
ning time of the algorithm on a RAM is Θ(n), which is asymptotically optimal.
Notice that the solution to the interval broadcasting problem simply consists of a
careful definition of the prefix operator ⊗, coupled with a straightforward imple-
mentation of parallel prefix. Therefore, the analyses of running time, space, and
cost on the CREW PRAM and network models are consistent with those for parallel
prefix computations that were presented earlier in this chapter for these respective
models. Similarly, as a consequence of an Exercise at the end of this chapter, the
running time, space, and cost of this algorithm on the Coarse Grained Multicomputer
are consistent with those for parallel prefix computations.

Point Domination Query

In this section, we consider an interesting problem from computational geome-
try, a branch of computer science concerned with designing efficient algorithms
to solve geometric problems. Such problems typically involve points, lines,
polygons, and other geometric figures. Consider a set of n data items, where
each item consists of m fields. Further, suppose that each field is drawn from
some linearly ordered set. That is, within each field, one can compare two entries
and determine whether the first entry is less than, equal to, or greater than the
second entry.

We consider the point domination problem in two-dimensional space. That is,
we say that a point q1 = (x1, y1) dominates a point q2 = (x2, y2) if and only if x1 > x2
and y1 > y2. A solution to this problem is useful, for example, if one wants to

C8208_ch07.indd 190C8208_ch07.indd 190 11/15/12 8:24 AM11/15/12 8:24 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Point Domination Query 191

FIGURE 7-9 An example of the point
domination problem. In this example,
exactly three points have no other
point both above and to the right. The
remainder of the points are dominated
by at least one of these three points.

y

x

Suppose that the input to our problem consists of a set of n points,
Q = {q1, q2, . . . , qn}, where each point qi = (xi, yi) is such that no two members of Q
have the same x-coordinates or the same y-coordinates. Further, suppose that Q is
initially ordered with respect to the x-coordinate of the records. Given such input,
we now consider an algorithm to solve the point domination query.

Solution Strategy
Since the records are initially ordered with respect to the x-coordinate, the points
can be thought of as lying ordered along the x-axis. The first step of the algorithm
is to perform a parallel postfix operation, where the operator is maximum-y-value.
Since the maximum operation is commutative, this is equivalent to performing a
parallel prefix operation on the sequence of data 8qn, qn−1, . . . , q19 . Let pi denote
the parallel prefix value associated with record qi. Notice that at the conclusion of
the parallel prefix algorithm, the desired set of points consists of all qi for which

determine for a given set of points Q = {q1, q2, . . . , qn}, which points are not domi-
nated by any point in Q.

Suppose we are interested in performing a study to identify the set of students
for which no other student has both a higher grade point average (GPA) and has
sent more tweets. An example is given in Figure 7-9, where the x-axis represents
the number of tweets sent and the y-axis represents GPA. Exactly three points from
this set of nine students satisfy our query.

C8208_ch07.indd 191C8208_ch07.indd 191 11/15/12 8:24 AM11/15/12 8:24 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

192 Chapter 7 Parallel Prefix

i < n and pi > pi+1. Also, qn is one of the desired points. We now consider the time-
and space-complexity of the algorithm on the RAM, CREW PRAM, and
network models.

RAM

Given an ordered array of data, a prefix operation can be performed on the n
entries in Θ(n) time using a constant amount of additional space. A final pass
through the data can be used to identify the desired set of records. We should note
that this second pass could be avoided by incorporating the logic to recognize
points that are not dominated into the parallel prefix operation. Note that it is easy
to argue that the running time is optimal since the only way to complete the algo-
rithm faster would be not to examine all of the entries, which could result in an
incorrect result.

CREW PRAM and Network Models

Notice that the solution to the 2-dimensional point domination query, where the
input is given ordered by x-axis, is dominated by a parallel prefix operation.
Therefore, the running time, space, and cost analyses are consistent with those
of parallel prefix computations for these respective models given earlier in
this chapter.

Computing Overlapping Line Segments

In this section, we consider other simple problems from computational geometry.
These problems involve a set of line segments that lie along the same line. We can
think of this as a set of line segments that lie along the x-axis, as shown in
Figure 7-10, where the segments are shown raised above the x-axis for clarity. The
line segments are allowed to overlap in any possible combination.

B

s6

A

s5 s3

s4

s2

s1

FIGURE 7-10 An example of problems involving overlapping
line segments. The line segments are all assumed to lie on
the x-axis, though they are drawn superimposed for viewing
purposes.

C8208_ch07.indd 192C8208_ch07.indd 192 11/15/12 8:24 AM11/15/12 8:24 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Computing Overlapping Line Segments 193

In particular, we assume that the input consists of a set S = {s1, s2, . . . , sn} of n
uniquely labeled line segments, all of which lie along the same horizontal line.
Each member of S is represented by two records, one corresponding to each end-
point. Each such record consists of the x-coordinate of the endpoint, the label of
the line segment, and a flag indicating whether the point is the left or right end-
point of the line segment.

In addition, we assume that these 2n records are ordered with respect to the
x-coordinate of the records, and if there is a tie, i.e., two records with the same
x-coordinate, the tie is broken by having a record with a Left endpoint precede a
record with a Right endpoint.

Coverage Query: The first problem we consider is determining whether or not
the x-axis is completely covered by the set S of n line segments between two given
x-coordinates, A and B, where A < B.

Solution: We give a machine-independent solution strategy and then discuss the
analysis for a variety of models.

 1. Determine whether or not left (s1) ≤ A and B ≤ max5right (si)6i=1

n
. If this is the

case, then we can proceed. If not, we can halt with the answer that the coverage
query is false.

 2. For each of the 2n records, create a fourth field that is set to 1 if the record
represents a left endpoint, and is set to −1 if the record represents a right end-
point. We will refer to this field as the operand field.

 3. Considering all 2n records, perform a parallel prefix sum operation on the
values in this operand field. The result of the ith prefix will be stored in a fifth
field of the ith record, for each of the 2n records.

 4. Notice that any parallel prefix sum of 0 must correspond to a right endpoint.
Suppose that such a right endpoint is at x-coordinate c. Then all line seg-
ments with a left endpoint in (−∞, c] must also have their right endpoint in
(−∞, c]. Recall that in case of a tie in the x-coordinate, the left endpoint pre-
cedes the right endpoint, so the record that follows must be either a right
endpoint with x-coordinate equal to c, or a left endpoint with x-coordinate
strictly greater than c. Either way, the ordered sequence cannot have a right
endpoint with x-coordinate strictly greater than c until after another left end-
point with x-coordinate strictly greater than c occurs in the sequence. Thus,
there is a break in the coverage of the x-axis at point c. So, we determine the
first record with parallel prefix sum equal to 0. If the x-coordinate of the
endpoint is greater than or equal to B, then the answer to the coverage query
is true, while otherwise it is false (see Figure 7-11).

RAM

Consider an implementation of this algorithm on a RAM. The input consists of an
array S with 2n entries and the values of A and B. Step 1 requires the comparison

C8208_ch07.indd 193C8208_ch07.indd 193 11/15/12 8:24 AM11/15/12 8:24 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

194 Chapter 7 Parallel Prefix

of the first element of S with the scalar quantity A and, since the records are
ordered, a comparison of B with the last point. Therefore, Step 1 can be performed
in Θ(1) time. Step 2 is completed with a simple Θ(n) time scan through the array.
In Step 3, a parallel prefix computation is performed on an array of 2n items with
a scan that runs in Θ(n) time. In Step 4, a final scan is used to determine the first
break in the coverage of the line segments before determining in Θ(1) time whether
or not this endpoint precedes B. Therefore, the running time of the RAM algorithm
is Θ(n), which is optimal.

CREW PRAM

In order to attempt to derive a cost-optimal algorithm for this problem on the
CREW PRAM, we will consider a CREW PRAM with Θ(n/log n) processors. In
the first step, the values of A and B can be broadcast to all processors in Θ(1)
time, as shown previously. This is followed by a Θ(log n) time OR semi-group
operation to compute the desired comparison for A and then B, and a broadcast of

FIGURE 7-11 Transforming the coverage query problem to the parentheses
matching problem. For this example, notice that there is a break in
 coverage between x6 and x7, as indicated by the 0 in the prefix value of x6.

x1

Key

x1

x2

x3

x4

x5

x6

x7

x8

1

1

1

–1

–1

–1

1

–1

Operand

1

2

3

2

1

0

1

0

Prefix

x2 x3 x5

x4

x6 x7 x8BA

C8208_ch07.indd 194C8208_ch07.indd 194 11/15/12 8:24 AM11/15/12 8:24 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Computing Overlapping Line Segments 195

the decision concerning halting that runs in Θ(1) time. Step 2 runs in Θ(log n)
time since every processor must examine all Θ(log n) of the records for which it
is responsible. Step 3 is a straightforward parallel prefix, which can be performed
on a CREW PRAM with Θ(n/log n) processors in Θ(log n) time, as discussed
previously. In Step 4, a Θ(log n) time semigroup operation can be used to deter-
mine the first endpoint that breaks coverage, and a Θ(1) time comparison can be
used to resolve the final query. Therefore, the running time of the algorithm is
Θ(log n) on a CREW PRAM with Θ(n/log n) processors, resulting in an optimal
cost of Θ(n).

Mesh

As we have done previously when attempting to derive an algorithm with Θ(n)
cost on a mesh, we consider an n1/3 × n1/3 mesh, in which each of the n2/3 proces-
sors initially contains the appropriate set of n1/3 contiguous items from S. If we
follow the flow of the PRAM algorithm, as implemented on a mesh of size n2/3, we
know that the broadcasts and parallel prefix operations can be performed in Θ(n1/3)
time. Since these operations dominate the running time of the algorithm, we have
a Θ(n1/3) time algorithm on a mesh with n2/3 processors, which results in an opti-
mal cost of Θ(n).

Maximal Overlapping Point

The next variant of the overlapping line segments problem that we consider is the
problem of determining a point on the x-axis that is covered by the most line seg-
ments. The input to this problem consists of the set S of 2n ordered endpoint
records, as discussed above.

Solution
The solution we present for the maximal overlapping point problem is very similar
to the solution just presented for the coverage query problem.

 1. For each of the 2n records, create a fourth field that is set to 1 if the record rep-
resents a left endpoint, and is set to −1 if the record represents a right endpoint.
We will refer to this field as the operand field.

 2. Considering all 2n records, perform a parallel prefix sum operation on the
values in this operand field. For each of the 2n records, the result of the ith
prefix will be stored in the fifth field of the ith record.

 3. Determine the maximum value of these prefix sums, denoted as M. All points
with a prefix sum of M in the fifth field of their record correspond to points
that are overlapped by a maximal number of line segments.

C8208_ch07.indd 195C8208_ch07.indd 195 11/15/12 8:24 AM11/15/12 8:24 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

196 Chapter 7 Parallel Prefix

Analysis

The analysis of this algorithm follows that of the coverage query problem quite
closely. Both problems are dominated by operations that are efficiently performed
by parallel prefix computations. Therefore, the RAM algorithm is optimal at Θ(n)
time. A CREW PRAM algorithm can be constructed with Θ(n/log n) processors
that runs in Θ(log n) time, yielding an optimal cost of Θ(n). Finally, a mesh algo-
rithm can be constructed with Θ(n2/3) processors, running in Θ(n1/3) time, which
also yields an algorithm with optimal Θ(n) cost.

Parallel Prefix on a NOW, Cluster, or Grid

Each of the problems considered in this chapter is often part of a solution to a
much larger problem. In fact, solutions to the problems presented in this chapter
are often used to solve problems for which one might use a NOW, Cluster, or Grid.
That is, many of the larger problems that require solutions to the problems
 presented in this section require access to machines with significant compute- and/
or data-capabilities.

The solutions presented in this section rely on standard low-level parallel com-
puting operations, including parallel prefix, broadcast, and semigroup operations.
Some of these operations are either enhanced or restricted, but are still important
operations with wide applicability.

For this reason, such operations are typically part of a set of pre-defined rou-
tines that come standard with the machines in question. That is, such routines will
be part of standard data movement operations packages, numerical methods pack-
ages, or message passing packages, as appropriate. Therefore, the reality is that
when designing solutions to such problems, it is critical to understand fundamental
sequential and parallel solution strategies, objectives of efficiency or optimality,
and alternative strategies.

However, when it comes time to implement such solutions, it is often best to
use predefined routines that have been tuned at very low levels for the specific
architectures in question. That is, it is in the best interest of a hardware or architec-
ture vendor to produce not only machines with efficient and desirable hardware
subsystems, but also to supply software libraries that will make efficient use of the
available hardware, including processors, memory, interconnection networks, stor-
age, and so forth.

Summary

In this chapter, we study parallel prefix computations. Roughly, a parallel prefix
computation on n data items x1, . . . , xn is the result of applying a binary operator
⊗ when we wish to preserve not only the result x1 ⊗. . . ⊗ xn, but also the sequence

C8208_ch07.indd 196C8208_ch07.indd 196 11/15/12 8:24 AM11/15/12 8:24 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Exercises 197

of partial results x1, x1 ⊗ x2, x1 ⊗ x2 ⊗ x3, . . . , x1 ⊗. . . ⊗ xn−1. We discuss efficient to
optimal implementation of parallel prefix on a variety of computational models.
We show the power of this computation by presenting several applications.

Chapter Notes

In this chapter, we study the implementation and application of parallel prefix, an
extremely powerful operation, especially on parallel computers. Parallel prefix-
based algorithms are presented in R. Miller’s and Q.F. Stout’s Parallel Algorithms
for Regular Architectures (The MIT Press, Cambridge, 1996), to solve fundamen-
tal problems as well as to solve application-oriented problems from fields includ-
ing image processing and computational geometry for mesh and pyramid
computers. A similar treatment is presented for the PRAM in J. Já Já’s An
Introduction to Parallel Algorithms (Addison-Wesley Publishing Company, New
York, 1992). Parallel prefix is presented in a straightforward fashion in the intro-
ductory text by M.J. Quinn, Parallel Computing Theory and Practice (McGraw-
Hill, Inc., New York, 1994). Finally, the Ph.D. thesis by G.E. Blelloch, Vector
Models for Data-Parallel Computing (The MIT Press, Cambridge, 1990), consid-
ers a model of computation that includes parallel prefix as a fundamental unit-time
operation.

Efficient gather and scatter algorithms for coarse grained multicomputers are
demonstrated in L. Boxer’s and R. Miller’s paper, “Coarse Grained Gather and
Scatter Operations with Applications,” Journal of Parallel and Distributed
Computing, 64 (2004), 1297–1320. These algorithms are discussed in Appendix 3,
and are referred to in the Exercises for this chapter.

Exercises

 1. Show that a hypercube with Θ(n/log n) processors can perform a parallel pre-
fix operation for a set of n data, {x0, x1, . . . , xn−1}, distributed Θ(log n) items
per processor, in Θ(log n) time.

 2. The interval prefix computation is defined as performing a parallel prefix
within predefined disjoint subsequences of the data set. Give an efficient solu-
tion to this problem for the RAM, CREW PRAM, and Mesh. Discuss the run-
ning time, space, and cost of your algorithm.

 3. Show how a parallel prefix operation can be used to broadcast Θ(1) data to all
the processors of a parallel computer in the asymptotic time of a parallel pre-
fix operation. This should be done by giving a generic parallel algorithm,
where the running time of the algorithm is dominated by a parallel prefix
operation.

C8208_ch07.indd 197C8208_ch07.indd 197 11/15/12 8:24 AM11/15/12 8:24 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

198 Chapter 7 Parallel Prefix

 4. Define Insertion Sort in terms of parallel prefix operations for the RAM and
PRAM. Give an analysis of running time, space, and cost of the algorithm.

 5. Give an optimal Θ(log n) time EREW PRAM algorithm to compute the paral-
lel prefix of n values x1, x2, . . . , xn.

 6. Give an efficient algorithm to perform Carry-Lookahead Addition of two
n-bit numbers on a CREW PRAM. Hint: Keep track of whether each one-
bit subaddition stops (s) a carry, propagates (p) a carry, or generates (g) a
carry. See the example below. Notice that if the ith carry indicator is p, then
the ith carry is a 1 if and only if the leftmost non-p to the right of the ith
position is a g.

0100111010110010010

0110010110101011100

sgpspgppgsgppsgppps

 7. Give an efficient algorithm for computing the parallel prefix of n values, ini-
tially distributed one per processor on a q-dimensional mesh of size n. Discuss
the time and cost of your algorithm.

 8. Suppose that you are given a set of n pairwise disjoint line segments in the
first quadrant of the Euclidean plane, each of which has one of its endpoints
on the x-axis. Think of these points as representing the skyline of a city. Give
an efficient algorithm for computing the piece of each line segment that is
observable from the origin. You may assume that the viewer does not have
x-ray vision. That is, the viewer cannot see through any piece of a line seg-
ment. You may also assume the input is ordered from left to right. Discuss the
time, space, and cost complexity of your algorithms for each of the following
models of computation.

 a. CREW PRAM

 b. Mesh

 c. Hypercube

 9. Give an efficient algorithm for computing the parallel prefix of n values stored
one per processor in

 a. the leaves of a tree machine and

 b. the base of a mesh-of-trees of base size n.

Discuss the time- and cost-complexity of your algorithms.

 10. Consider the array packing algorithms presented in this chapter. Which of the
routines is stable? That is, given duplicate items in the initial list, which of the
routines will preserve the initial ordering with respect to duplicate items?

C8208_ch07.indd 198C8208_ch07.indd 198 11/15/12 8:24 AM11/15/12 8:24 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Exercises 199

 11. Suppose a set of n data, X = {x0, x1, . . . , xn−1}, is evenly distributed among the
processors of a coarse grained multicomputer i.e., a CGM(n, q), such that

 processor Pi has the data 5xj6in
q

j =
(i−1)n

q +1
.

Give the steps of an efficient algorithm to perform a parallel prefix com-
putation on the CGM(n, q), and analyze its running time. Hint: you should be
able to obtain an algorithm that runs in Θ(n/q) time. In order to do this, you
may find useful the algorithms for gather and scatter operations that are pre-
sented in Appendix 3.

C8208_ch07.indd 199C8208_ch07.indd 199 11/15/12 8:24 AM11/15/12 8:24 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

List Ranking

Linked List Parallel Prefix

Summary

Chapter Notes

Exercises

8
Pointer Jumping

Background Photo Credit © Spectral-Design / Shutterstock
All Images used within the chapter are © 2013 Cengage Learning

C8208_ch08.indd 200C8208_ch08.indd 200 11/12/12 10:36 AM11/12/12 10:36 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In this chapter, we consider algorithms for manipulating linked lists, which we
assume are arbitrarily distributed throughout the memory of the computational

model under consideration. Each element of the list consists of a data record and a next
field. The next field contains the memory address of the next element in the list. In
addition, we assume that the next field of the last entry in the list is set to null.

On a RAM, the list is arbitrarily distributed throughout the memory, and we assume
that the location in memory of the first element is known. On a PRAM, we assume that
the list is arbitrarily distributed throughout the shared memory. If the list has n ele-
ments on a PRAM of size n, we assume that every processor knows i) the location in
memory of a unique list element and ii) the memory location of the first element in the
list. In addition, if we are given a PRAM with m ≤ n processors, then we assume that
each processor is responsible for Θ(n/m) such list elements.

RAM: A linked list of n elements stored in the memory of a sequential machine pro-
vides a model for traversing the data elements that is inherently sequential. Therefore,
given a list of size n on a RAM, problems including search, traversal, parallel prefix,
and performing a semigroup operation, to name a few, can be solved in Θ(n) time by a
linear search.

PRAM: The most interesting parallel model to discuss in terms of linked list opera-
tions is the PRAM. This is due to the fact that the communication diameter is Θ(1)
and the bisection width of a PRAM with n processors is equivalent to Θ(n2). It was
long believed by the parallel computing community that list-based operations were
inherently sequential. However, some clever techniques have been used to circumvent
this notion. We demonstrate some of these pointer jumping techniques in the context
of two problems, namely, list ranking and parallel prefix. A description of the prob-
lems, along with PRAM implementations and analyses, follow.

C8208_ch08.indd 201C8208_ch08.indd 201 11/12/12 10:36 AM11/12/12 10:36 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

202 Chapter 8 Pointer Jumping

List Ranking

Suppose that we are given a linked list L of size n, and we wish to determine the
distance from each data element to the end of the list. That is, for every list element
L(i), we want to compute the distance to the end of the list. We denote this distance
as d(i). Without loss of generality, we will assume that the first element in the list
is marked. Note that, if necessary, the first element can be marked in Θ(1) time by
the unique processor that has an identical memory location for its element and for
the first element of its list. Note also that the only other element that knows its
position is the last element of a list, since it has a next value of null. We define the
distance, d(i), as follows.

d(i) = e 0 if next(i) = null;

1 + d1next(i)2 if next(i) ≠ null.

The PRAM algorithm we present operates by a recursive doubling procedure.
Initially, every processor finds the next element in the list. That is, the first step
consists of every element finding the element that succeeds it in a traversal of the
list from beginning to end. In the next step, every element locates the element two
places away from it, if such an element exists. In the following step, every element
locates the element four places away from it, if such an element exists. Notice that
in the first step, every element has a pointer to the next element. During the course
of the algorithm, these pointers are updated. During every step of the algorithm,
each element L(i) can easily determine the element twice as far as away from it as
L(next(i)) is. Notice that the element twice as far from L(i) as L(next(i)) is simply
L(next(next(i))), as shown in Figure 8-1. As the process progresses, every element
needs to keep track of the number of such links traversed in order to determine its
distance to the end of the list. In fact, some care needs to be taken for computing
distances at the end of the list. The details follow.

Input: A linked list L consisting of n elements, arbitrarily stored in the
shared memory of a PRAM with n processors.
Output: For every element L(i), determine the distance d(i) from that
element to the end of the list.

Action:

{First, initialize the distance entries.}
For all L(i) do

 d(i) ← e0 if next(i) = null;
1 if next(i) ≠ null.

End For all
{Perform pointer-jumping algorithm.

The actual pointer jumping step
is next(i) ← next(next(i)).}

C8208_ch08.indd 202C8208_ch08.indd 202 11/12/12 10:36 AM11/12/12 10:36 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

List Ranking 203

In parallel, each processor Pi does the following.
 While next(i) ≠ null, do
 d(i) ← d(i) + d(next(i))
 next(i) ← next(next(i))
 End While
End parallel

1 1 1 1 1 1 1 1 1 0

(a) Initial list with data values set to 1. Every processor knows
the list element one place away.

2 2 2 2 2 2 2 2 1 0

(b) Pointer jump to determine list elements two places away.

4 4 4 4 4 4 3 2 1 0

(c) Pointer jump to determine list elements four places away.

8 8 7 6 5 4 3 2 1 0

(d) Pointer jump to determine list elements eight places away.

9 8 7 6 5 4 3 2 1 0

(e) Final data values after recursive doubling.

FIGURE 8-1 An example of list ranking. Given a linked list, determine for each
 element the number of elements in the list that follow it. The algorithm follows a
recursive doubling procedure. Initially, every processor finds the next element in
the list. Given a list with 10 elements, the number of iterations required is

⎡log2 10⎤ = 4.

C8208_ch08.indd 203C8208_ch08.indd 203 11/12/12 10:36 AM11/12/12 10:36 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

204 Chapter 8 Pointer Jumping

Analysis: Given a PRAM of size n, the running time of this algorithm is
Θ(log n). This can be seen by the fact that the first element in the list must traverse
⎡log2 n⎤ + 1 links in order to reach the end of the list. Since the time for a PRAM
of size n to solve the list ranking problem for a list of size n is Θ(log n), the total
cost is Θ(n log n), which we know is suboptimal.

In order to reduce this cost, we can consider a PRAM with n/log2 n processors.
In this case, we can attempt to make modifications to this algorithm as we have done
previously. That is, we can attempt to create a hybrid algorithm in which each pro-
cessor first solves the problem locally in Θ(log n) time, and then the algorithm just
described is run on this set of partial results. Finally, in Θ(log n) time, we can make
a final local pass through the data.

However, consider this proposal carefully. It is important to note that if each
processor were responsible for Θ(log n) items, there is no guarantee that these
items form a contiguous segment of the linked list. Therefore, there is no easy way
to consider merging the Θ(log n) items that a processor is responsible for into a
single partial result that can be used during the remainder of the computation. In
this case, such a transformation fails, and we are left with a cost-suboptimal
algorithm.

Linked List Parallel Prefix

Now let’s consider the parallel prefix problem. Although the problem is the same
as we have considered earlier the book, the input is of a significantly different
form. Previously, whenever we considered the parallel prefix problem, we had
the advantage of knowing that the data was ordered in a random access structure,
that is, an array. Now, we have to consider access to the data in the form of a
linked list. Notice that if we simply perform a scan on the data, then the running
time will be Θ(n), which is equivalent to the RAM algorithm. Instead, we con-
sider applying techniques of pointer jumping so that we can make progress
simultaneously on multiple prefix results. For completeness, recall that we are
given a set of data X = {x1, . . . xn} and a binary associative operator ⊗, from which
we are required to compute prefix values p1, p2, . . . , pn, where the k-th prefix is
defined as

pk = e x1 if k = 1;

pk−1 ⊗ xk if 2 ≤ k ≤ n.

We now present an algorithm for computing the parallel prefix of a linked list
of size n on a PRAM of size n, based on the concept of pointer jumping.

C8208_ch08.indd 204C8208_ch08.indd 204 11/12/12 10:36 AM11/12/12 10:36 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Summary 205

{pi is used to store the i-th prefix.}
For all i, pi ← xi

{Perform a pointer-jumping algorithm.}
In parallel, each processor Pi does the following.
 While next(i) ≠ null, do
 pnext(i) ← pi ⊗ pnext(i)
 next(i) ← next(next(i))
 End While
End parallel

An example of this algorithm is given in Figure 8-2, where we show the appli-
cation of a parallel prefix on a PRAM to a linked list of size 6. While going through
the algorithm, it is important to implement the update steps presented inside of the
“In parallel” statement in lockstep fashion across the processors.

Analysis: This algorithm is similar to that of the list ranking algorithm just
presented. That is, given a PRAM of size n, the running time of this algorithm is
Θ(log n). This can be seen by the fact that the first element in the list must traverse
⎡log2 n⎤ links in order to propagate x1 to all n prefix values. Since the time for a
PRAM of size n to compute the parallel prefix on a list of size n is Θ(log n), the
total cost of the algorithm is Θ(n log n). As with the list ranking algorithm, the
cost of the parallel prefix computation is suboptimal.

FIGURE 8-2 An example of parallel prefix on a PRAM with linked list input.
Given a list of size 6, the recursive doubling procedure requires three iterations
(⎡log2 6⎤ = 3).

Summary

In this chapter, we consider pointer jumping computations on a PRAM for the
linked list data structure. The techniques presented allow us to double, in each
parallel step, the portion of a list “known” to each node of the list, so that in

C8208_ch08.indd 205C8208_ch08.indd 205 11/12/12 10:36 AM11/12/12 10:36 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

206 Chapter 8 Pointer Jumping

logarithmic time, each node can know its relationship with all other nodes between
its own position and the end of the list. The problems we consider are those of list
ranking and parallel prefix (for linked lists). Our solutions are efficient, although
not optimal.

Chapter Notes

The focus of this chapter is on pointer-jumping algorithms and efficient solutions
to problems involving linked lists, an inherently sequential structure. An excellent
chapter was written on this subject by R.M. Karp and V. Ramachandran, entitled
“A survey of parallel algorithms and shared memory machines,” which appeared
in the Handbook of Theoretical Computer Science: Algorithms and Complexity
(A.J. vanLeeuwen, ed., Elsevier, New York, 1990, pp. 869–941). It contains numer-
ous techniques and applications to interesting problems. In addition, pointer jump-
ing algorithms are discussed in An Introduction to Parallel Algorithms, by J. Já Já
(Addison-Wesley Publishing Company, New York, 1992).

Exercises

 1. Consider a set of linked lists L1, L2, . . . , Lk on a CREW PRAM with n proces-
sors. Assume these lists have a total of n elements. Initially, each processor
Pi,1 ≤ i ≤ n, knows the location of a unique list element, but not necessarily
what list the element is in. Suppose that in every list, there is a unique element
that is marked. Further, suppose that in each list, the uniquely marked element
has a data value that must be broadcast to all elements of its list. Give an effi-
cient algorithm to complete this distinct multi-list broadcast.

 2. Describe an efficient algorithm to solve the following problem. Given a col-
lection of linked lists with a total of n elements, let every element know the
number of elements in its list and how far the element is from the front of
the list. Analyze the algorithm for the RAM and the CREW PRAM.

 3. Give an efficient algorithm to solve the following problem. For a linked list
with n links, report the number of links with a given data value x. Analyze
your algorithm for the RAM and the PRAM.

 4. Give an efficient algorithm to solve the following problem. Given a set of
ordered linked lists with a total of n elements, record in every element the
median value of the element’s list. Note that in an ordered list of length k, for
even k, the median value can be taken either as the value in element (k/2 − 1)
or element k/2 with respect to distance from the head of the list. Do not assume
that it is known at the start of the algorithm how many elements are in any of
the lists. Analyze the running time of your algorithm on the RAM and on the
CREW PRAM.

C8208_ch08.indd 206C8208_ch08.indd 206 11/12/12 10:36 AM11/12/12 10:36 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C8208_ch08.indd 207C8208_ch08.indd 207 11/12/12 10:36 AM11/12/12 10:36 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Merge Sort (Revisited)

Selection

Quicksort (Partition Sort)

Modifications of Quicksort for Parallel Models

Bitonic Sort (Revisited)

Concurrent Read/Write

Summary

Chapter Notes

Exercises

9
Divide-and-Conquer

Background Photo Credit © Spectral-Design / Shutterstock
All Images used within the chapter are © 2013 Cengage Learning

C8208_ch09.indd 208C8208_ch09.indd 208 11/16/12 11:58 AM11/16/12 11:58 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The phrase “divide-and-conquer” is used in the study of algorithms to refer to a
method of solving a problem that typically involves i) partitioning a problem into

smaller subproblems, ii) recursively solving these subproblems, and then iii) stitching
these partial solutions together in order to obtain a solution to the original problem.
The divide-and-conquer strategy is summarized below.

 1. Divide the problem into subproblems, each of which is smaller than the original.

 2. Conquer the subproblems by recursively solving them, unless a subproblem is
small enough to be solved directly.

 3. Combine or stitch the solutions to the subproblems together in order to obtain a
solution to the original problem.

C8208_ch09.indd 209C8208_ch09.indd 209 11/16/12 11:58 AM11/16/12 11:58 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

210 Chapter 9 Divide-and-Conquer

Merge Sort (Revisited)

The divide-and-conquer paradigm is exhibited in Merge Sort, a sorting algorithm
that we have previously discussed (see Chapter 2, “Induction and Recursion”).
Recall that the input to the Merge Sort routine consists of an unordered list of n
elements, and the output consists of an ordered list of the n elements. A high-level
divide-and-conquer description of a basic Merge Sort follows.

 1. Divide: Divide the unordered n-element input sequence into two unordered
subsequences, each containing n/2 items.

 2. Conquer: Recursively sort each of the two subsequences, unless a subse-
quence has only one item, in which case the subsequence is already sorted.

 3. Stitch: Combine the two sorted sequences by merging them into the sorted
result.

We should point out that this “top-down” divide-and-conquer description of
Merge Sort is in contrast to a “bottom-up” description that students typically see in
their early courses. A bottom-up description of Merge Sort might state that one
should merge pairs of sequences of length 1 into ordered sequences of length 2,
then merge ordered sequences of length 2 into ordered sequences of length 4, and
so on. While these two descriptions differ significantly, the work they describe is
identical. We now consider the time and space analysis of Merge Sort on a variety
of models of computation.

RAM

The analysis for the RAM should be familiar to readers who have taken a traditional
year-long introduction to computer science course or a course that focuses on data
structures. Let’s first consider a schematic of the operations performed by the Merge
Sort algorithm on a RAM. In Θ(n) time, the n elements in the list are initially divided
into two sublists, each of size approximately n/2. Both of these lists are then recur-
sively sorted. These two sorted lists are then merged into a single ordered list. Notice
that a traditional, sequential merge of two ordered lists with a total of n items runs in
O(n) time, regardless of the sizes of the individual lists. So, assuming a typical imple-
mentation of a list, the total running time for both the initial split and the final merge
is Θ(n). Figure 9-1 demonstrates the computation of the running time of Merge Sort.

The top-down description and analysis of a basic Merge Sort can be used to
derive the running time of the algorithm in the form of the recurrence
T(n) = 2T(n/2) + Θ(n). From the Master Method, we know that this recurrence has
a solution of T(n) = Θ(n log n). This is not surprising considering the recursion
tree presented in Figure 9-1.

Linear Array

We now consider an implementation of Merge Sort on a linear array. Assume
that the elements of the list are arbitrarily distributed one per processor on a

C8208_ch09.indd 210C8208_ch09.indd 210 11/16/12 11:58 AM11/16/12 11:58 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Merge Sort (Revisited) 211

linear array of size n, where for simplicity of presentation, we assume that n is a
power of 2. Let’s consider the stitch step of the algorithm. That is, assume that
processors P1, . . . , Pn/2 contain an ordered subset of the data and that processors
P(n/2)+1, . . . , Pn contain the remaining elements in sorted order (see Figure 9-2). By
knowing its processor ID, every processor knows the rank of its element with
respect to its subsequence of size n/2 (see Figure 9-3). That is, processor
Pi, 1 ≤ i ≤ n/2, knows that the element it currently contains is the i th element with
respect to those elements stored in processors P1, . . . , Pn/2. Similarly, processor
Pi, (n/2) + 1 ≤ i ≤ n, knows that the element it currently contains has a rank of
i − n/2 with respect to those elements stored in processors P(n/2)+1, . . . , Pn. Based on

C1(n / 2)

C2(n / 4)lo
g 2 n

 le
ve

ls

C2(n / 4)

C1(n / 2)

Cn

Time per level

Q(n)

Q(n)

Q(n)

Q(n)

Total: (n log n)

C2(n / 4) C2(n / 4)

FIGURE 9-1 A recursion tree giving insight into the time
required to perform a traditional Merge Sort algorithm
on a RAM. Without loss of generality, assume that the
time required to perform a split and a merge routine on
n items is Cn, for some constant C.

3 1 8 4

(a) Initial data.

(b) Independently sorted subarray data.

5 2 7 6

1 3 4 8 2 5 6 7

FIGURE 9-2 A snapshot of Merge
Sort on a linear array of size 8.

C8208_ch09.indd 211C8208_ch09.indd 211 11/16/12 11:58 AM11/16/12 11:58 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

212 Chapter 9 Divide-and-Conquer

Data

Local Rank 1 2 3 4 1 2 3 4

1 3 4 8 2 5 6 7

FIGURE 9-3 A snapshot of Merge Sort on a linear
array of size 8, using the data from Figure 9-2. The
snapshot shows the data and local ranks that are
determined after the independent sorts on both the
left and right subarrays.

Data

Local Rank

Rank in Other
 Subarray

1 2 3 4 1 2 3 4

0 1 1 4 1 3 3 3

1 3 4 8 2 5 6 7

FIGURE 9-4 A snapshot of Merge Sort on a linear
array of size 8 after the independent sorts on both
the left and right subarrays. The data, local ranks,
and ranks with respect to the opposite subarray are
all given. The data is from Figure 9-2.

this information and knowledge of where an element ranks in the other subse-
quence, every processor will know the final position of the element it contains.
That is, if the element in processor Pi, 1 ≤ i ≤ n/2, is such that s elements in pro-
cessors P(n/2)+1, . . . , Pn are less than it, then the final position for the element in
processor Pi is i + s. Similarly, if the element in processor Pi, n/2 + 1 ≤ i ≤ n, is
such that t elements in processors P1, . . . Pn/2 are less than or equal to it, then the
final position for the element in processor Pi is i − (n/2) + t (see Figure 9-4).

In order to determine the rank of an element with respect to the other subse-
quence, simply perform a rotation of the data and allow every processor to count
the number of elements from the other subsequence that rank ahead of the element
that the processor is currently maintaining. Specifically, the following occur dur-
ing the rotation.

• Every processor Pi, 1 ≤ i ≤ n/2, counts the number of elements in processors
Pj, n/2 + 1 ≤ j ≤ n, that are less than the entry maintained in Pi.

• Every processor Pj, n/2 + 1 ≤ j ≤ n, counts the number of elements in proces-
sors Pi, 1 ≤ i ≤ n/2, that are less than or equal to the entry maintained in Pj.

A final rotation can then be used to send every element to its correct sorted
position. The running time of such an algorithm is given by the recurrence

C8208_ch09.indd 212C8208_ch09.indd 212 11/16/12 11:58 AM11/16/12 11:58 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Merge Sort (Revisited) 213

T(n) = T(n/2) + Θ(n). This recurrence has a solution of T(n) = Θ(n), which is opti-
mal for the linear array. We make two critical observations.

 1. The algorithm, as described, requires that during each recursive step, a rotation
is only performed within the pairs of subsequences of processors being merged.
That is, a complete rotation over the entire linear array of size n is not per-
formed during each recursive merge step. If a complete Θ(n) time rotation of
the data through all n processors were performed during each of the Θ(log n)
merge steps, then the running time of the algorithm would be Θ(n log n).

 2. Although the Θ(n) time algorithm is asymptotically equivalent in running time
to the tractor-tread/rotation-based sorting algorithm for the linear array, the
high order constants for this Merge Sort routine are significantly larger than
those of the tractor-tread algorithm. This is clear from the fact that the last
iteration of the Merge Sort procedure requires two complete rotations, whereas
the rotation-based sort requires only one rotation in total.

Finally, consider the cost of this Merge Sort algorithm. The running time is
Θ(n) on a linear array with n processors, which yields a total cost of Θ(n2). Notice
that this is significantly larger than the Θ(n log n) lower-bound result on the
 number of operations required for comparison-based sorting. Due to the Θ(n)
communication diameter of the linear array, we know that it is not possible to
reduce the running time of Merge Sort on a linear array of n processors. Therefore,
our only reasonable option for developing a Merge Sort-based algorithm that is
cost- optimal on a linear array is to reduce the number of processors. If we reduce
the number of processors to one, then the cost-optimal RAM algorithm can be
executed. Since this yields no improvement in running time, we would like to con-
sider a linear array with more than a fixed number of processors but less than a
linear number of processors in the size of the input, in an asymptotic sense. We
leave this problem as an exercise.

Cluster

Assume that the n elements to be sorted are stored in the master processor of a
cluster of size N. We can use a recursive doubling technique to distribute the n
items to the N processors. Once distributed, each of the processors in the cluster
will sort its initial set of n/N items. We then use a recursive halving technique to
gather and merge pairs of sorted sublists continually until the final sorted list lands
in the master processor.

The time to split the n data items in half, send each half to the “tree-based”
children, receive the data back from the children, and merge the two sorted subsets
of data is Θ(n). The base level of the recursion is invoked when each of the N pro-
cessors receives its n/N pieces of data. Once this occurs, each processor sorts its
data and sends it back to the processor that sent it the data. The time for the base of

C8208_ch09.indd 213C8208_ch09.indd 213 11/16/12 11:58 AM11/16/12 11:58 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

214 Chapter 9 Divide-and-Conquer

the recursion is B(n/N) = Θ(n/N log n/N). Therefore, the total running time to sort
n data items initially stored in the master processor of a cluster of size N is given
by T(n) = Θ(n + n/2 + n/4 +g+ n/N) + B(n/N), or

T(n) = Θ(n) + Ban

N
b = Θan +

n

N
 log

n

N
b .

So, given data in a single processor of a cluster, it is asymptotically more
 efficient to distribute the data to all processors, have each processor sort a reduced
amount of data, and then combine the data. However, experience shows that due to
the overhead of communication on existing clusters, if one needs to sort data
that already resides in a single processor, it is much more efficient to have that
processor sort the data locally rather than performing a distributed Merge Sort
algorithm.

Selection

In this section, we consider the selection problem, which requires the identifica-
tion of the kth smallest element from a list of n elements, where the integer k is
given as input to the procedure and where we assume that 1 ≤ k ≤ n. Notice that
this problem serves as a generalization of a number of problems, three of which
are given below.

• The minimum problem corresponds to k = 1.
• The maximum problem corresponds to k = n.
• The median problem corresponds to either k = ⎣n/2⎦por k = ⎡n/2⎤ .

A naïve algorithm to solve the selection problem consists of sorting the data,
and then reporting the entry that resides in the k th position of the ordered list.

If we assume that on the given model of computation, the running time for the
sort step dominates the running time for the report step, then the asymptotic
 running time for selection is bounded by the running time for sorting. So, on a
RAM, our naïve algorithm has a running time of O(n log n). Further, a solution to
the problem has a worst-case lower bound of Ω(n) since every element might need
to be examined.

In fact, for the restricted problem of finding the minimum or maximum
 element, we know that an optimal Θ(n) time algorithm can be obtained by a semi-
group operation. This suggests the possibility of solving the more general selection
problem in o(n log n) time.

We first consider an efficient Θ(n) time algorithm for the RAM, which is
 followed by a discussion of selection on parallel machines.

C8208_ch09.indd 214C8208_ch09.indd 214 11/16/12 11:58 AM11/16/12 11:58 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Selection 215

RAM

We present an efficient algorithm based on the semigroup operation to solve the
general selection problem. Assume that the n data items are initially stored in arbi-
trary order in an array. For ease of explanation, we assume that n, the number of
elements in the array, is a multiple of 5.

Initially, we take the unordered array as input and sort disjoint subsequences
of five items (see Figure 9-5). That is, given an array S, we sort S[1 . . . 5],
S[6 . . . 10], . . . , S[n − 4 . . . n]. Notice that this requires the application of n/5 sorting
routines. However, since each of the n/5 sorting routines is working on a constant
number of items, each of these n/5 sorts can be performed in constant time. Once
these segments of size 5 are sorted within the array, we gather the medians of each
of these n/5 segments. Notice that after the initial local sort step, the first median is
in S[3], the next median is in S[8], and so on.

FIGURE 9-5 Using the Partition routine to solve the Selection Problem.

(a) Initial array of size 25.

10 18 23 17 5 11 16 1 9 4 6 15 22 8 3 14 20 24 2 19 7 12 21 25 13

(b) Array after independent sorts.

5 10 17 18 23 1 4 9 11 16 3 6 8 15 22 2 14 19 20 24 7 12 13 21 25

Next, we recursively find the median of these n/5 median values. This median
of medians, which we denote as AM, serves as an approximate median of the entire
set S. Once we have this approximation, we compare all elements of S with AM
and create three buckets, namely, those elements less than AM, those elements
equal to AM, and those elements greater than AM (see Figure 9-6). Finally, we
determine which of these three buckets contains the k th element and solve the
problem on that bucket, recursively if necessary. Notice that if the k th element falls
in the second bucket, then, since all elements in this bucket have equal value, we
have identified the requested element.

C8208_ch09.indd 215C8208_ch09.indd 215 11/16/12 11:58 AM11/16/12 11:58 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

216 Chapter 9 Divide-and-Conquer

Function Selection(k, S, lower, upper)
Input: An array S, positions lower and upper, and a value k.
Output: The k th smallest item in S[lower . . . upper].
Local variables:
n, the size of the subarray;
M, an array used for medians of certain subarrays of S;
smallList, equalList, bigList: lists used to partition S;
j, an index variable;
AM, an approximation of the median of S.

Action:

 If 0upper − lower 0 < 50, then {The base case of recursion.
The value of the constant, in this

 case 50, is typically determined
 experimentally in terms of the

target computing system.}
 SelectionSort(S,lower,upper)
 return S[lower + k − 1]
End If
Else {The recursive case.}
 1. n = upper − lower + 1
 2. Sort disjoint subarrays of size 5 or less. That is,
 independently sort S[lower, . . . ,lower + 4],. . . ,
 S[lower + 5(⎡n/5⎤ − 1), . . . ,upper].
 3. For j = 1 to ⎡n/5⎤, do
 Assign the jth median to M[j]. That is,
 M[j] = S[lower + 5j − 3].
 4. AM = Selection1⎡ 0M 0/2⎤,M,1,⎡n/5⎤2, the median of M.
 5. Create empty lists smallList, equalList, and

 bigList.

FIGURE 9-6 Creating three buckets based on AM = 13, the median of the five
medians (17, 9, 8, 19, 13) given in Figure 9-5b. The data given in Figure 9-5b
is traversed from the beginning to the end of the array, with every element less
than 13 being placed in smallList, every item equal to 13 being placed in
equalList, and every item greater than 13 being placed in bigList. Notice that
the items should be placed in these lists in a manner that allows for Θ(1) time
insertion. This can be done either by placing a new item at the head of the list,
as shown, or by placing items at the end of a list if a tail pointer is maintained.

smallList 12 7 2 8 6 3 11 9 4 1 10 5

equalList 13

25 21 24 20 19 14 22 15 16 23 18 17bigList

C8208_ch09.indd 216C8208_ch09.indd 216 11/16/12 11:58 AM11/16/12 11:58 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Selection 217

 6. For j = 1 to n, do
 Copy S[lower + j − 1] to

c smallList if S[lower + j − 1] < AM;
equalList if S[lower + j − 1] = AM;
bigList otherwise.

 End For
 7. If k ≤ 0smallList 0, then
 CreateArray(smallList, smallList_array)
 return Selection(k,smallList_array,1, 0smallList 0)
 Else If k ≤ 0smallList 0 + 0equalList 0 then return AM
 Else {find result in bigList}
 CreateArray(bigList, bigList_array)
 return Selection(k− 0smallList 0− 0equalList 0,
 bigList_array,1, 0bigList 0)
 End Else {find result in bigList}
End Else recursive case

Correctness of Algorithm

Consider the lists smallList, equalList, and bigList. These lists contain members of
S such that if x ∈ smallList, y ∈ equalList, and z ∈ bigList, then x < y < z.
Therefore, we have the following.

• If k ≤ 0 smallList 0 , then the entries of smallList include the k smallest entries of S,
so the algorithm correctly returns Selection1k, smallList_array, 1, 0 smallList 0 2.

• If 0 smallList 0 <k≤ 0 smallList 0+ 0 equalList 0 , then the k th smallest entry of S
belongs to equalList, each entry of which has a key value equal to AM, so the
algorithm correctly returns AM.

• If 0 smallList 0+ 0 equalList 0 <k, then the k th smallest member of S must be the 1k− 0 smallList 0− 0 equalList 0 2th smallest member of bigList, so the algorithm cor-
rectly returns Selection1k− 0 smallList 0− 0 equalList 0 , bigList_array, 1, 0 bigList 0 2.

Analysis of Running Time

The base case of the recursive algorithm calls for sorting a list with some experi-
mentally determined constant. Therefore, the running time of the base case is
Θ(1). This is due to the fact that any polynomial time algorithm, such as the Θ(n2)
time Selection Sort, will run in constant time on a fixed number of input
items. Again, note that the choice of 50 is arbitrary, as any fixed positive integer
will suffice.

We now consider the remainder of the algorithm.

• Step 1 runs in Θ(1) time.

• Step 2 calls for sorting Θ(n) sublists of the input list, where each sublist has at
most five entries. Since 5 is a constant, we know that each sublist can be sorted

C8208_ch09.indd 217C8208_ch09.indd 217 11/16/12 11:58 AM11/16/12 11:58 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

218 Chapter 9 Divide-and-Conquer

in constant time. Therefore, the time to complete these Θ(n) sorts, each of
which runs in Θ(1) time, is Θ(n).

• Step 3 gathers the medians of each sublist, which requires making a copy of
⎡n/5⎤ elements, each of which can be retrieved in Θ(1) time. Therefore, the
running time for this step is Θ(n).

• Step 4 requires the application of the entire procedure on an array with ⎡n/5⎤
elements. Therefore, this step runs in T1⎡n/5⎤2 time.

• Step 5 calls for the creation of a fixed number of lists, which runs in Θ(1) time
in most modern programming languages.

• Step 6 consists of copying each of the n input elements to exactly one of the
three lists created in Step 4. Therefore, the running time for this step is Θ(n).

• Step 7 determines which of the three lists needs to be inspected and, in two of
the three cases, a recursive call is performed. The running time for this step is
a function of the input value k as well as the order of the initial set of data. Due
to these complexities, analysis of the running time of this step is a bit more
involved. Three basic cases must be considered, each of which we evaluate
separately. Namely, the requested element could be in smallList, equalList, or
bigList.

■ We first consider the case where the requested element is in smallList,
which occurs when k ≤ 0 smallList 0 . Let’s consider just how large smallList
can be. That is, what is the maximum number of elements that can be in
smallList? The maximal size of smallList can be determined as follows.
◆ Consider the maximum number of elements that can be less than AM,

the median of the medians. At most ⎣ 0M 0 /2⎦ = ⎣ ⎡n/5⎤ /2⎦ members of
M are less than AM. For simplicity, and since our analysis is based on
asymptotic behavior, let’s say that at most n/10 median elements are less
than AM.

◆ Notice that each m ∈ M is the third smallest entry of an ordered
5-element sublist of the input list S. In the n/10 sublists for which we
have m < AM , possibly all 5 members could be less than AM. However,
in the n/10 sublists for which we have m ≥ AM , at most 2 members
apiece are less than AM.

◆ Therefore, at most 5n/10 + 2n/10 = 7n/10 elements of the input
list S can be sent to smallList. Thus, the recursive call to Selection 1k, smallList_array, 1, 0 smallList 0 2 runs in at most T(7n/10) time.

■ If 0 smallList 0 < k ≤ 0 smallList 0 + 0 equalList 0 , then the required element is
in equalList, and this step runs in Θ(1) time, since the required element
is equal to AM.

■ If 0 smallList 0 + 0 equalList 0 < k, then the required element is in bigList.
Consider the maximum number of elements that can appear in bigList.

C8208_ch09.indd 218C8208_ch09.indd 218 11/16/12 11:58 AM11/16/12 11:58 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Selection 219

An argument similar to the one given above for the size of smallList can
be used to show that bigList has at most 7n/10 entries. Thus, the recursive
call of the Selection routine in this case runs in at most T(7n/10) time.

Finally, consider the total running time T(n) for the selection algorithm we
have presented. There are positive constants c, c0 such that the running time of this
algorithm is given by

T(n) ≤ cn for 1 ≤ n ≤ 50;

T(n) ≤ T(n/5) + T(7n/10) + c0n for n > 50.

By taking C = max{c,10c0}, the previous statement yields

T(n) ≤ Cn for 1 ≤ n ≤ 50;

T(n) ≤ T(n/5) + T(7n/10) + Cn/10 for n > 50.

Thus, for 1 ≤ n ≤ 50 we have T(n) ≤ Cn. This statement serves as the base case for
an induction proof. Suppose we have T(n) ≤ Cn for all positive integer values
n < m. Then we have

T(m) ≤ T(m/5) + T(7m/10) + Cm/10 ≤

(by the inductive hypothesis)

Cm/5 + C(7m/10) + Cm/10 = Cm.

This completes the induction proof that T(n) ≤ Cn. Therefore, T(n) = O(n). Since
we also must examine every entry of the input list, we know that any selection
algorithm must run in Ω(n) time. Therefore, our algorithm runs in optimal Θ(n)
time on a RAM.

PRAM

Consider applying the algorithm we have just presented to a PRAM. Notice that
the independent sorting of Step 2 can be performed in parallel in Θ(1) time. Step
3 requires that the median elements are placed in their proper positions, which can
be done quite simply on a PRAM in Θ(1) time. Step 4 is a recursive step that runs
in time proportional to T(n/5). Step 5 runs in constant time. Step 6 can be
 performed by a parallel prefix operation and an exclusive write. The parallel pre-
fix operation is used to determine the position of each element in the appropriate
list of smallList, equalList, or bigList and the exclusive write is used to copy the
element into its assigned position. Therefore, this step can be performed in
O(log n) time. Now consider the recursion in Step 7. Again, the running time of
this step is no more than T(7n/10). So, the running time for the algorithm can be
expressed as T(n) = T(7n/10) + T(n/5) + O(log n), which is asymptotically equiva-
lent to T(n) = T(7n/10) + O(log n), which resolves to T(n) = O(log2 n). It should be

C8208_ch09.indd 219C8208_ch09.indd 219 11/16/12 11:58 AM11/16/12 11:58 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

220 Chapter 9 Divide-and-Conquer

noted that the running time of this algorithm can be reduced to O(log n log log n)
by applying some techniques that are outside the scope of this text. In addition, the
problem can also be solved by first sorting the elements in Θ(log n) time and then
selecting the required element in Θ(1) time. This Θ(log n) time sorting routine is
also outside the scope of this book. In fact, Θ(n) optimal-cost algorithms for the
selection problem on a PRAM are known. These algorithms are also outside the
scope of this text.

Mesh

Consider the selection problem on a mesh of size n. Since the communication
diameter of a mesh of size n is Θ(n1/2), and since it will be shown later in this chap-
ter that sorting can be performed on the mesh in Θ(n1/2) time, we know that the
problem of selection can be solved in optimal Θ(n1/2) time on a mesh of size n.

Quicksort (Partition Sort)

Quicksort is an efficient and popular sorting algorithm that was originally
designed by C.A.R. Hoare for the RAM. It is a beautiful algorithm that serves as
an excellent example of the divide-and-conquer paradigm. Quicksort also serves
as a good example of an algorithm without a deterministic running time, in the
sense that its best-, expected-, and worst-case running times are not the same.
Depending on the arrangement of the n input items on a RAM, Quicksort has a
Θ(n) best-case running time, a Θ(n log n) expected-case running time, and a Θ(n2)
worst-case running time. In particular, the reason that Quicksort is so popular on
the RAM is due to its very fast Θ(n log n) expected-case running time, where
“fast” is relative to other popular Θ(n log n) time and Θ(n2) time algorithms,
including Merge Sort, Selection Sort, and Insertion Sort, to name a few.

One must be quite careful when invoking Quicksort since for certain datasets
that are relatively common, Quicksort can run in Θ(n2) time. In fact, Quicksort’s
worst-case Θ(n2) running time is often slower in practice than a “simple sort” such
as Selection Sort. This may occur, for example, when trying to sort common data-
sets that include nearly ordered or nearly reverse ordered data.

The importance of Quicksort motivates us to study this algorithm carefully.
Our discussion includes the following.

• An outline of the Quicksort algorithm as an example of divide-and-conquer.

• Examples.

• A more detailed description of the algorithm that is especially geared for
implementation using linked lists.

C8208_ch09.indd 220C8208_ch09.indd 220 11/16/12 11:59 AM11/16/12 11:59 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Quicksort (Partition Sort) 221

• Analysis of running time for various cases of input.

• A comparison of Quicksort and Merge Sort.

• A description of how Quicksort can be implemented for data given in an array.

• Analysis of memory usage.

• Discussion of ways to improve the performance of the basic Quicksort
algorithm.

• Modifications of the Quicksort algorithm for efficient implementation on
parallel computers.

Note that in Appendix 4, we prove that the expected running time of
Quicksort for a list of n entries is Θ(n log n). The proof is challenging and
should only be read by those with the patience and mathematical skills to make
the experience worthwhile.

The basic Quicksort algorithm can be expressed as follows.

• Divide: Divide the n input items into three lists, denoted as smallList, equal-
List, and bigList, where all items in smallList are less than all items in equal-
List, all items in equalList have the same value, and all items in equalList are
less than all items in bigList.

• Conquer: Recursively sort smallList and bigList. Note that a list need not be
sorted if it contains no more than one element.

• Stitch: Concatenate smallList, equalList, and bigList.

The reader should note the similarity of the Divide step with the Divide step of
the Selection algorithm discussed earlier in this chapter (see Figure 9-7). Also,
note the Conquer step does not require processing equalList, as its members are
sorted, since all have the same value. Finally, one should note that Quicksort does
not rely on comparing list elements to each other for the purpose of determining an
ordering of the elements.

Typically, the input data is divided into three lists by first using a small amount
of time to determine an element that has a high probability of being a good approx-
imation to the median element. We use the term splitValue to refer to the element
that is selected for this purpose. This value is then used much in the same way as
AM was used during the selection algorithm. Every element is sent to one of three
lists. The list smallList contains those elements less than splitValue. The list equal-
List contains those elements equal to splitValue. The list bigList contains those
elements larger than splitValue. After recursively sorting bigList and smallList, the
three lists can simply be concatenated.

C8208_ch09.indd 221C8208_ch09.indd 221 11/16/12 11:59 AM11/16/12 11:59 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

222 Chapter 9 Divide-and-Conquer

Naturally, we hope that the splitting item is chosen at every level of the recur-
sion to be close to the median of the data under consideration. Such a choice of
splitValue would result in a running time given by T(n) = 2T(n/2) + Θ(n), which
gives T(n) = Θ(n log n).

We now present details of a list-based Quicksort algorithm on a RAM. We
start with a top-down description of the algorithm.

q 5 8 1 2 6 7 4 9 3

(a) Initial unsorted list.

1 2 4 3

8 6 7 9

equalList

smallList

5

bigList

(b) Three lists after the partitioning based on the value of 5.

1 2 3 4

6 7 8 9

equalList

smallList

5

bigList

(c) The three lists after smallList and bigList are
recursively sorted.

1 2 3 4q 5 6 7 8 9

(d) Completed list after the three sorted sublists are
concatenated.

FIGURE 9-7 An example of Quicksort on a linked list. Notice that
an item can be placed into the appropriate list either at the front
or the back of the list in Θ(1) time since efficient concatenation
at the end of Quicksort requires the use of tail pointers. We show
lists built using Θ(1) time insertion at the back of the list, simply
as a contrast to Θ(1) time insertion at the front of a list as shown
in Figure 9-6.

C8208_ch09.indd 222C8208_ch09.indd 222 11/16/12 11:59 AM11/16/12 11:59 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Quicksort (Partition Sort) 223

Subprogram QuickSort(q)
Input: A list q.
Output: The list q, with the elements sorted.
Procedure: Use Quicksort to sort the list.
Local variables:
splitValue, key used to partition the list;
smallList, equalList, bigList, sublists for partitioning.

Action:

 If q has at least two elements, then {do work}
 Create empty lists smallList, equalList, and bigList.
 {Divide: Partition the list.}
 splitValue = findSplitValue(q);
 splitList(q, splitValue, smallList, equalList, bigList);
 {Conquer: Recursively sort sublists.}
 QuickSort(smallList);
 QuickSort(bigList);
 {Stitch: Concatenate sublists.}
 Concatenate(smallList, equalList, bigList, q)
 End If
End Sort

Now let’s consider the running time of Quicksort.

• In Θ(1) time, we can determine whether or not a list has at least two items.
Notice that a list having fewer than two items serves as the base case of recur-
sion, requiring no further work since such a list is already sorted.

• Constructing three empty lists can be performed in Θ(1) time using a modern
programming language.

• Consider the time it takes to find splitValue. Ideally, we want this splitter to be
the median element, so that smallList and bigList will be of approximately the
same size. If smallList and bigList are of approximately the same size, then the
running time of the algorithm will be minimized. The splitter can be chosen in
as little as Θ(1) time, if one utilizes an easily accessible item such as the first
item of the list. The splitter can also be chosen in as much as Θ(n) time by the
Selection algorithm if one wants to determine the precise median. Initially, we
will consider using a unit-time algorithm to determine the splitter. We realize
that this could lead to a bad split and, if this continues through too many levels
of recursion, to a very slow algorithm. Later in the chapter we will discuss
improvements in choosing the splitter and the effect that such improvements
have on the overall algorithm.

C8208_ch09.indd 223C8208_ch09.indd 223 11/16/12 11:59 AM11/16/12 11:59 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

224 Chapter 9 Divide-and-Conquer

• Splitting the list is performed in Θ(1) time per item. Dividing the n elements
into the three aforementioned lists can be performed in Θ(n) time. This can be
done by a straightforward traversal of the list, comparing each element to the
splitter and tossing each element into the appropriate list. The algorithm
follows.

Subprogram splitList(A, splitValue, smallList, equalList, bigList)
Input: List A, partition element splitValue.
Output: Three sublists corresponding to items of A less than, equal to, and
greater than splitValue, respectively.
Local variable: temp, a pointer used for removing an entry from one list
and moving the entry onto another list.

Action:

 While not empty(A), do
 getfirst(A, temp)
 If temp.key < splitValue, then
 putelement(temp, smallList)
 Else If temp.key = splitValue, then
 putelement(temp, equalList)
 Else putelement(temp, bigList)
 End While
End splitList

Notice that for the sake of efficiency, it is important to be able to add an ele-
ment to a list in Θ(1) time. That is, suppose that the elements of a list are main-
tained as a singly linked list in which the list is identified by a pointer that points
to the first element, which contains data and a pointer to the second element, which
contains data and a pointer to the third element, and so on, with the last element of
a list having a pointer set to null. One may add an element to such a list in Θ(1)
time by adding a new element as the first item of such a list. Alternately, if a tail
pointer is kept to the last item in the list, then by taking advantage of the tail
pointer, a new item may be added in Θ(1) time at the end of the list. Many pro-
grammers make the mistake of adding an element to a list of size m by starting at
the head of the list and traversing the list until the end and adding the new element
to the end of the list. Notice that such an approach runs in Θ(m) time and will
adversely affect the running time of the algorithm. Finally, notice that in order to
concatenate two lists in Θ(1) time, one will typically keep a tail pointer.

Since both inserting and removing a data item from a list can be done in Θ(1)
time, the split procedure can be implemented to run in Θ(n) time.

In the best case, every element of the input list goes into equalList, with small-
List and bigList remaining empty. If this is the case, then the algorithm makes one

C8208_ch09.indd 224C8208_ch09.indd 224 11/16/12 11:59 AM11/16/12 11:59 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Quicksort (Partition Sort) 225

pass through the data, places all of the items in a single list, performs two recursive
calls that are completed in Θ(1) time, and concludes with a concatenation of the
two empty lists to the one list containing all of the identical items in Θ(1) time.
This results in a total running time of T(n) = 2T(0) + Θ(n) = Θ(n).

Without loss of generality, let’s now consider the case where all of the ele-
ments are distinct. Given this scenario, the best-case running time will occur when
an even split occurs. That is, when one item is placed in equalList, ⎣n/2⎦pitems in
either smallList or bigList, and ⎡n/2⎤ − 1 items in bigList or smallList, respec-
tively. In this situation, the running time of the algorithm, T(n), is approximately
given as

 T(1) = Θ(1);

 T(n) = 2T(n/2) + Θ(n).

Recall that this recurrence results in a running time of T(n) = Θ(n log n). So,
in the best case, the running time of Quicksort is asymptotically optimal. We show
in Appendix 4 that the expected, i.e., average, running time of Quicksort is
Θ(n log n), which has important practical implications. In fact, its Θ(n log n) aver-
age running time is one of the reasons that Quicksort comes packaged with so
many computing systems.

Now consider the worst-case scenario of Quicksort. Suppose that at every
level of recursion, either the maximum or minimum element in the list is chosen as
splitValue. Examples of how this can occur are input lists that are already sorted, in
either ascending or descending order. Therefore, after assigning elements to the
three lists, one of the lists will have n − 1 items in it, one will be empty, and equal-
List will have only the splitter in it. In this case, the running time of the algorithm
obeys the recurrence T(n) = T(n − 1) + Θ(n), which has a solution of T(n) = Θ(n2).
That is, if one gets very unlucky at each stage of the recursion, the running time of
Quicksort could be as bad as Θ(n2).

One should be concerned about this problem in the event that such a running
time is not acceptable. Further, if one anticipates data sets that have large segments
of ordered data, one may want to avoid a straightforward implementation of
Quicksort. The scenario of a bad split at every stage of the recursion could also be
realized with an input list that does not have large segments of ordered data (see
the Exercises). Later in this chapter, we discuss techniques for minimizing the pos-
sibility of a Θ(n2)-time Quicksort algorithm.

Quicksort vs. Merge Sort

Quicksort and Merge Sort are most naturally implemented with data stored in linked
lists. Consider a comparison of these two popular sorting techniques. Merge Sort
requires a straightforward division of the elements into two lists of equal size, while
Quicksort partitions its input list using some intelligent reorganization of the data.

C8208_ch09.indd 225C8208_ch09.indd 225 11/16/12 11:59 AM11/16/12 11:59 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

226 Chapter 9 Divide-and-Conquer

Conversely, Merge Sort requires an intricate combination of the recursively sorted
sublists, while Quicksort merely requires concatenation of three lists. Therefore,
Merge Sort is referred to as an easy split, hard join algorithm, while Quicksort is
referred to as a hard split, easy join algorithm. That is, Merge Sort is more efficient
than Quicksort in the divide stage, but less efficient than Quicksort in the stitch stage.

Notice that in Merge Sort, comparisons are made between items in different
lists during the merge operation. In Quicksort, however, comparisons are made
between elements during the divide stage. The reason that no comparisons are
made during the stitch step in Quicksort is because the divide step guarantees that
if element x is sent to list smallList, element y is sent to list equalList, and element
z is sent to bigList, then x < y < z.

Array Implementation

In this section, we discuss the application of Quicksort to a set of data stored in an
array. The astute reader might note that with modern programming languages, one
rarely encounters a situation where the data to be sorted is maintained in a static
array. However, there are certain “dusty deck” codes that must be maintained in the
original style of design and implementation for various reasons. This includes vin-
tage scientific software written in languages such as FORTRAN. In addition, there
are other reasons why we present this unnatural implementation of Quicksort. The
first is historic. When algorithms texts first appeared, the major data structure was
a static array. For this reason, Quicksort has been presented in many texts predomi-
nantly from the array point of view. Although this is unfortunate, we do believe
that for historic reasons, it is worth including an array implementation of Quicksort
in this text. Finally, while the linked list implementation that we presented in the
preceding section is straightforward in its design, implementation, and analysis,
the array implementation is quite complex and somewhat counterintuitive. The
advantage of this is that it allows us to present some interesting analysis techniques
and to discuss some interesting algorithmic issues in terms of optimization.

Assume that the input to the Quicksort routine consists of an array A contain-
ing n elements to be sorted. For simplicity, we will assume that A contains only the
keys of the data items. Note that the data associated with each element could more
generally be maintained in other fields if the language allows an array of records
or could be maintained in other related arrays. The latter situation was common in
the 1960s and 1970s, especially with languages such as FORTRAN.

Notice that a major problem with a static array is partitioning the elements. We
assume that additional data structures cannot be allocated in a dynamic fashion.
For historical reasons, let’s assume that all rearrangement of data is restricted to
the array(s) that contain the initial data plus a constant number of temporary data
cells. While this situation may seem strange to current students of computer
 science who have learned modern, i.e., post-1980s, programming languages, we
reiterate that there are situations and languages for which this scenario is critical.

C8208_ch09.indd 226C8208_ch09.indd 226 11/16/12 11:59 AM11/16/12 11:59 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Quicksort (Partition Sort) 227

So, let’s consider the basic Quicksort algorithm as implemented on an array A,
where we wish to sort the elements A[left . . . right], where left ≤ right are integers
that serve as pointers into the array. Typically, the first call on this recursive proce-
dure would have left = 1 and right = n if indexing begins with 1, or left = 0 and
right = n − 1 if indexing begins with 0.

Subprogram QuickSort (A, left, right)
Input: An array A.
Output: The array A with elements sorted by the Quicksort method.

 If left < right, then
 Partition(A, left, right, partitionIndex)
 QuickSort(A, left, partitionIndex)
 QuickSort(A, partitionIndex + 1, right)
 End If
 End QuickSort

Notice that a concatenation step comes for free since concatenating two adja-
cent subarrays does not require any work. Therefore, no concatenation step is
listed in our description of the array implementation of Quicksort above. The basic
algorithm is similar to the linked list version of Quicksort presented previously.
That is, we need to partition the elements and then sort each of the subarrays. For
purposes of our discussion in this section, we view the array as being horizontal. In
order to work more easily with an array, we will partition it into only two “subar-
rays” under a relaxed criterion that requires all elements in the left subarray to be
less than or equal to all elements in the right subarray. It is critical to note that if
the keys are not unique, then copies of the split element could appear in both the
left and right subarrays. We then recursively sort the left subarray and the right
subarray. Specifically, we have the following.

 1. Divide: A[left . . . right] is partitioned into two nonempty subarrays A[left . . . p]
and A[p + 1 . . . right] such that all elements in A[left . . . p] are less than or equal
to all elements in A[p + 1 . . . right].

 2. Conquer: Recursively sort subarray A[left . . . p], if left < p, and A[p + 1 . . . right],
if p + 1 < right.

 3. Stitch: Requires no work since the data is in an array that is already correctly
joined.

So, given the basic algorithm, we only need to provide an algorithm for the
partition routine (see Figure 9-8). We need to point out that this routine is specific
to array implementations. Over the years, we have watched numerous program-
mers try to implement this routine on a linked list because they did not understand
the fundamentals of Quicksort and did not realize that this array implementation is

C8208_ch09.indd 227C8208_ch09.indd 227 11/16/12 11:59 AM11/16/12 11:59 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

228 Chapter 9 Divide-and-Conquer

5 8 1 2 6 7 4 9 3

1 2 3 4 5 6 7 8 9

(a) The initial unordered array is given.

3 4 1 2 6 7 8 9 5

(b) The data is shown after partitioning has been
performed with respect to the value of 5. Notice
that <3,4,1,2> are all less than or equal to 5 and
<6,7,8,9,5> are all greater than or equal to 5.

(c) The array is presented after the recursive sorting on
each of the two subarrays. Notice that this results in
the entire array being sorted.

unnatural. The standard partition routine that we are about to present should only
be used with an array.

This partition routine works as follows. First, choose a partition value. Next,
partition the array into two subarrays so that all elements in the left subarray are
less than or equal to the partition value, while all elements in the right subarray are
greater than or equal to this value. This is done by marching through the array
from left to right in search of an element that is greater than or equal to the parti-
tion value, and similarly, from right to left in search of an element that is less than
or equal to the partition value. In other words, we march through the array from
the outside in, looking for misplaced items. If such elements are found, they are
swapped, and the search continues until the elements discovered are in their proper
subarrays. Refer again to Figure 9-8. Pseudo-code follows.

Subprogram Partition(A, left, right, partitionIndex)
Input: A subarray A[left, . . . , right].
Output: An partition index, pIndex, and the subarray A[left, . . . , right]
partitioned so that all elements in A[left, . . . , pIndex] are less than or equal to
all elements in A[pIndex + 1, . . . , right].
Local variables: splitValue; indices i, j

FIGURE 9-8 An example of Quicksort on an array of size 9.

C8208_ch09.indd 228C8208_ch09.indd 228 11/16/12 11:59 AM11/16/12 11:59 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Quicksort (Partition Sort) 229

Action:

splitValue ← A[left] {A simple choice of splitter}
i ← left − 1
j ← right + 1
While i < j, do
 Repeat i ← i + 1 until A[i] ≥ splitValue
 Repeat j ← j − 1 until A[j] ≤ splitValue
 If i < j, then Swap(A[i],A[j])
 Else pIndex ← j
End While
End Partition

We now present an example of the partition routine. Notice that the marching
from left to right is accomplished by the movement of index i, while the marching
from right to left is accomplished by the movement of index j. It is important to
note that each is looking for an element that could be located in the other subarray.
That is, i will stop at any element greater than or equal to the splitter element, and
j will stop at any element less than or equal to the splitter element. The reader
should note that the condition for reiteration of the While-loop body, i < j, guaran-
tees the algorithm will terminate without allowing either index to move off of the
end of the array, so there is no infinite loop or out-of-bounds indexing.

EXAMPLE

Initially, splitValue is chosen to be A[1] = 5, i is set to left − 1 = 0 and j is set to
right + 1 = 9, as shown in Figure 9-9a.

Since i < j, the algorithm proceeds by incrementing i until an element is
found that is greater than or equal to 5. Next, j is decremented until an element
is encountered that is less than or equal to 5. At the end of this first pair of index
updates, we have i = 1 and j = 7, as shown in Figure 9-9b.

Since i < j, we swap elements A[i] = A[1] and A[j] = A[7]. This results in
the configuration of the array shown in Figure 9-9c.

Since i < j, the algorithm proceeds by incrementing i until an element is
found that is greater than or equal to 5. Next, j is decremented until an element
is encountered that is less than or equal to 5. At the end of this pair of index
updates, we have i = 4 and j = 6, as shown in Figure 9-9d.

Since i < j, we swap elements A[i] = A[4] and A[j] = A[6]. This results in
the configuration of the array shown in Figure 9-9e.

Since i < j, the algorithm continues. First, we increment i until an element
(6) is found that is greater than or equal to 5. Next, we decrement j until an

C8208_ch09.indd 229C8208_ch09.indd 229 11/16/12 11:59 AM11/16/12 11:59 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

230 Chapter 9 Divide-and-Conquer

element (4) is found that is less than or equal to 5. At the end of this pair of
index updates, we have i = 6 and j = 5 (see Figure 9-9f).

Since i ≥ j, the procedure terminates with the partitionIndex set to j = 5.
This means that Quicksort can be called recursively on A[1 . . . 5] and A[6 . . . 8].

5(a)

i

3 2 6 4 1 3 7

j

5(b)

i

3 2 6 4 1 3 7

j

3(c)

i

3 2 6 4 1 5 7

j

3
(d)

i

3 2 6 4 1 5 7

j

3
(e)

i

3 2 1 4 6 5 7

j

(f) 3

j

A[left...p] A[p+1...right]

3 2 1 4 6 5 7

i

FIGURE 9-9 An example of the Partition routine of Quicksort
on an array of 8 items.

C8208_ch09.indd 230C8208_ch09.indd 230 11/16/12 11:59 AM11/16/12 11:59 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Quicksort (Partition Sort) 231

Analysis of Quicksort

In this section, we consider the time and space requirements for the array version
of Quicksort, as implemented on a RAM.

Time
Notice that the running time is given by T(n) = T(nL) + T(nR) + Θ(n), where Θ(n)
is the time required for the partition and concatenation operations, T(nL) is the
time required to sort recursively the left subarray of size nL, and T(nR) is the time
required to sort recursively the right subarray of size nR, where nL + nR = n.

Consider the best-case running time. That is, consider the situation that will
result in the minimum running time of the array version of Quicksort as presented.
Notice that in order to minimize the running time, we want T(nL) = Θ(T(nR)),
which occurs if nL = Θ(nR). In fact, it is easy to see that the running time is mini-
mized if we partition the array into two approximately equally sized pieces at
every step of the recursion. An ideal partition with an appropriate number of ele-
ments results in the recurrence T(n) = 2T(n/2) + Θ(n), which has a solution of
T(n) = Θ(n log n). This situation will occur if every time the partition element is
selected, it is the median of the elements being sorted.

Consider the worst-case running time. Notice that the running time is maxi-
mized if either nL or nR is equal to n − 1. That is, the running time is maximized if the
partition is such that the subarrays are of size 1 and n − 1. This would yield a recur-
rence of T(n) = T(n − 1) + Θ(n), which resolves to T(n) = Θ(n2). While this situation
can occur in a variety of ways, notice that this situation easily occurs for data that is
ordered or reverse-ordered. The user should be very careful of this since sorting data
that is nearly ordered can occur frequently in a number of important situations.

Finally, consider the expected running time. As it turns out, the expected-case
running time is asymptotically equivalent to the best-case running time. That is,
given a set of elements with distinct keys arbitrarily distributed throughout the
array, we expect the running time of Quicksort to be Θ(n log n). The proof of this
running time is a bit complex, though very interesting. We present this proof in
Appendix 4.

A summary of the running times for the array version of Quicksort is pre-
sented in the table below.

Scenario Running Time

Best-Case Θ(n log n)
Worst-Case Θ(n2)

Expected-Case Θ(n log n)

Space
In this section, we consider the additional space used by the array version of
Quicksort as implemented on a RAM. This may seem like a trivial issue since the

C8208_ch09.indd 231C8208_ch09.indd 231 11/16/12 11:59 AM11/16/12 11:59 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

232 Chapter 9 Divide-and-Conquer

routine does not use anything more than a few local variables. That is, there are no
additional arrays, no dynamic allocation of memory, and so on. However, since the
routine is recursive, the system will create a system stack entry for each procedure
call pushed onto the system stack.

Consider the best-case space scenario. This occurs when both procedure
calls are placed on the system stack, the first is popped off and immediately dis-
carded, and the second is popped off and evaluated. In this case, there will never
be more than three items on the system stack, which include the initial call to
Quicksort and at most two additional recursive calls. Notice that this situation
occurs when the array is split into pieces of size 1 and n − 1. Furthermore, the
recursive calls must be pushed onto the system stack so that the subarray of size
1 is sorted first. This procedure call terminates immediately since sorting an
array of size 1 represents the base case of the Quicksort routine. Next, the sys-
tem stack is popped and the procedure is invoked to sort the subarray of size
n − 1. What we have described may seem to imply that the system stack will
grow to have Θ(n) recursive calls. However, the system stack can be prevented
from growing to more than three calls by a minor modification in the code that
replaces a tail-end recursive call by either an increment to left or a decrement to
right, and a branch.

Now let’s consider the worst-case space scenario. This situation is almost iden-
tical to the best-case space scenario. The only difference is that the procedure calls
are pushed onto the system stack in the reverse order. In this situation, the proce-
dure will first be invoked to evaluate the subarray of size n − 1, which in turn
generates other recursive procedure calls, and after that routine is complete, the
system stack will be popped and the subarray of size 1 will be sorted. In this situ-
ation, the chain of recursive calls generated by the call to evaluate the subarray of
size n − 1 requires the system stack to store Θ(n) procedure calls. Demonstration
of this claim is left as an exercise.

It is interesting to note that both the best-case and worst-case space situations
occur with the Θ(n2) worst-case running time.

Consider the expected-case space scenario. This occurs with the expected-case
Θ(n log n) running time, where no more than Θ(log n) procedure calls are ever on
the system stack at any one time. Again, this can be seen in conjunction with the
expected-case analysis that appears in Appendix 4.

A summary of space requirements for the array version of Quicksort is pre-
sented in the table below.

Scenario Extra Space

Best-Case Θ(1)
Worst-Case Θ(n)

Expected-Case Θ(log n)

C8208_ch09.indd 232C8208_ch09.indd 232 11/16/12 11:59 AM11/16/12 11:59 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Quicksort (Partition Sort) 233

In Appendix 4, we show that the expected running time of Quicksort is
Θ(n log n). The proof is rather long and requires a level of mathematical sophisti-
cation that will be beyond some readers. Therefore, we recommend that only those
with strong mathematical abilities and interests read the proof.

Improving Quicksort

In this section, we discuss some improvements that can be made to Quicksort.
First, we consider modifications targeted at improving the running time. It is
important to note that the modifications we discuss should be evaluated experi-
mentally on the systems under consideration. One way to reduce the probability of
a bad splitter is to sample more than one element. For example, quickly choosing
the splitter as the median of more than one key should result in a small percentage
improvement in overall running time for large input sets.

When considering the asymptotic running time of Quicksort, one might use
the Selection algorithm presented earlier in this chapter to choose the splitter as
the median value in the list. Notice that this raises the time to choose the splitter
from Θ(1) to Θ(n). However, this increased running time has no effect on the
asymptotic expected-case running time of Quicksort. Further, because such a
selection guarantees good splits, choosing the split value in this fashion lowers the
worst-case running time of Quicksort to Θ(n log n).

If one is really concerned about trying to avoid the worst-case running time of
Quicksort, it might be wise to reduce the possibility of having to sort mostly
ordered or reverse-ordered data. As strange as it may seem, a reasonable way to do
this is first to randomize the input data. That is, take the set of input data and ran-
domly permute it. This will have the effect of significantly reducing the possibility
of taking ordered sequences of significant length as input.

After experimentation, the reader will note that Quicksort is very fast for large
values of n, but relatively slow when compared to Θ(n2) time algorithms such as
Selection Sort and Insertion Sort for small values of n. The reader might perform
an experiment comparing Quicksort to Selection Sort, Insertion Sort, and other
sorting methods for various values of n. One of the reasons that Quicksort is slow
for small n is that there is significant overhead to recursion. This overhead does
not exist for straight-sorting methods, like Insertion Sort and Selection Sort, which
are constructed as tight, doubly nested loops.

Therefore, one might consider a hybrid approach to Quicksort that exploits an
asymptotically inferior routine, which is only applied in a situation where it is bet-
ter in practice. Such a hybrid sort can be constructed in several ways. The most
obvious is to use Quicksort only as long as right − left ≥ m, for some experimen-
tally determined m. That is, one uses the basic Quicksort routine of partitioning
and calling Quicksort recursively on both the left and right subarrays. However,
the base case changes from a simple evaluation of left < right to right − left < m.
In the case that right − left < m, then one applies the straight-sorting routine that

C8208_ch09.indd 233C8208_ch09.indd 233 11/16/12 11:59 AM11/16/12 11:59 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

234 Chapter 9 Divide-and-Conquer

was used to determine the cutoff value of m. Possibilities include Selection Sort
and Insertion Sort, with Selection Sort typically being favored.

Consider an alternative approach. Sort the data recursively, so long as
right − left ≥ m. Whenever a partition is created such that right − left < m, simply
ignore that partition. That is, leave that partition in an unsorted state whenever a par-
tition exists such that right − left < m. Notice that at the end of the entire Quicksort
procedure, every element will be within m places of where it really belongs. At this
point, one could run Insertion Sort on the entire set of data. Notice that Insertion Sort
runs in O(mn) time, where n is the number of elements in the array, and m is the
maximum distance any element must move. Therefore, for m small, Insertion Sort is
a very fast routine. In fact, for m constant, this implementation of Insertion Sort runs
in only Θ(n) time. Further, compared to the previous hybrid approach, this approach
has an advantage in that only one additional procedure call is made, compared to the
O(n) procedure calls that could be made if small subarrays are immediately sorted.
Hence, this version of a hybrid Quicksort is generally preferred.

Note that similar remarks apply to Merge Sort. Keeping track of the number of
elements in a list will not raise the asymptotic cost of Merge Sort in either time or
memory usage. By doing so, we can modify the base case of Merge Sort so that
when the list to be sorted has length less than some constant determined experi-
mentally, then this base case is handled by, say Selection Sort. This does not raise
the asymptotic cost of the Merge Sort algorithm, since the lists to be sorted in this
fashion have length of Θ(1). The fact that we have presented Selection Sort using
an array data structure and Merge Sort using a pointer-based linked list structure is
not a barrier to this proposal. One can bridge this difference in data structures by
using either of the following approaches.

• Our array-based presentation of Selection Sort is easily mimicked in a pointer-
based linked list.

• Alternately, the data of the pointer-based list can be copied to an array and
sorted using the array-based implementation of Selection Sort, and then the
sorted array can be copied back to a pointer-based linked list. Exercises at the
end of Chapter 2 discuss efficient transformations between array and pointer-
based linked list data structures.

We now consider improvements in the space requirements of Quicksort. Recall
that the major space consideration is the additional space required for the system
stack. One might consider unrolling the recursion and rewriting Quicksort in a
nonrecursive fashion, which requires maintaining your own stack. This can be
used to save some real space, but it does not have a major asymptotic benefit and
causes the code to become more complex. Another improvement we might con-
sider is to maintain the stack only with jobs that need to be done and not jobs rep-
resenting tail-end recursion that are simply waiting for another job to terminate.
However, in terms of saving significant space, one should consider pushing the

C8208_ch09.indd 234C8208_ch09.indd 234 11/16/12 11:59 AM11/16/12 11:59 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Modifications of Quicksort for Parallel Models 235

jobs onto the stack in an intelligent fashion. That is, one should always push the
jobs onto the stack so that the smaller job is evaluated first. This helps to avoid or
lessen the Θ(n) worst-case additional space problem, which can be quite important
if you are working in a relatively small programming environment.

Modifications of Quicksort for Parallel Models

There have been numerous attempts to parallelize Quicksort for a variety of
machines and models of computation. One parallelization that is particularly inter-
esting is the extension of Quicksort, by Bruce Wagar, to Hyperquicksort, a
Quicksort-based algorithm targeted at medium- and coarse-grained parallel com-
puters. In this section, we first describe the Hyperquicksort algorithm for a
medium-grained hypercube and then present an analysis of its running time.

Hyperquicksort

 1. Initially, it is assumed that the n elements are evenly distributed among the 2d
nodes of a hypercube so that every node contains N = n/2d elements.

 2. Each node sorts its N items independently using a Θ(N log N) time algorithm.

 3. Node 0 determines the median of its N elements, denoted as Med. This is per-
formed in Θ(1) time since the elements in the node have just been sorted.

 4. Node 0 broadcasts Med to all 2d nodes in Θ(d) time.

 5. Every node logically partitions its local set of data into two groups, X and Y,
where X contains those elements less than or equal to Med and Y contains
those elements greater than Med. This step runs in Θ(log N) time by way of a
binary search for Med among the values of the node’s data.

 6. Consider two disjoint subcubes of size 2d−1, denoted as L and U. For simplic-
ity, let L consist of all nodes with a 0 as the most significant bit of the node’s
address and let U consist of all nodes with a 1 as the most significant bit of
the node’s address. Note that the union of L and U is the entire hypercube of
size 2d. So every node of the hypercube is a member of either L or U. Each
node that is a member of L sends its set Y to its adjacent node in U. Likewise,
each node in U sends its set X to its adjacent node in L. Notice that when this
step is complete, all elements less than or equal to Med are in L, while all ele-
ments greater than Med are in U. The expected time for the transmission of
data, as described, is Θ(N). Note this is not the worst-case time, since the sets
X and Y are not restricted to a size of Θ(N).

 7. Each node now merges the set of data just received with the one it has kept.
That is, a node in L merges its own set X with its U-neighbor’s set X and a node
in U merges its own set Y with its L-neighbor’s set Y. Therefore, after an
expected Θ(N) time for merging two sets of data, every node again has a sorted
set of data.

C8208_ch09.indd 235C8208_ch09.indd 235 11/16/12 11:59 AM11/16/12 11:59 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

236 Chapter 9 Divide-and-Conquer

 8. Repeat Steps 3-7 on each of L and U simultaneously, recursively, and in paral-
lel until the subcubes consist of a single node, at which point the data in the
entire hypercube is sorted.

The time analysis embedded in the presentation above does not coincide with
the analysis for the worst-case running time as the algorithm continues to iterate
over Steps 3-7 due to the fact that the data may become quite unbalanced. That is,
pairs of processors may utilize ω (N) time to transmit and merge data. As a
 consequence, when the algorithm terminates, all processors may not necessarily
have N items.

Assuming that the data is initially distributed in a random fashion, Wagar has
shown that the expected-case running time of this algorithm is

ΘaN log N +
d(d + 1)

2
+ dNb .

The N log N term represents the sequential running time from Step 2. The
d(d + 1)/2 term represents the broadcast step used in Step 4. The dN term repre-
sents the time required for the exchanging and merging of the sets of elements. We
leave discussion of the efficiency of this running time as an exercise.

In the next section, we will consider a medium-grained implementation of
Bitonic Sort. We will see that Bitonic Sort offers the advantage that, throughout
the algorithm, all nodes maintain the same number of elements per processor.
However, given good recursive choices of splitting elements, Hyperquicksort
offers the advantage that it is more efficient than Bitonic Sort.

Bitonic Sort (Revisited)

In Chapter 5, we presented some motivation, history, and a detailed description of
Bitonic Sort. In addition, we presented an analysis of the algorithm for several
models of computation. To recap, given a set of n elements, we showed that Bitonic
Sort will run in Θ(log2 n) time on a PRAM of size n, in Θ(log2 n) on a fine-grained
hypercube of size n, and in Θ(n log2 n) time on a RAM.

In this section, we consider Bitonic Sort on a medium-grained hypercube as a
means of comparison to the Hyperquicksort routine presented in the last section.
We then consider Bitonic Sort on a fine-grained mesh of size n.

Our initial assumptions are the same as they were for Hyperquicksort. Assume
that we are initially given n data elements evenly distributed among the 2d proces-
sors so that each processor contains N = n/2d items. Suppose that each processor
sorts its initial set of data in Θ(N log N) time. Once this is done, we simply follow
the data movement and general paradigm of the fine-grained Bitonic Sort algo-
rithm, as previously presented. The major modification is to accommodate the

C8208_ch09.indd 236C8208_ch09.indd 236 11/16/12 11:59 AM11/16/12 11:59 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Bitonic Sort (Revisited) 237

difference between processors performing a comparison and exchange of two
items for the fine-grained model, and a comparison and exchange of 2N items for
the medium-grained model.

Suppose processor A and processor B need to order their 2N items so that the
N smaller items will reside in processor A and the N larger items will reside in
processor B. This can be accomplished as follows. In Θ(N) time, processors A and
B exchange data so that each processor has the complete set of 2N items. Each
processor now merges the two sets of items in Θ(N) time, simultaneously and
independently. Finally, processor A “retains” the N smallest items by discarding
the N largest items, and processor B “retains” the N largest items by discarding the
N smallest items.

The running time of Bitonic Sort on a medium-grained hypercube consists of
the simultaneous initial set of Θ(N log N) time sequential sorts, followed by the
d(d + 1)/2 steps of Bitonic Sort, each of which runs in Θ(N) time, resulting in a
total running time of

ΘaN log N +
d(d + 1)

2
 Nb .

As mentioned previously, the reader should note two major differences when
considering whether to use Bitonic Sort or Hyperquicksort on a medium-grained
hypercube.

 1. The expected-case running time of Hyperquicksort is more efficient than the
running time of Bitonic Sort by a relatively small factor.

 2. When Bitonic Sort terminates, the data is distributed evenly among the
 processors, while this is not the case with Hyperquicksort.

Bitonic Sort on a Mesh

In this section, we present a straightforward implementation of the fine-grained
Bitonic Sort algorithm on a fine-grained mesh computer. After the presentation of
the algorithm, we discuss details of the implementation and the effect that such
details have on the running time of the algorithm.

Initially, let’s assume that a set of n data elements is given, arbitrarily distrib-
uted one per processor on a mesh of size n. In order to perform sorting on a
 distributed-memory parallel machine, we must define the ordering of the pro-
cessors, since the elements are sorted with respect to the ordering of the proces-
sors. Initially, we assume that the processors are ordered with respect to shuffled
 row-major indexing scheme, as shown in Figure 9-10. Note that for a machine
with more than 16 processors, this ordering holds recursively within each
quadrant.

C8208_ch09.indd 237C8208_ch09.indd 237 11/16/12 11:59 AM11/16/12 11:59 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

238 Chapter 9 Divide-and-Conquer

FIGURE 9-10 The shuffled-row major index
scheme as applied to a mesh of size 16. It is
important to note that on a mesh of size n,
this indexing continues recursively within
each quadrant.

0 1 4 5

2 3 6 7

8 9 12 13

10 11 14 15

At the end of this section, we will discuss a simple way to adapt Bitonic Sort
to whatever predefined processor ordering is required/utilized. Recall that Bitonic
Sort is a variant of Merge Sort. Viewed in a bottom-up fashion, initially bitonic
sequences of size 2 are bitonically merged into sorted sequences of size 4. Then
bitonic sequences of size 4 are bitonically merged into sorted sequences of size 8,
and so on. At each stage, the sequences being merged are independent and the
merging is performed in parallel on all such sequences. In addition, recall that the
concatenation of an increasing sequence with a decreasing sequence forms a
bitonic sequence. Therefore, we must be careful when merging a bitonic sequence
into a sorted sequence as to whether it is merged into an increasing or a decreasing
sequence. The reader may wish to review the section on Bitonic Sort before pro-
ceeding with the remainder of this section.

In the example presented below, notice that we exploit the shuffled row-
major indexing scheme. Therefore, sequences of size 2 are stored as 1 × 2
strings, sequences of size 4 are stored as 2 × 2 strings, sequences of size 8 are
stored as 2 × 4 strings, and so on. A critical observation is that if a comparison
and possible exchange must be made between data that reside in two processors,
then those processors always reside in either the same row or in the same column.
This is due to the properties of the shuffled row-major indexing scheme coupled
with the fact that Bitonic Sort only compares entries that differ in one bit of their
indexing.

Consider the example of Bitonic Sort on a mesh of size 16, as presented in
Figure 9-11. This example shows how to sort the initial set of arbitrarily distrib-
uted data into increasing order with respect to the shuffled row-major ordering of
the processors. The first matrix shows the initial set of arbitrarily distributed data.
Notice that a sequence of size 1 is, by default, sorted into both increasing and
decreasing order. Therefore, initially, there are n/2 bitonic sequences of size 2, in

C8208_ch09.indd 238C8208_ch09.indd 238 11/16/12 11:59 AM11/16/12 11:59 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Bitonic Sort (Revisited) 239

Example:

initially ordered

into 1 ´ 1 sections

910 14 2

4 15 11 12

6 1 5 13

8 3 7 0

109 14 2

15 4 11 12

1 6 13 5

8 3 0 7

49 14 12

15 10 11 2

1 3 13 7

8 6 0 5

94 14 12

10 15 11 2

1 3 13 7

6 8 5 0

94 14 12

10 2 11 15

13 7 1 3

6 8 5 0

24 11 12

10 9 14 15

13 8 5 3

6 7 1 0

Now sorted into

1 ´ 2 sections

Now sorted into

2 ´ 2 sections

01 5 4

2 3 7 6

9 8 13 12

11 10 14 15

10 4 5

2 3 6 7

8 9 12 13

10 11 14 15

42 11 12

9 10 14 15

13 8 5 3

7 6 1 0

42 5 3

7 6 1 0

13 8 11 12

9 10 14 15

32 5 4

1 0 7 6

11 8 13 12

9 10 14 15

Now sorted into

2 ´ 4 sections

Now sorted into a

4 ´ 4 sections

FIGURE 9-11 An example of Bitonic Sort on a mesh of size 16. The elements are
sorted into shuffled-row major order, as given in Figure 9-10. The initial data is
given in the top-left matrix. After applying a comparison-exchange operation
between indicated elements, e.g., 10-9, 14-2, 4-15, and so forth, the matrix has
been ordered into disjoint 1 × 2 segments, as indicated in the next matrix. The
interpretation of the figure continues in this manner. Note up until the final stage,
half the sorted sections are in ascending order, and the other half are in
 descending order.

C8208_ch09.indd 239C8208_ch09.indd 239 11/16/12 11:59 AM11/16/12 11:59 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

240 Chapter 9 Divide-and-Conquer

the form of 1 × 2 strings, each of which must be bitonically merged. This is
accomplished by a single comparison, representing the base case of the Bitonic
Sort, resulting in the second matrix. Notice that some of the sequences are sorted
into increasing order and some into decreasing order. Next, we take this matrix
and wish to merge bitonic sequences of size 4, in the form of 2 × 2 strings, into
sorted order. This is accomplished by first performing a comparison-exchange
operation between items that are two places apart in the indexing, followed by
recursively sorting each of the 1 × 2 strings independently. The fourth matrix
shows the result of this sorting. Notice that each of the four quadrants has data in
sorted order with respect to the shuffled row-major indexing. In particular, notice
that the northwest and southwest quadrants are sorted into increasing order, while
the northeast and southeast quadrants are sorted into decreasing order. The
 example continues, showing the details of combining 2 × 2 strings into
sorted 2 × 4 strings, and finally combining the two 2 × 4 strings into the final
sorted 4 × 4 string.

Analysis of Running Time
Recall from the detailed analysis of Bitonic Sort presented in Chapter 5 that
Bitonic Sort is based on Merge Sort. As such, it uses Θ(log n) parallel merge
operations, merging lists of size 1 into lists of size 2, then lists of size 2 into lists
of size 4, and so forth. However, the merge operation is not the standard merge
routine that one learns in a second semester computer science course, but rather
the more complex bitonic merge. Further, the time for each bitonic merge requires
a slightly more complex analysis than that of determining the time for a tradi-
tional merge. For example, merging pairs of elements into ordered lists of size 2
requires one level of comparison-exchange operations, which can be thought of
as one parallel comparison-exchange operation. This is the base case. Merging
bitonic sequences of size 2 into ordered lists of size 4 requires an initial compari-
son-exchange level, that is, n/2 comparison-exchange operations, followed by
applying the Bitonic Sort routine for sequences of size 2 to each of the resulting
subsequences. Therefore, the total number of comparison-exchange levels is
1 + 1 = 2. The time to merge bitonic sequences of size 4 into ordered sequences
of size 8 requires one comparison-exchange level to divide the data, followed by
two parallel comparison-exchange levels to sort each of the bitonic subsequences
of size 4. Therefore, the total number of comparison-exchange levels to merge a
bitonic sequence of size 8 into an ordered sequence is three (1 + 2 = 3). In gen-
eral, the time to merge two bitonic sequences of size n/2 into an ordered sequence
of size n is Θ(log n).

Recall that in order to use the bitonic merge unit to create a sorting routine/
network, we apply the basic Merge Sort scenario. That is, sorting an arbitrary
sequence of n items requires us first to sort two subsequences of size n/2
in parallel, then to perform a comparison-exchange on items n/2 apart, and
then to merge recursively each subsequence of size n/2. Therefore, the total

C8208_ch09.indd 240C8208_ch09.indd 240 11/16/12 11:59 AM11/16/12 11:59 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Bitonic Sort (Revisited) 241

 number of comparison-exchange levels, i.e., parallel comparison-exchange
operations, is

a

log2 n

i=1

i =
1log2 n21log2 n + 12

2
=

1

2
 1log2 n + log n2.

The reader should refer to the section on Bitonic Sort for the original presenta-
tion of this analysis.

Now consider a mesh implementation. Suppose that each of the Θ(log2 n)
comparison-exchange levels is implemented by a column or row rotation, as
appropriate. Such an implementation leads to a Θ(n1/2 log2 n) running time on a
mesh of size n. However, if we look closely at the data movement operations that
are required in order to perform the comparison-exchange operations, we notice
that during the first iteration, when creating the 1 × 2 lists, the data items are only
one link apart. When creating the 2 × 2 lists, the data items are again only one
link apart. When creating the 2 × 4 and 4 × 4 lists, the data items are either one or
two links apart, and so forth. Therefore, if we are careful to construct modified
row and column rotations that allow for simultaneous and disjoint rotations within
segments of a row or column, respectively, the running time of Bitonic Sort oper-
ations can be improved significantly. With this optimized rotation scheme, the
time to sort n items on a mesh of size n is given by the recurrence
T(n) = T(n/2) + Θ(n1/2), where T(n/2) is the time to sort each of the subsequences
of size n/2, and the Θ(n1/2) term represents the time required to perform a set of
n/2 comparison-exchange operations. Therefore, the running time of the Bitonic
Sort algorithm is Θ(n1/2), which is optimal for a mesh of size n. While the algo-
rithm is optimal for this architecture, notice that the cost of the algorithm is
Θ(n3/2), which is far from optimal. We leave as an exercise the possibility of mod-
ifying this architecture and algorithm to achieve a cost-optimal sorting algorithm
on a mesh.

Sorting Data with Respect to Other Orderings

How would we handle the situation of sorting a set of data on a fine-grained mesh
into an ordering other than shuffled row-major? For example, given a set of n data
items, initially distributed in an arbitrary fashion one per processor on a mesh of
size n, how would the data be sorted into row-major or snake-like order? If one is
only concerned about asymptotic complexity, the answer is quite simple: perform
two sorting operations. The first operation will sort data in terms of a known sort-
ing algorithm into the indexing order required by that algorithm. For example, one
could use Bitonic Sort and sort data into shuffled row-major order. During the
second sort, each processor would generate a sort key that corresponds to the
desired destination address with respect to the desired indexing scheme, such as
row major or snake-like ordering.

C8208_ch09.indd 241C8208_ch09.indd 241 11/16/12 11:59 AM11/16/12 11:59 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

242 Chapter 9 Divide-and-Conquer

Suppose that one wants to sort the 16 data items from the previous example
into row-major order. One could first sort the data into shuffled row-major order
and then resort the items so that they are appropriately ordered. For example, dur-
ing the second sort, keys would be created so that processor 0 would send its data
to processor 0, processor 1 would send its data to processor 1, processor 2 would
send its data to processor 4, processor 3 would send its data to processor 5, proces-
sor 4 would send its data to processor 2, and so forth (see Figure 9-12). The com-
bination of these two sorts would result in the data being sorted according to
row-major order in the same asymptotically optimal Θ(n1/2) time. Notice that this
algorithm assumes that the destination addresses can be determined in O(n1/2)
time, which is sufficient for most well-defined indexing schemes.

FIGURE 9-12 An example of sorting data on a mesh into row-major order by two
applications of sorting into shuffled-row major order. The initial unordered set of
data is given in (a). After applying a shuffled-row major sort, the data appears as
in (b). Note that in the lower right corner of each item is the index for where that
item should be placed with respect to shuffled-row major order so that the data
will be in row-major order. The items are then sorted into shuffled-row major
order with respect to these indices, with the results in row-major order as
shown in (c).

5 2 10 6

12 8 4 0

14 1 11 13

15 7 3 9

(a) Initial data.

00 11 42 53

24 35 66 77

88 99 1210 1311

1012 1113 1414 1515

(b) Sorted data with
keys for resorting.

00 11 24 35

42 53 66 77

88 99 1012 1113

1210 1311 1414 1515

(c) Resorted data
with keys.

Sorting on a Cluster

Ordering data on a cloud or a cluster is an important operation. Many corporations
and agencies require data to be ordered at various stages of operation. Since a clus-
ter or network of workstations, which may or may not be used to implement a
cloud, typically has a reasonably fast interconnect between the various nodes, sort-
ing is typically performed on such systems by using one of the aforementioned
algorithms with the node labels mapped onto the cluster/NOW. Note that in some
cases, nodes may contain multiple processors and each processor may contain mul-
tiple cores or have an attached processor, for example, a General Purpose Graphics

C8208_ch09.indd 242C8208_ch09.indd 242 11/16/12 11:59 AM11/16/12 11:59 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Concurrent Read/Write 243

Processing Unit, or GPGPU. Regardless, while the interprocessor communication
time may be dramatically different between on-node processors and processors
connected by an external interconnection network, Hyperquicksort, Bitonic Sort,
or a modified Merge Sort are the standard options. In such a case, one’s time is
often best spent in performing in-depth timing studies to determine the most effi-
cient algorithm for the particular data under consideration.

Concurrent Read/Write

In this section, we discuss an important application of sorting that allows for the
efficient and straightforward porting of PRAM algorithms to other architectures.
The PRAM is the most widely studied parallel model of computation. As a
result, a significant body of algorithmic literature exists for that architecture.
Therefore, when one considers developing an efficient algorithm for a non-
PRAM-based parallel machine, it is often constructive to consider first the algo-
rithm that would result from a direct simulation of the PRAM algorithm on the
target architecture. In order to simulate the PRAM, it is critical to be able to
simulate the concurrent read and concurrent write capabilities of the PRAM on
the target machine.

A concurrent read, or, in its more general form, an associative read, can be
used in a situation where a set of processors must obtain data associated with a set
of keys, but where there need not be a priori knowledge as to which processor
maintains the data associated with any particular key.

For example, processor Pi might need to know the data associated with the key
“blue,” but might not know which processor Pj in the system is responsible for
maintaining the information associated with the key “blue.” In fact, all processors
in the system might be requesting one or more pieces of data associated with keys
that are not necessarily distinct.

A concurrent write, or in its more general form, an associative write, may be
used in a situation where a set of processors Pi must update the data associated
with a set of keys, but again Pi does not necessarily know which processor is
responsible for maintaining the data associated with the key.

As one can see, these concurrent read/write operations generalize the CR/
CW operations of a PRAM by making them associative, in other words, by
locating data with respect to a key rather than by an address. In order to maintain
consistency during concurrent read and concurrent write operations, we will
assume that there is at most one master record, stored in some processor, associ-
ated with each unique key. In a concurrent read, every processor generates
one request record corresponding to each of a small fixed number of keys that
it wishes to receive information about. A concurrent read permits multiple
 processors to request information about the same key. A processor requesting
information about a nonexistent key will receive a null message at the end of
the operation.

C8208_ch09.indd 243C8208_ch09.indd 243 11/16/12 11:59 AM11/16/12 11:59 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

244 Chapter 9 Divide-and-Conquer

Implementation of a Concurrent Read

A relatively generic implementation of a concurrent read operation on a parallel
machine with n processors follows.

 1. Every processor creates C1 master records of the form [Key, Return Address,
data, “MASTER”], where C1 is the maximum number of keyed master records
maintained by any processor, and Return Address is the index of the processor
that is creating the record. Processors maintaining less than C1 master records
will create dummy records so that all processors create the same number of
master records.

 2. Every processor creates C2 request records of the form [Key, Return Address,
data, “REQUEST”], where C2 is the maximum number of request records
generated by any processor, and Return Address is the index of the processor
that is creating the record. Processors requesting information associated with
less than C2 master records will create dummy records so that all processors
create the same number of request records. Notice that the data fields of the
request records are presently undefined.

 3. Sort all (C1 + C2)n records together by the Key field. In case of ties, place
records with the flag “MASTER” before records with the flag “REQUEST.”

 4. Use a broadcast within ordered intervals to propagate the data associated with
each master record to the request records with the same Key field. This allows all
request records to find and store their required data.

 5. Return all records to their original processors by sorting all records on the
Return Address field.

Therefore, the time to perform a concurrent read, as described, is bounded by
the time to perform a fixed number of sort and interval operations. See Figure 9-13.

Implementation of Concurrent Write (overview)

The implementation of the concurrent write is quite similar to that of the concur-
rent read. In general, it consists of a sort step to group records with similar keys
together, followed by a semigroup operation within each group to determine the
value to be written to the master record, followed by a sort step to return the records
to their original processors. Again, it is assumed that there is at most one master
record, stored in some processor, associated with each unique key. When proces-
sors generate update records, they specify the key of the record and the piece of
information they wish to update. If two or more update records contain the same
key, then a master record will be updated with the minimum data value of these
records. In other circumstances, one could replace the minimum operation with
any other commutative, associative, binary operation. Therefore, one can see that
the implementation of the concurrent write is nearly identical to the implementa-
tion just described for the concurrent read.

C8208_ch09.indd 244C8208_ch09.indd 244 11/16/12 11:59 AM11/16/12 11:59 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Summary 245

Concurrent Read/Write on a Mesh

A mesh of size n can simulate any PRAM algorithm that works with n data items
on n processors by using a concurrent read and concurrent write to simulate every
step of the PRAM algorithm. Suppose that a given PRAM algorithm runs in T(n)
time. Then by simulating every read step and every write step of the PRAM algo-
rithm in a systematic fashion by a Θ(n1/2) time concurrent read and concurrent
write, respectively, the running time of the PRAM algorithm as ported to a mesh of
size n will be O(T(n)n1/2), which is often quite good. In fact, it is often not more
than some polylogarithmic factor from optimal.

Summary

In this chapter, we examine the recursive divide-and-conquer paradigm for solving
problems. We show the power of this paradigm by illustrating its efficient usage in
several algorithms for sorting, including sequential versions of Merge Sort and
Quicksort and their adaptations to several parallel models; also, reconsideration of

[–,1,–1,M],[blue,1,?,R] [blue,2,30,M],[red,2,?,R] [green,3,40,M],[blue,3,?,R] [red,0,10,M],[blue,0,?,R]

(a) The initial data is given where each processor maintains one master record
(signified by an “M” in the fourth field) and generates one request record
(with an “R” in the fourth field).

[blue,1,?,R],[blue,3,?,R] [green,3,40,M],[red,0,10,M] [red,2,?,R],[–,1,–1,M][blue,2,30,M],[blue,0,?,R]

(b) After sorting all of the data together based on the key (first) field, with ties
broken in favor of master records, we arrive at the situation shown here.

[blue,1,30,R],[blue,3,30,R] [green,3,40,M],[red,0,10,M] [red,2,10,R],[–,1,–1,M][blue,2,30,M],[blue,0,30,R]

(c) A segmented broadcast is then performed so that the information maintained
in the master records is propagated to the appropriate request records.

[red,0,10,M],[blue,0,30,R] [–,1,–1,M],[blue,1,30,R] [blue,2,30,M],[red,2,10,R] [green,3,40,M],[blue,3,30,R]

(d) The data is resorted based on the return address (second) field.

FIGURE 9-13 An example of a concurrent read on a linear array of size 4.

C8208_ch09.indd 245C8208_ch09.indd 245 11/16/12 11:59 AM11/16/12 11:59 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

246 Chapter 9 Divide-and-Conquer

Bitonic Sort and its implementations on a coarse-grained hypercube and on a fine-
grained mesh. Efficient to optimal divide-and-conquer algorithms for selection
and for concurrent read and write operations on parallel computers are also given.

Chapter Notes

Divide-and-conquer is a paradigm central to the design and analysis of both parallel
and sequential algorithms. An excellent reference, particularly for sequential algo-
rithms, is Introduction to Algorithms by T.H. Cormen, C.E. Leiserson, R.L. Rivest,
and C. Stein (3rd ed.: The MIT Press, Cambridge, MA, 2009). A nice text focusing
on algorithms for the hypercube, which includes some divide-and-conquer algo-
rithms, is Hypercube Algorithms for Image Processing and Pattern Recognition by
S. Ranka & S. Sahni (Springer-Verlag, New York, 1990). More general references
for theoretical parallel algorithms that exploit the divide-and-conquer paradigm are
Parallel Algorithms for Regular Architectures by R. Miller and Q.F. Stout (The MIT
Press, 1996), and Introduction to Parallel Algorithms and Architectures: Arrays,
Trees, Hypercubes, by F.T. Leighton (Morgan Kaufmann Publishers, San Mateo,
CA, 1992). Details of advanced PRAM algorithms, including a Θ(log n) time sort-
ing algorithm, can be found in An Introduction to Parallel Algorithms by J. JáJá,
(Addison-Wesley, 1992).

Optimal-cost PRAM algorithms for the Selection Problem are given in R.J.
Cole’s paper, “An optimally efficient selection algorithm,” Information Processing
Letters 26 (1987/88), 295–299.

The Quicksort algorithm was originally presented by in “Quicksort,” by
C.A.R. Hoare, Computer Journal, 5(1):10–15, 1962. Wagar’s Hyperquicksort
algorithm was originally presented in, “Hyperquicksort: A fast sorting algorithm
for hypercubes,” by B. Wagar in Hypercube Multiprocessors 1987, 292–299.

Exercises

 1. We have shown that Quicksort has a Θ(n2) running time if its input list is
sorted or nearly sorted. Other forms of input can also produce a Θ(n2) running
time. For example, let n = 2k for some positive integer k and suppose

 • the input list has key values x1, x2, . . . , xn,

 • the subsequence O = {x1, x3, . . . , xn−1} of odd-indexed keys is decreasing,

 • the subsequence E = {x2, x4, . . . , xn} of even-indexed keys is increasing,

 • xn−1 > xn,

 • queues are used for the lists, with the partitioning process enqueueing new
items to smallList, equalList, and bigList, and

 • the split value is always taken to be the first key in the list.

 Show that under these circumstances, the running time of Quicksort is Θ(n2).

C8208_ch09.indd 246C8208_ch09.indd 246 11/16/12 11:59 AM11/16/12 11:59 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Exercises 247

 2. In our sequential implementation of Quicksort, the “conquer” stage of the algo-
rithm consists of two recursive calls. The order of these calls clearly does not
matter in terms of the correctness and running time of the algorithm. However,
the order of these recursive calls does affect the size of the stack needed to keep
track of the recursion. Show that if one always pushes the jobs onto the stack so
that the larger job is processed first, then the stack must be able to store n items.

 3. Suppose that on a parallel computer with n processors, processor Pi has data
value xi, i ∈ {1, . . . , n}. Further, suppose that i ≠ j ⇒ xi ≠ xj. Describe an effi-
cient algorithm so that every processor Pi can determine the rank of its data
value xi. That is, if xi is the k th largest member of 5xj6 j=1

n , then processor Pi
will store the value k at the end of the algorithm. Analyze the running time of
your algorithm in terms of operations discussed in this chapter. Your analysis
may be quite abstract. For example, you may express the running time of your
algorithm in terms of the running times of the operations you use.

 4. Suppose that we implement a linked-list version of Quicksort on a RAM using
predefined abstract data types. Further, suppose that inserting an element into
a list is actually written so that it traverses the list from the front to the end and
then inserts the new element at the end of the list. Give an analysis of the run-
ning time of Quicksort under this situation.

 5. Suppose we are given a singly-linked list on a RAM and mistakenly imple-
ment the array version of Quicksort to perform the partition step. Give the
running time of the partition step and use this result to give the running time of
the resulting version of the Quicksort algorithm.

 6. Describe and analyze the running time of Bitonic Sort given a set of n data
items arbitrarily distributed n/p per processor on a hypercube with p proces-
sors where n >> p, i.e., where n is ω (p).

 7. Prove that algorithm Partition is correct.

 8. Modify Quicksort so that it recursively sorts as long as the size of the subarray
under consideration is greater than some constant C. Suppose that if a subar-
ray of size C or less is reached, then the subarray is not sorted. As a final post-
processing step, suppose that this subarray of size at most C is then sorted by
one of the following simple sorts.

 a. Insertion Sort

 b. Bubble Sort

 c. Selection Sort

 Given the total running time of the modified Quicksort algorithm. Prove that
the algorithm is correct.

 9. Let S be a set of n distinct real numbers and let k be a positive integer with
1 < k < n. Give a Θ(n) time RAM algorithm to determine the middle k entries
of S. The input entries of S should not be assumed ordered; however, if the

C8208_ch09.indd 247C8208_ch09.indd 247 11/16/12 11:59 AM11/16/12 11:59 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

248 Chapter 9 Divide-and-Conquer

 elements of S are such that s1 < s2 < . . . < sn, then the output of the algorithm is
the set {s(n−k)/2, s((n−k)/2)+1, . . . , s((n+k)/2)−1}, not necessarily sorted. Since the run-
ning time of the algorithm should be Θ(n), sorting S should not be part of the
algorithm.

 10. Analyze the running time of the algorithm you presented in response to the
previous query as adapted in a straightforward fashion

 a. for a PRAM and

 b. for a mesh.

 11. Develop a version of Merge Sort for a linear array of Θ(log n) processors to
sort n data items, initially distributed Θ(n/log n) items per processor. Show
that your algorithm runs in Θ(n) time and that it is cost-optimal.

 12. Analyze the running time of a concurrent read operation involving Θ(n) items
on a mesh of size n.

 13. Given a set of n data items distributed on a mesh of size m, m ≤ n, so that each
processor contains n/m items, what is the best lower bound for the time to sort
these items? Justify your answer. Provide an algorithm that matches these
bounds.

 14. Given a set of n input elements, arbitrarily ordered, prove that any sorting net-
work has a depth of at least log2 n.

 15. Prove that the number of comparison units in any sorting network on n inputs
is Ω(n log n).

 16. Suppose that we are given a sequence of arcs of a circle R = 8r1, r2, . . . , rn9 , and
are required to find a point on the circle that has maximum overlap. That is, we
are required to determine a, not necessarily unique, point q that has a maxi-
mum number of arcs that overlap it. Suppose that no arc is contained in any
other arc, that no two arcs share a common endpoint, and that the endpoints of
the arcs are given completely sorted in clockwise order. Further, suppose that
the tail point of an arc only appears following the head of its arc. Give efficient
algorithms to solve this problem on the following architectures. In addition,
discuss the time-, space-, and cost complexity.

 a. RAM

 b. PRAM

 c. Mesh

 17. Give an efficient algorithm to compute the parallel prefix of n values, initially
distributed one per processor in the base of a pyramid computer. Discuss the
time- and cost-complexity of your algorithm. You may assume processors in
the base mesh are in shuffled row major order, with data distributed
accordingly.

C8208_ch09.indd 248C8208_ch09.indd 248 11/16/12 11:59 AM11/16/12 11:59 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Exercises 249

 18. Show that the expected time Θ(N log N + (d(d + 1)/2) + dN) of Wagar’s
Hyperquicksort algorithm achieves the ideal Tpar(n) = Θ(Tseq(n)/q) for a coarse
grained hypercube. Recall q = 2d is the number of processors, N = n/q = n/2d
is the initial number of data items in each processor, and in the coarse-grained
model we assume q2 ≤ n.

 19. Suppose a foundation wishes to award scholarships to the students who score
in the top 5% of applicants according to their scores on a competitive exam.
Devise an efficient RAM algorithm, that does not sort the data, to determine
which students receive the awards.

C8208_ch09.indd 249C8208_ch09.indd 249 11/16/12 11:59 AM11/16/12 11:59 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Convex Hull

Smallest Enclosing Box

All-Nearest Neighbor Problem

Line Intersection Problems

Summary

Chapter Notes

Exercises

10
Computational
Geometry

Background Photo Credit © Spectral-Design / Shutterstock
All Images used within the chapter are © 2013 Cengage Learning

C8208_ch10.indd 250C8208_ch10.indd 250 11/15/12 9:34 AM11/15/12 9:34 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The field of computational geometry focuses on the design, analysis, and imple-
mentation of efficient algorithms to solve problems involving geometric objects,

including points, lines, and polygons. Problems in computational geometry are derived
from a variety of areas, including computer graphics, computer-aided design and
manu facturing, visualization, robotics, and geographic information systems, to name a
few. Fundamental problems in computational geometry involve relationships among
points, line segment intersection, proximity of objects, shortest paths, the convex hull,
and the Voronoi Diagram, to name a few.

In fact, in Chapter 7, “Parallel Prefix,” we presented a solution to dominance, a
fundamental problem in computational geometry. In this chapter, we consider addi-
tional problems from this important and interesting field. Note that many of the prob-
lems in this chapter were chosen so that we could continue our exploration of the
divide-and-conquer solution strategy.

C8208_ch10.indd 251C8208_ch10.indd 251 11/15/12 9:34 AM11/15/12 9:34 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

252 Chapter 10 Computational Geometry

Convex Hull

The first problem we consider is that of determining the convex hull of a set of
points in the plane. The convex hull is an important geometric structure that has
been extensively studied. The convex hull of an object can be used to solve prob-
lems in numerous fields, including image processing, feature extraction, layout
and design, molecular biology, and geographic information systems. Further, the
convex hull of a set S of points often gives a good approximation of S, while pro-
viding a significant reduction in the volume of data used to represent or approxi-
mate S. Finally, the convex hull of a set S is often used as an intermediate step in
order to obtain additional geometrical information about S.

Definitions: A set of planar points R is convex if and only if for every pair of
points x, y ∈ R, the line segment xy is contained in R (see Figure 10-1). Let S be
a set of n points in the plane. The convex hull of S is defined to be the smallest
convex polygon P containing all n points of S. A solution to the convex hull
problem consists of determining an ordered list of points of S that define the
boundary of the convex hull of S. This ordered list of points is referred to as
hull(S). Each point in hull(S) is called an extreme point of the convex hull and
a pair of adjacent extreme points is referred to as an edge of the convex hull
(see Figure 10-2), or a hull edge, as appropriate.

FIGURE 10-1 Examples of convex and non-convex regions. The regions in
(a) are convex. The regions in (b) are not convex, as the line segments uv
and xy are not contained in their respective regions.

(a)

(b)

u
v

y

x

C8208_ch10.indd 252C8208_ch10.indd 252 11/15/12 9:34 AM11/15/12 9:34 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Convex Hull 253

The reader may wish to consider an intuitive construction of the convex hull.
Suppose that each of the planar points in S is represented as a headless nail perpen-
dicular to and sticking out of a wooden board. Now, take a sufficiently elastic rub-
ber band and stretch it to its maximum in all directions. Lower the rubber band
over the nails so that all the nails are enclosed within the rubber band. Finally,
release the rubber band so that it is restricted from collapsing only by the nails in S
that it touches. The rubber band can be thought of as forming a polygon. This poly-
gon P, along with its interior, represents the convex hull of S. The nails that cause
the rubber band to change direction are the extreme points of the convex hull. Note
that there may be some nails that are touched that do not cause the rubber band
to change direction if they are in between two nails that do force a change of
 direction. Finally, the adjacent extreme points of P are defined as the edges of the
convex hull.

Notice that a solution to the convex hull problem requires presenting a set of
points in a predefined order. Therefore, we first consider the relationship between
the convex hull problem and sorting.

Theorem: Sorting is linear-time transformable to solving the convex hull prob-
lem. That is, in Θ(n) time, we can transform the problem of sorting n real numbers
to the problem of finding the convex hull of n points in the Euclidean plane.

Proof: Without loss of generality, suppose we are given a set of n unique real
numbers, X = {x1, . . . , xn}. Then a convex hull algorithm can be used to sort the
points in X with only linear overhead, as follows. Corresponding to each number xi
is the point pi = (xi, xi

2). Notice that these n points all lie on the parabola y = x2.

FIGURE 10-2 The convex hull. The set S of n points in the plane is represented
by circles, some of which are black and some of which are gray. The extreme
points of S are represented by the gray points. The set of such extreme points
is denoted by hull(S). Each pair of adjacent extreme points represents an
edge of the convex hull.

C8208_ch10.indd 253C8208_ch10.indd 253 11/15/12 9:34 AM11/15/12 9:34 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

254 Chapter 10 Computational Geometry

The convex hull of this set consists of a list of all the distinct points pi sorted by
x-coordinate.

In the more general case of the problem, there might be duplicate entries in X.
That is, suppose that for some i and j, pi = pj. Then at most one of these will
appear in the listing of members of hull(X). We can modify the algorithm given for
unique data items so that every unique representative p ∈ hull(X) can keep track
of the number of times that p appears in X. One Θ(n)-time pass through the list
representing hull(X) will enable us to read off the values of the xi in order.

Further, if the values being sorted belong to larger records, then instead of
keeping track of the number of occurrences of duplicated values, the representative
of a value can maintain a list of records with the same value. This would not change
the asymptotic running time of the algorithm.

Implications of Theorem: Based on this theorem, we know the convex hull
problem cannot be solved asymptotically faster than we can sort a set of points
presented in arbitrary order. So, given an arbitrary set of n points in the Euclidean
plane, solving the convex hull problem requires Ω(n log n) time on a RAM.

Graham’s Scan

In this section, we present a traditional sequential solution to the convex hull
 problem, known as Graham’s Scan, which was developed by Ron Graham in 1972.
The reader may notice that this algorithm is dominated by sort and scan operations
and does not rely on a divide-and-conquer solution strategy. The Graham Scan
procedure is quite simple and is presented for completeness. A description follows
(see Figure 10-3).

FIGURE 10-3 Graham’s Scan is a technique for determining the convex hull of a set
of points. The lowest point is chosen as point 0 and the remaining points are sorted
into counterclockwise order with respect to the angles they make to a horizontal
line through point 0. Graham’s Scan examines the points in the order listed.

10

9 8

6

7

4

5

3

1
2

0

C8208_ch10.indd 254C8208_ch10.indd 254 11/15/12 9:34 AM11/15/12 9:34 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Convex Hull 255

 1. Select the lowermost point in S and label this point 0. If there is more than one
lowermost point in S, choose the leftmost such point to label 0.

 2. Sort the remaining n − 1 points of S by angle in [0, π) with respect to the ori-
gin, i.e., point 0. Specifically, do the following.

 a. For each of the points p = (x, y) ∈ S other than the point (x0, y0) marked as
point 0, compute the associated angle φ by

φ = cos−1
(x − x0)

2(x − x0)2 + (y − y0)2
.

 b. Sort S \{(x0, y0)} by the angles computed in the previous step.

 c. For any angle that includes multiple points, remove all duplicates, retaining
only the point at the maximum distance from point 0. Without loss of gener-
ality, we will proceed under the assumption that the set S has n distinct points.

 3. Now consider the points [1, . . . , n − 1] in sequence. We build the convex hull
up in an iterative fashion. At the ith iteration, we consider point S(i). For i = 1,
we have point S(1) initially considered an “active point,” i.e., it is an extreme
point of the two element set S(0, . . . ,1). For 1 < i < n, we proceed as follows.
Assume the active points prior to the i th iteration are S(0), S(j1), . . . , S(jk),
where 0 < j1 < . . .< jk < i.

 a. Suppose that the path from S(jk−1) to S(jk) to S(i) turns toward the left at
S(jk) in order to reach S(i), as shown in Figure 10-4. Then the point S(i) is
an extreme point of the convex hull with respect to the set of points
S(0, . . . , i), and it remains active. Further, all of the currently active points in
S(0, . . . , i − 1) remain active. That is, those points that were extreme points
of S(0, . . . , i − 1) will remain extreme points of S(0, . . . , i).

FIGURE 10-4 A path from
S(jk−1) to S(jk) to S(i) that
makes a left turn at S(jk).

S(i)

S(jk)

S(jk�1)

 b. Suppose that the path from S(jk−1) to S(jk) to S(i) turns toward the right at
S(jk) in order to reach S(i), as shown in Figure 10-5. Then the point S(i) is
an extreme point of the convex hull with respect to the set of points
S(0, . . . , i), and it remains active. However, we now know that some of the

C8208_ch10.indd 255C8208_ch10.indd 255 11/15/12 9:34 AM11/15/12 9:34 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

256 Chapter 10 Computational Geometry

currently active points in S(0, . . . , i − 1) are not extreme points in S(0, . . . , i)
and must be eliminated from consideration as extreme points. This elimi-
nation is performed by working backwards through the ordered list of cur-
rently active points and eliminating each point that continues to cause
point S(i) to be reached by a right turn with respect to the currently active
points in S(0, . . . , i − 1). In fact, we only need work backwards through the
ordered list of currently active points until we reach an active point that is
not eliminated.

 c. Suppose that S(jk−1), S(jk), and S(i) are collinear. Then the ordering of the
points implies that the path from S(jk−1) to S(jk) to S(i) does not turn at
S(jk) in order to reach S(i). Therefore, S(jk) can be eliminated since it can-
not be an extreme point in S(0, . . . ,i). (See Figure 10-6.)

FIGURE 10-5 A path from
S(jk−1) to S(jk) to S(i) that
makes a right turn at S(jk).

S(i)

S(jk)

S(jk�1)

FIGURE 10-6 A path from S(jk−1) to
S(jk) to S(i) that is straight. That is,
the three points are collinear.

S(i)

S(jk)

S(jk�1)

Consider the example presented earlier in Figure 10-3. We are required to enu-
merate the convex hull of S, a set consisting of 11 points. Details of the algorithm,
as applied to this example, are as follows.

 a. Scan the list of points in order to determine the lowest point. Label this lowest
point 0. Note that if there is more than one lowest point, choose the leftmost
one.

 b. Sort the remaining n − 1 points by angle with respect to a horizontal line
through point 0. The points are now ordered in counterclockwise fashion
with respect to point 0, as shown in Figure 10-3. Initially, all n points are can-
didates as extreme points of hull(S).

 c. The point labeled 0 must be an extreme point of the convex hull, as it is the
lowest point in the set S. We proceed to visit successive points in order, apply-
ing the “right-turn test” described in the algorithm given above.

 d. The first stop on our tour is point number 1, which is accepted since points 0
and 1 form a convex set.

C8208_ch10.indd 256C8208_ch10.indd 256 11/15/12 9:34 AM11/15/12 9:34 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Convex Hull 257

 e. Now, consider point number 2. Notice that the turn from point 0 to 1 to 2 is a
left turn. Therefore, points 0, 1, and 2 are extreme points with respect to
S(0, . . . , 2).

 f . Now, consider point number 3. Notice that the turn from point 1 to 2 to 3 is a
right turn. Therefore, we begin to work backwards from the preceding point.
That is, point number 2 must be eliminated. Next, consider the turn from
point 0 to 1 to 3. This is a left turn. Therefore, point number 1 remains, and
this backward scan to eliminate points is complete. So points 0, 1, and 3 are
the extreme points representing the convex hull of S(0, . . . 3).

 g. Now, consider point number 4. Notice that the turn from point 1 to 3 to 4 is a
left turn. Therefore, no points are eliminated, and we know that points 0, 1, 3,
and 4 are extreme points of S(0, . . . , 4).

 h. Now, consider point number 5. Notice that the turn from point 3 to 4 to 5 is a
right turn. Therefore, we begin to work backwards from the preceding point.
That is, point number 4 is eliminated. Next, consider the turn from point 1 to
3 to 5. Notice that this is a left turn. Therefore, the points 0, 1, 3, and 5 are the
extreme points representing the convex hull of S(0, . . . , 5).

 i. Now, consider point number 6. Notice that the turn from point 3 to 5 to 6 is a
right turn. Therefore, we begin to work backwards from the preceding point.
That is, point number 5 is eliminated. Next, consider the turn from point 1 to
3 to 6. This is a left turn. Therefore, the points 0, 1, 3, and 6 are the extreme
points representing the convex hull of S(0, . . . , 6).

 j. Now, consider point number 7. Notice that the turn from point 3 to 6 to 7 is a
left turn. Therefore, no points are eliminated, and we know that points 0, 1, 3,
6, and 7 are extreme points of S(0, . . . , 7).

 k. Now, consider point number 8. Notice that the turn from 6 to 7 to 8 is a right
turn. Therefore, we begin to work backwards from the preceding point. That
is, point number 7 is eliminated. Now consider the turn from point 3 to 6 to 8.
This is a left turn. Therefore, the points 0, 1, 3, 6, and 8 are the extreme points
representing the convex hull of S(0, . . . , 8).

 l. Now, consider point number 9. Notice that the turn from point 6 to 8 to 9 is a
right turn. Therefore, we begin to work backwards from the preceding point.
That is, point number 8 is eliminated. Now consider the turn from point 3 to
6 to 9. This is a left turn. Therefore, the points 0, 1, 3, 6, and 9 are the extreme
points representing the convex hull of S(0, . . . , 9).

m. Now, consider point number 10. Notice that the turn from point 6 to 9 to 10 is a
left turn. Therefore, no points are eliminated, and we know that points 0, 1, 3, 6,
9, and 10 are extreme points of S(0, . . . , 10). The solution is now complete.

Notice that where we discuss a “right turn” or “left turn” above, these can be
determined computationally in Θ(1) time. Specifically, given line segments xy and

C8208_ch10.indd 257C8208_ch10.indd 257 11/15/12 9:34 AM11/15/12 9:34 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

258 Chapter 10 Computational Geometry

yz in the Euclidean plane, the following cases provide the necessary information
to determine the relationship between xy and yz.

 1. If xy and yz are both vertical or have the same slopes, then there is no turn from
x to y to z as these points are collinear.

 2. If xy and yz both have positive slopes and the slope of xy is greater than the
slope of yz, then the turn from x to y to z is to the right.

 3. If xy and yz both have positive slopes and the slope of xy is less than the slope
of yz, then the turn from x to y to z is to the left.

 4. If xy is vertical and yz has a positive slope, then the turn from x to y to z is to
the right.

 5. If xy has a positive slope or is vertical and yz has a negative slope, then the
turn from x to y to z is to the left.

 6. If xy has a negative slope and yz is vertical or has a positive slope, then the
turn from x to y to z is to the right.

 7. If xy and yz both have negative slopes and the slope of xy is greater than the
slope of yz, then the turn from x to y to z is to the right.

 8. If xy and yz both have negative slopes and the slope of xy is less than the slope
of yz, then the turn from x to y to z is to the left.

Analysis on a RAM
Let’s consider the running time and space requirements of Graham’s Scan on a
RAM. The first step of the algorithm consists of determining point 0, the leftmost-
lowest point in the set S. That is, we choose a lowest point, and if there are multiple
points in S with the minimum y-coordinate, the one we select is the leftmost.
Assuming that S contains n points, the leftmost-lowest point can be determined in
Θ(n) time by a simple scan through the data.

In Θ(n) time, the remaining n − 1 points of S can then have their angles com-
puted with respect to a horizontal line through point 0. These n − 1 points can then
be sorted with respect to these angles in Θ(n log n) time.

Next, the algorithm considers the points in order and makes decisions about
eliminating points. Notice that each time a new point i is encountered during the
scan, it will be an extreme point of S(0, . . . , i). This is due to the fact that we are
traversing the points in order according to their angles with respect to S(0), and we
have eliminated, at Step 3c) above, all but one member of any set in
S \{S(0)} = {s ∈ S 0 s ≠ S(0)} that has the same angle with S(0). Each time a new
point is visited, Θ(1) work is necessary in order to

 1. include the new point in the data structure if it is active, and

 2. stop any backwards search that might arise.

The remainder of the time spent in the tour is accounted for when consider-
ing the total number of points that can be eliminated, since with a judicious

C8208_ch10.indd 258C8208_ch10.indd 258 11/15/12 9:35 AM11/15/12 9:35 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Convex Hull 259

choice of data structures, no point is ever considered once it has been eliminated.
It is important to consider the analysis from a global perspective. Since no point
is ever eliminated more than once, the total time required for the loop in Step 3
is Θ(n), though the analysis is a bit different than some of the straightforward
deterministic analyses presented earlier in the book. Therefore, the running time
of Graham’s Scan on a RAM is a worst-case optimal Θ(n log n), since the run-
ning time is dominated by the sort performed in Step 2.

Next, we consider the space required in addition to that which is necessary in
order to maintain the initial set of points. Notice that this algorithm does not rely
on recursion, so we need not worry about the system stack. It does, however,
require a separate data structure that in the worst case might require a copy of
every point. That is, it is possible to construct situations where the number of
extreme points is Θ(n), e.g., when the n points approximate a circle. Therefore,
if an additional stack or array is used, the additional space will be Θ(n). However,
if one maintains the points in a pointer-based data structure, it is possible to avoid
making copies of the points. Of course, the penalty one pays for this is the addi-
tional Θ(n) pointers.

Parallel Implementation
Consider parallel implementations of Graham’s Scan. Steps 1 and 2 require com-
puting a semigroup operation and sorting the data. These steps can be performed
efficiently on most parallel models. However, Step 3 does not appear easily ame-
nable to a parallel implementation. One might try to remove concave regions in
parallel and hope that, reminiscent of our pointer jumping algorithms, the number
of such parallel removals will be polylogarithmic in the number of points. However,
consider the situation where the first n − 1 points form a convex set, but when the
last point is added to this set, then Θ(n) points must be removed. It is not clear that
such a situation can be easily parallelized.

Jarvis’ March

Another important sequential algorithm for solving the convex hull problem was
developed in 1973 by R.A. Jarvis. This algorithm, which is referred to as Jarvis’
March, works by a package wrapping technique. To illustrate this technique, con-
sider a piece of string with one end fixed at the lowest point, which we again refer
to as point number 0. Next, wrap the string around the nails representing the
points in a counterclockwise fashion. This can be done by iteratively adding the
point with the least polar angle with respect to a horizontal line through the most
recently added point. Since all the remaining points are considered at each itera-
tion, the total running time of this algorithm is O(nh), where h is the number of
extreme points on hull(S). Therefore, when the number of extreme points is
o(log n), Jarvis’ March is asymptotically superior to Graham’s Scan in terms of
running time.

C8208_ch10.indd 259C8208_ch10.indd 259 11/15/12 9:35 AM11/15/12 9:35 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

260 Chapter 10 Computational Geometry

Divide-and-Conquer Solutions to the Convex Hull Problem

In this section, we focus on divide-and-conquer solutions to the convex hull prob-
lem. Initially, we present a generic divide-and-conquer solution. The analysis is
then presented based on an implementation for the RAM and mesh. At the conclu-
sion of this section, we present a divide-and-conquer algorithm, complete with
analysis, targeted at the PRAM.

Generic Divide-and-Conquer Solution to the Convex Hull Problem
Assume that we are required to enumerate the extreme points of a set S of n planar
points. We will enumerate the points so that the rightmost point is labeled 1, where
in the case of ties, the lowest of the rightmost points is labeled 1. At the conclusion
of the algorithm, the numbering of the extreme points will be given in counter-
clockwise fashion, starting with a rightmost point. Notice that for algorithmic con-
venience and in order to remain consistent with the literature, the first enumerated
extreme point determined by this algorithm differs in position from the first enu-
merated extreme point derived from Graham’s Scan or Jarvis’ March, where we
used the leftmost-lowest point. A generic divide-and-conquer algorithm to
 determine the extreme points of the convex hull of a set of n planar points follows.

 1. If n = 2, then return. In this case, both of the points are extreme points of the
given set. If n = 1, then return. In this case, the point is an extreme point of the
given set. If n > 2, then we continue with Step 2.

 2. Divide the n points by x-coordinate into two sets, A and B, each of size approx-
imately n/2. The division of points is done so that all points in A are to the left
of all points in B. That is, A is linearly separable from B by a vertical line (see
Figure 10-7).

 3. Recursively compute hull(A) and hull(B). See Figure 10-8.

 4. Stitch hull(A) and hull(B) together to determine hull(S). This is done as fol-
lows (see Figure 10-9).

a. Find the upper and lower common tangent lines, which are often referred to
as the lines of support, between hull(A) and hull(B).

b. Discard the points inside the quadrilateral formed by the four points that
determine these two lines of support.

c. Renumber the extreme points so that they remain ordered with respect to
the defined enumeration scheme. This is necessary since the algorithm is
recursive in nature.

Notice that Step 2 requires us to divide the input points into disjoint sets A and
B in such a fashion that

• every point of A is to the left of every point of B, and

• both A and B have “approximately” n/2 members.

C8208_ch10.indd 260C8208_ch10.indd 260 11/15/12 9:35 AM11/15/12 9:35 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Convex Hull 261

FIGURE 10-7 A set of n planar points evenly divided into two sets A
and B by x-coordinate. All points in A lie to the left of every point in B.

A B

FIGURE 10-8 An illustration of the situation after hull(A) and hull(B)
have been determined from input shown in Figure 10-7.

A B

FIGURE 10-9 The stitch step. In order to construct hull(S) from hull(A)
and hull(B), the upper common tangent line and lower common
 tangent line between hull(A) and hull(B) are determined.

A B

C8208_ch10.indd 261C8208_ch10.indd 261 11/15/12 9:35 AM11/15/12 9:35 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

262 Chapter 10 Computational Geometry

Unfortunately, if we are overly strict in our interpretation of “approximately,”
these requirements might not be met. Such a situation might occur when the
median x-coordinate is shared by a large percentage of the input points. For exam-
ple, suppose five of 100 input points have x-coordinate less than 0, 60 input points
have x-coordinate equal to 0, and 35 input points have x-coordinate greater than 0.
The requirement that every point of A is to the left of every point of B results in
either 0A 0 = 5 and 0B 0 = 95, or 0A 0 = 65 and 0B 0 = 35. This is not really a problem
since the recursion will quickly rectify the imbalance due to the fact that at most
two points with the same x-coordinate can be extreme points of a convex hull.
Thus, when we determine the vertical line of separation between A and B, we can
arbitrarily assign any input points that fall on this line to A.

This algorithm is a fairly straightforward adaptation of divide-and-conquer.
An interesting step is that of determining the lines of support. Note that lines

of support are not necessarily determined by easily identified points. For example,
the lines of support are not necessarily determined by the topmost and bottommost
points in the two convex hulls, as illustrated in Figure 10-10. Considerable thought
is required in order to construct an efficient algorithm to determine these four
points and hence the two tangent lines.

FIGURE 10-10 An illustration of the common tangent lines between linearly
 separable convex hulls. The upper common tangent line between hull(A) and
hull(B) does not necessarily include the topmost extreme points in either set.
A similar remark can be made about the lower common tangent line.

Lower
common
tangent
line

Upper common tangent
line

Since the convex hulls of A and B are linearly separable by a vertical line, there
are some restrictions on possibilities of points that determine the upper tangent line.
For example, consider al, a leftmost point of A and ar, a rightmost point of A.
Similarly, consider bl, a leftmost point of B, and br, a rightmost point of B. It is then
easy to show that the upper common tangent line is determined by an extreme point
of hull(A) on or above alar, where the edges of hull(A) on or above alar are referred

C8208_ch10.indd 262C8208_ch10.indd 262 11/15/12 9:35 AM11/15/12 9:35 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Convex Hull 263

to as the upper envelope of A, and an extreme point of hull(B) on or above blbr,
the upper envelope of B. Similarly, the lower common tangent line is determined
by an extreme point of hull(A) on or below al ar and an extreme point of hull(B) on
or below blbr. Therefore, without loss of generality, we focus on determining the
upper common tangent line, and note that determining the lower common tangent
line is similar.

The extreme point p ∈ hull(A) that determines the upper common tangent line
has the property that if x and y are, respectively, its left and right neighbors among
the extreme points of hull(A), where one or both of x and y may not exist, then
every extreme point of hull(B) lies on or below gxp , while at least one extreme
point of hull(B) lies on or above gpy (see Figure 10-11). Notice that the mirror
image scenario is valid in terms of identifying the right common tangent point,
that is, the upper common tangent point in hull(B).

FIGURE 10-11 Constructing the upper common tangent lines. The upper common
tangent line includes the extreme point p ∈ hull(A) with the following properties.
Let the next extreme point in counterclockwise order be called x and the previous
extreme point in counterclockwise order be called y. Then every extreme point of
hull(B) lies on or below gxp while at least one extreme point of hull(B) lies on or
above gpy .

Upper common tangent line

A

x
p

y

B

Convex Hull Algorithm on a RAM
In this section, we consider the implementation details and running time of the
divide-and-conquer algorithm just presented for the RAM. In order to partition the
points with respect to x-coordinates, a Θ(n log n) time sorting procedure can be
used. In fact, it is important to notice that this single sort will serve to handle the
partitioning that is required at every level of the recursion. That is, sorting is only
performed once for partitioning, not at every level of recursion. Now let’s consider
the stitch step. The necessary points can be identified in Θ(log n) time by a clever

C8208_ch10.indd 263C8208_ch10.indd 263 11/15/12 9:35 AM11/15/12 9:35 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

264 Chapter 10 Computational Geometry

“teeter-totter” procedure. Basically, the procedure performs a type of binary search
in which endpoints of a line segment, one from hull(A) and the other from hull(B),
are adjusted in a binary search-type iterative fashion. Once the extreme points are
identified, then with an appropriate choice of data structures, the points can be
reordered and renumbered in Θ(n) time. This eliminates the points inside the
quadrilateral determined by the lines of support. Therefore, the running time of
the algorithm is given by T(n) = Θ(n log n) + R(n), where Θ(n log n) is the time
required for the initial sort, and R(n) is the time required for the recursive proce-
dure. Notice that R(n) = 2R(n/2) + Θ(n), where Θ(n) time is required to stitch two
convex hulls. The latter is because Θ(log n) time is required to identify the tangent
line, and Θ(n) time is required to reorder the points. Therefore, R(n) = Θ(n log n),
and it follows that the running time of the entire algorithm is Θ(n log n), which is
asymptotically optimal.

Convex Hull Algorithm on a Mesh
In this section, we discuss a mesh implementation and provide an analysis of the
divide-and-conquer solution to the convex hull problem. Specifically, given n
points, arbitrarily distributed one point per processor on a mesh of size n, we will
show that the convex hull of the set S of planar points can be determined in optimal
Θ(n1/2) time.

The basic algorithm follows. First, sort the points into shuffled row-major
order. This results in the first n/4 points, with respect to x-coordinate ordering,
being mapped to the northwest quadrant, the next n/4 points being mapped to the
northeast quadrant, and so forth, as shown in Figure 10-12. Notice that with this
indexing scheme, the partitioning holds recursively within each quadrant.

FIGURE 10-12 Dividing the n planar points in S so that
each of the four linearly separable sets of points is stored in
a different quadrant of the mesh. Notice that the vertical
slabs of points in the plane need not cover the same area of
space. They simply must contain the same number of points.

S1 S2

S3 S4

S1 S2 S3 S4

C8208_ch10.indd 264C8208_ch10.indd 264 11/15/12 9:35 AM11/15/12 9:35 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Convex Hull 265

Since this algorithm is recursive, we now need only discuss the binary search
routine. Notice that due to the mesh environment and the way in which we have
partitioned the data, we will perform simultaneous binary searches between S1 and
S2, as well as between S3 and S4. We will then perform a binary search between
S1 ∪ S2 and S3 ∪ S4. Therefore, we only need to describe the binary search between
S1 and S2, with the others being similar. In fact, we will only describe the binary
search that will determine the upper common tangent line between S1 and S2.

Notice that it takes Θ(n1/2) time to broadcast a query from S1 to S2 and then
report the result back to all processors in S1. So, in Θ(n1/2) time, we can determine
whether or not some line from S1 goes above all of the points in S2 or whether there
is at least one point in S2 that is above the query line. If we continue performing
this binary search in a natural way, the running time of this convex hull algorithm
will be Θ(n1/2 log n).

However, if we first perform a query from S1 to S2, and then one from S2 to S1,
notice that half of the data from S1 and half the data from S2 can be logically elimi-
nated. The reader should note that while logically eliminating points during this
back-and-forth binary search, reducing the total number of points under consider-
ation by at least half during each iteration, the points representing the common tan-
gent line segments remain in the active sets.

So, if the logically active data is compressed into a smaller submesh after
the binary search, then each iteration of the binary search, including the com-
pression, will take time proportional to the square root of the number of items
remaining. Therefore, such a dual binary search with compression will run in
B(n) = B(n/2) + Θ(n1/2) = Θ(n1/2) time. Hence, the total running time of the divide-
and-conquer-based binary search on a mesh of size n is the Θ(n1/2) time for the
initial sort plus

T(n) = T(n/4) + B(n) = T(n/4) + Θ(n1/2) = Θ(n1/2)

time for the remainder of the algorithm. Therefore, the total running time to deter-
mine the convex hull on a mesh of size n is Θ(n1/2), which is optimal for this
architecture.

Convex Hull Algorithm on a PRAM
In this section, we present a divide-and-conquer algorithm to solve the convex hull
problem on a PRAM. The algorithm follows the spirit of the divide-and-conquer
algorithm that we have presented. However, the individual steps have been opti-
mized for the PRAM. The algorithm follows.

 1. Partition the set S of n planar points into n1/2 sets, denoted R1, R2, . . . , Rn1/2. The
partitioning is done so that all points in region Ri are to the left of all points in
region Ri+1 for 1 ≤ i ≤ n1/2 − 1 (see Figure 10-13). This partitioning is most sim-
ply accomplished by sorting, as previously described.

C8208_ch10.indd 265C8208_ch10.indd 265 11/15/12 9:35 AM11/15/12 9:35 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

266 Chapter 10 Computational Geometry

 2. Recursively, and in parallel, solve the convex hull problem for every Ri,
i ∈ {1, 2, . . . , n1/2}. At this point, hull(Ri) is now known for every Ri.

 3. Stitch the n1/2 convex hulls together in order to determine hull(S). This is done
by the combine routine that we define below.

FIGURE 10-13 An illustration of partitioning the set S of
n planar points into n1/2 linearly separable sets, each
with n1/2 points. The sets are denoted as R1, R2, . . . , Rn1/2.

R1 R2 R4 R5R3

Combine
The input to the combine routine is the set of convex hulls, hull(R1), hull(R2), . . . ,
hull(Rn1/2), each represented by O(n1/2) extreme points. Notice that hull(R1) ≤
hull(R2) ≤ . . . ≤ hull(Rn1/2), where we use “A ≤ B” to mean that “all points in A are
to the left of all points in B.” The combine routine will produce hull(S). As we have
done previously, we will only consider the upper envelopes of hull(Ri), 1 ≤ i ≤ n1/2,
and we will describe an algorithm to merge these n1/2 upper envelopes in order to
produce the upper envelope of hull(S). The procedure for determining the lower
envelope is analogous. The algorithm follows.

 1. Assign n1/2 processors to each set Ri of points. For each Ri, determine the
n1/2 − 1 tangent lines between hull(Ri) and every distinct hull(Rj). Notice that a
total of n1/2 × (n1/2 − 1) = O(n) such upper tangent lines are determined. These
tangent lines are computed as follows.

a. Let Ti, j be used to denote the upper common tangent line between hull(Ri)
and hull(Rj), i ≠ j.

b. For each Ri, use the kth processor that was assigned to it to determine the
upper tangent line between hull(Ri) and hull(Rk), i ≠ k. Each of these upper
tangent lines can be determined by a single processor in O(log n) time by
invoking the “teeter-totter” algorithm outlined above. In fact, all Θ(n) tan-
gent lines can be determined simultaneously in O(log n) time on a CREW
PRAM.

 2. Let Vi be the tangent line with the smallest slope in {Ti,1, Ti,2, . . . , Ti,i−1}. That
is, with respect to Ri, Vi represents the tangent line of minimum slope that
“comes from the left.” Let vi be the point of contact of Vi with hull(Ri).

C8208_ch10.indd 266C8208_ch10.indd 266 11/15/12 9:35 AM11/15/12 9:35 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Convex Hull 267

 3. Let Wi be the tangent line with largest slope in {Ti,i+1, Ti,i+2, . . . , Ti,n1/2}. That is,
with respect to Ri, Wi represents the tangent line of maximum slope that
“comes from the right.” Let wi be the point of contact of Wi with hull(Ri).

 4. Notice that both Vi and Wi can be found in O(log n) time by the n1/2 processors
assigned to Ri. This only requires that the n1/2 processors perform a minimum
or maximum operation, respectively.

 5. Since neither Vi nor Wi can be vertical, they intersect and form an angle, with
the interior point upward. If this angle is ≤180°, or if wi is to the left of vi, then
none of the points of the upper envelope of hull(Ri) belong to hull(S). Other-
wise, all points from vi to wi, inclusive, belong to hull(S) (see Figures 10-14,
10-15, 10-16, and 10-17). Notice that this determination is performed in Θ(1)
time.

 6. Finally, compress all of the extreme points of hull(S) into a compact region in
memory in O(log n) time by performing parallel prefix computations.

The running time of the combine routine is dominated by the time required to
determine the common tangent lines and the time required to organize the final
results. Therefore, the running time for the combine routine is O(log n).

FIGURE 10-14 Suppose that vi is to the left of wi and that the angle above
the intersection of their tangents exceeds 180°. Then all of the extreme
points of Ri between (and including) vi and wi are extreme points of S.

vi wi

Ri

vi = wi

Ri

FIGURE 10-15 Suppose that vi = wi and that the angle above the intersection
of their tangents exceeds 180°. Then vi is an extreme point of S.

C8208_ch10.indd 267C8208_ch10.indd 267 11/15/12 9:35 AM11/15/12 9:35 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

268 Chapter 10 Computational Geometry

FIGURE 10-17 Suppose that wi is to the left of vi. Then no extreme point
on the upper envelope of Ri is an extreme point of S.

vi

 wi

Ri

vi = wi

Ri

FIGURE 10-16 Suppose that vi = wi and that the angle above the intersection
of their tangents does not exceed 180°. In this case, no extreme point on the
upper envelope of Ri is an extreme point of S.

PRAM Analysis
While it is beyond the scope of this text, we have mentioned that sorting can be
performed on a PRAM in Θ(log n) time. Therefore, the running time of this con-
vex hull algorithm is given by T(n) = S(n) + R(n), where S(n) = Θ(log n) is the
time required for the initial sort, and R(n) = R(n1/2) + C(n) is the time required for
the recursive part of the algorithm, including the C(n) = O(log n) time combine
routine. Hence, the running time for this convex hull algorithm is Θ(log n). Further,
this results in an optimal total cost of Θ(n log n).

Smallest Enclosing Box

In this section, we consider the problem of determining a smallest enclosing “box”
of a set of points. That is, given a set S of n planar points, determine a, not neces-
sarily unique, minimum-area enclosing rectangle of S. This problem has applica-
tions in layout and design. Since a rectangle is convex, it follows from the definition

C8208_ch10.indd 268C8208_ch10.indd 268 11/15/12 9:35 AM11/15/12 9:35 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Smallest Enclosing Box 269

of convex hull that any enclosing rectangle of S must enclose hull(S). One can
show that for a minimum-area enclosing rectangle, i) each of its edges must inter-
sect an extreme point of hull(S) and ii) one of the edges of the rectangle must be
collinear with a pair of adjacent extreme points of hull(S) (see Figure 10-18).

FIGURE 10-18 A smallest enclosing box of S. A,
not necessarily unique, minimum-area enclosing
rectangle of S includes three edges, each of which
contains an extreme point of hull(S), and one
edge that is collinear with an edge of hull(S).

W

x

x

N

E

A straightforward solution to the smallest enclosing box problem consists of
the following steps.

 1. Identify the extreme points of the set S of n planar points.

 2. Consider every pair of adjacent extreme points in hull(S). For each such pair,
find the three maximum points, as shown in Figure 10-18, and as described
below.

 a. Given a line collinear with hull edge xx', the point E associated with xx' is
the last point of hull(S) encountered as a line perpendicular to xx' passes
through hull(S) from left to right.

 b. The point N associated with hull edge xx' is the last point encountered as a
line parallel to xx', originating at xx', passes through hull(S).

 c. Finally, the point W associated with hull edge xx' is the last point of hull(S)
encountered as a line perpendicular to xx' passes through hull(S) from right
to left.

 3. For every adjacent pair of extreme points, x and x', determine the area of the
minimum enclosing box that has an edge collinear with hull edge xx'.

C8208_ch10.indd 269C8208_ch10.indd 269 11/15/12 9:35 AM11/15/12 9:35 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

270 Chapter 10 Computational Geometry

 4. A smallest enclosing box of S is a box that yields the minimum area over all of
the rectangles just determined. Therefore, identify a box that corresponds to
the minimum area with respect to those values determined in Step 3.

RAM

We have shown that the convex hull of a set S of n planar points can be determined
in Θ(n log n) on a RAM. Further, given m enumerated extreme points, for each
pair of adjacent extreme points, one can determine the other three critical points by
a binary search type of procedure in Θ(log m) time. Therefore, the time required to
determine the m restricted minimum-area rectangles is Θ(m log m). Once these m
rectangles have been determined, a minimum-area rectangle over this set can be
determined in Θ(m) time by a simple scan. Therefore, the running time for the
entire algorithm on a RAM is Θ(n log n + m log m) = Θ(n log n), since m = O(n).

PRAM

Consider the same basic strategy as just presented for the RAM. Notice that the m
restricted minimum-area rectangles can be determined simultaneously in Θ(log m)
time on a PRAM. Further, a semigroup operation can be used to determine the
minimum of these in Θ(log m) time. Therefore, the running time of the entire algo-
rithm, including the time to determine the extreme points of the convex hull, is
Θ(log n + log m) = Θ(log n) on a PRAM.

Mesh

Given a mesh of size n, we have shown how to enumerate the m extreme points of
hull(S) in Θ(n1/2) time. In order to arrive at an asymptotically optimal algorithm
for this architecture, we need to be able to design a Θ(n1/2) time algorithm to gen-
erate the m rectangles. Once we have generated the rectangles, we know that a
straightforward Θ(n1/2) time semigroup operation can be used to identify one of
these of minimum area. So, how do we determine all m minimum-area rectangles
simultaneously in Θ(n1/2) time?

Recall that the extreme points of hull(S) have been enumerated. Each point is
incident on two hull edges. Each such edge has an angle of support that it makes
with hull(S). These angles are all in the range of [0, 2π), where the angle, in
radian measure, is viewed with respect to the points of S (see Figure 10-19).
Consider the situation in which every edge xx' is trying to determine its point N.
This corresponds to the situation in which every edge xx' is searching for the
extreme point of hull(S) that has an angle of support that differs from that of xx'
by π. In order for edge xx' to determine its other two points, E and W, it is simply
searching for points bounded by hull edges with angles of support that differ
from that of xx' by π/2 and 3 π/2, respectively. Therefore, these simultaneous
searches can simply be performed by a fixed number of sort-based routines and
ordered interval broadcasts. In the interest of flow of text, we have not given all

C8208_ch10.indd 270C8208_ch10.indd 270 11/15/12 9:35 AM11/15/12 9:35 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

All-Nearest Neighbor Problem 271

of the details, but it should be clear that these operations are essentially performed
in a straightforward fashion by concurrent read operations. Therefore, the run-
ning time of this algorithm, including the time to identify the extreme points of
hull(S), is Θ(n1/2).

All-Nearest Neighbor Problem

In this section, we consider another fundamental problem in computational geom-
etry. Suppose we have a set S of n planar points and for every point in S we want to
know a, not necessarily unique, nearest neighbor with respect to the other points
in S. That is, we are required to determine for every point p ∈ S, a point p, such
that dist(p, p) is the minimum dist(p, q), p ≠ q, q ∈ S. For this reason, the prob-
lem is often referred to as the all-nearest neighbor problem.

An optimal Θ(n log n)-time algorithm for the RAM typically consists of con-
structing the Voronoi Diagram of S and then traversing this structure. The Voronoi
Diagram of a set of planar points consists of a collection of n convex polygons,
where each such polygon Ci represents the region of 2-dimensional space such that
any point in Ci is closer to pi ∈ S than to any other point in S. The Voronoi Diagram
is a very important structure in computational geometry. While a detailed discus-
sion of the construction of the Voronoi Diagram is beyond the scope of this book,
references to such algorithms are given at the end of the chapter.

In this section, we will concentrate on an interesting divide-and-conquer solu-
tion to the all-nearest neighbor problem for the mesh. Notice that an optimal
Θ(n1/2)-time algorithm on a mesh of size n carries with it a cost of Θ(n3/2). So,
while not cost-optimal, this is significantly better than a brute-force algorithm that
uses Θ(n2) operations to compute distances between all pairs of points.

 FIGURE 10-19 An illustration of angles of support.
The angle of incidence of hull edge EA is π/2, of
AB is 3π/4, of BC is π, and so forth. An angle of
support of extreme point A is in [π/2, 3π/4]. An
angle of support of extreme point B is in [3π/4, π],
 and so forth.

B

E

D

C

A

C8208_ch10.indd 271C8208_ch10.indd 271 11/15/12 9:35 AM11/15/12 9:35 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

272 Chapter 10 Computational Geometry

We consider an algorithm that partitions the points into disjoint sets of points,
solves the problem recursively within each set of points, and then stitches the par-
tial results together in an efficient fashion. We prevent the stitching process from
becoming the dominant step by partitioning in such a way that almost all of the
points within each partition know their final answer after the recursive solution.

We can accomplish this as follows.

 1. Partition the plane into linearly separable vertical slabs and solve the problem
recursively within each vertical slab.

 2. Repartition the plane into linearly separable horizontal slabs and solve the
problem recursively within each horizontal slab.

 3. We can then utilize a theorem from computational geometry that states that
there are no more than a fixed number of points in each rectangle formed by
the intersection of a horizontal and vertical slab that could have a nearest neigh-
bor somewhere other than in its horizontal or vertical slab (see Figure 10-20).

FIGURE 10-20 The nearest neighbor of p is neither in the
same horizontal nor vertical slab as p is.

p

We now give an outline of the algorithm.

 1. Solve the problem recursively in vertical slabs, as follows.

 a. Sort the n points in S by x-coordinate, creating four vertical slabs.

 b. Solve the all-nearest neighbor problem recursively (Steps 1-3) within each
vertical slab.

 2. Solve the problem recursively in horizontal slabs, as follows.

 a. Sort the n points in S by y-coordinate, creating four horizontal slabs.

 b. Solve the all-nearest neighbor problem recursively (Steps 1-3) within each
horizontal slab.

C8208_ch10.indd 272C8208_ch10.indd 272 11/15/12 9:35 AM11/15/12 9:35 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Line Intersection Problems 273

 3. Sort the n points of S with respect to the identity of their boxes. The identity of
a specific box is given as the concatenation of the label of the vertical slab and
the label of the horizontal slab.

 a. For the points in each box, it is important to note that a result from compu-
tational geometry shows that at most two points closest to each corner of
the box could be closer to a point outside the box than to any point found so
far. Notice that there are no more than 8 × 16 = 128 such corner points. In
fact, if we count carefully we notice that the 4 interior rectangles can each
have 8 such points, the 4 corner rectangles can each have only 2 such points,
and the remaining 8 edge-rectangles can each have 4 such points. That is,
the total number of points that could have a closest neighbor outside of its
rectangle is actually 72, though 128 and 72 are both just constants.

 b. Each of these corner points can now be passed through the mesh so that
they can view, and be viewed by, all n points. After this traversal, each of
these corner points will know its nearest neighbor. Hence, the solution will
be complete.

Running Time

The running time of this algorithm on a mesh of size n is given as T(n) =
2T(n/4) + Θ(n1/2). Using the Master Method, we can determine that this recur-
rence has a solution of T(n) = Θ(n1/2 log n), which is within a log n factor of
 optimal for this architecture.

Line Intersection Problems

Suppose we are given a set L of n line segments in the Euclidean plane. The seg-
ments may be arbitrary, or we may have additional knowledge, for example, that
every member of L is either horizontal or vertical. Common line intersection prob-
lems include the following.

 1. Intersection Query: Determine if there is at least one pair of members of L
that intersect.

 2. Intersection Reporting: Find and report all pairs of members of L that
 intersect.

An easy, though perhaps inefficient, method of solving the intersection query
problem is to solve the intersection reporting problem and then observe whether or
not any intersections were reported. We might hope to obtain an asymptotically
more efficient solution to the intersection query problem that does not require us
to solve the intersection reporting problem.

An obvious approach to both problems is based on an examination of each of
the Θ(n2) pairs of members of L. It is easy to see how such an approach yields an
O(n2) time RAM algorithm for the intersection query problem, and a Θ(n2) time

C8208_ch10.indd 273C8208_ch10.indd 273 11/15/12 9:35 AM11/15/12 9:35 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

274 Chapter 10 Computational Geometry

RAM algorithm for the intersection reporting problem. In fact, other solutions are
more efficient.

• Consider the intersection query problem. In Θ(n) time, create two records for
each member of L, one for each endpoint. Let each record have an indicator as to
whether the endpoint is a left or right endpoint, where lower corresponds to right
in the case of a vertical segment. Sort these records into ascending order by the
x-coordinates of their endpoints, using the left/right indicator as the secondary
key, with right < left, and y-coordinates as the tertiary key. Now, perform a plane
sweep operation, which allows us to “sweep the plane” from left to right, main-
taining an ordered data structure T of non-intersecting members of L not yet
eliminated from consideration, as possible members of an intersecting pair.
Assume that T is a data structure, such as a balanced tree, in which insert, retrieve,
and delete operations can be performed in sequential O(log n) time. As we move
the vertical “sweep line” from left to right and encounter a left endpoint of a
member s of L, we insert s into T, then determine whether or not s intersects
either of its at most two neighbors in T. If we find an intersection, we report its
existence and halt. As the sweep line encounters a right endpoint of a member s
of L, we remove s from T, and, as above, determine whether or not s intersects
either of its, at most, 2 neighbors in T. If we find an intersection, we report its
existence and halt. Otherwise, we continue the plane sweep (see Figure 10-21).

FIGURE 10-21 Illustration of a plane sweep operation to solve the intersection
query problem. The line segments are labeled by left endpoint. As a sweep of the
all endpoints is performed from left to right, when a left endpoint is encountered,
the line segment is inserted into the list at the appropriate ordered, i.e., top to
bottom, position, and is tested for intersection with its neighbors in the list. The
currently active ordered list of line segments is shown beneath each endpoint.
When a right endpoint is encountered, an evaluation of an intersection is made
before removing that point from the ordering. Here, when the left endpoint of e is
encountered, the d-e intersection is detected.

a
c

d

b

a a
b

c
a
b

c
b

c
b
d

c
d

c
e
d

e
d

e

e

C8208_ch10.indd 274C8208_ch10.indd 274 11/15/12 9:35 AM11/15/12 9:35 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Line Intersection Problems 275

• Consider the intersection reporting problem. We can construct an algo-
rithm with an output-sensitive running time for the RAM, which is asymptoti-
cally faster under certain conditions than the straightforward Θ(n2) time
required for the brute force algorithm. The term output-sensitive refers to the
fact that the amount of output is a parameter of the running time. That is, if
there are k intersections, a RAM algorithm for this problem can be constructed
to run in O((n + k)log n) time. Thus, if k = o(n2/log n), such an algorithm is
asymptotically faster than one that examines all pairs. Such an algorithm can
be obtained by making minor modifications to the solution above for the inter-
section query problem. The most important change is that instead of halting
upon discovering an intersection, we list the intersection and continue the
plane sweep to the right.

Overlapping Line Segments

In Chapter 7, we examined the following problems.

• The coverage query problem considers the question of whether or not a given
fixed interval [a, b] is covered by the union of an input set of intervals.

• The maximal overlapping point problem determines a point of the real line that
is covered by the largest number of members of an input set of intervals.

Such problems fall within the scope of computational geometry. Another
problem in computational geometry that is concerned with overlapping line seg-
ments is the minimal-cover problem, which can be expressed as follows: Given an
interval [a, b] and a set of n intervals S = 53ai, bi46i=1

n
, find a minimal-membership

subset S ' of S such that [a, b] is contained in the union of the members of S ', if
such a set exists, or report that no such set exists. Another version of this problem
uses a circle instead of an interval for the object to be covered and a set of circular
arcs instead of a set of intervals.

An application of this problem is in minimizing the cost of security. The inter-
val [a, b] might represent a borderline to be guarded, and the members of S might
represent sectors that can be viewed by individual guards. A positive solution to
the problem might represent a minimal-cost solution, including a listing of the
responsibilities of the individual guards, for keeping the entire borderline or perim-
eter under surveillance.

Efficient solutions exist for both the interval and circular versions of these
problems, which are quite similar. For the reader’s convenience, we will consider
the interval version of the problem as some of its steps are easier to state than their
analogs in the circular version of the problem.

We discuss a greedy algorithm, that is, an algorithm marked by steps designed
to reach as far as possible towards a solution. The algorithm is greedy in that it
starts with a member of S that covers a and extends maximally to the right. If no
such member of S exists, then the algorithm terminates and reports that the

C8208_ch10.indd 275C8208_ch10.indd 275 11/15/12 9:35 AM11/15/12 9:35 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

276 Chapter 10 Computational Geometry

requested coverage does not exist. Further, once a member s ∈ S is selected, a
maximal successor for s is determined. That is, a successor is a member of S that
intersects with s and extends maximally to the right. This procedure continues
until either b is covered, which represents a successful outcome, or a successor
cannot be found, which represents an unsuccessful outcome. Thus, a high-level
view of this algorithm is as follows.

• Find a member s ∈ S that covers a and has a maximal right endpoint. If no
such member of S exists, report failure and halt.

• While failure has not been reported and s = [ai, bi] does not cover b, assign to s
a member of S \{s} that has a maximal right endpoint among those members of
S \{s} that contain bi. If no such member of S \{s} exists, report failure and halt.

At the end of these steps, if failure has not been reported, the selected mem-
bers of S form a minimal-cardinality cover of [a, b]. See Figure 10-22, in which
the intervals of S have been raised vertically in the Euclidean plane for clear view-
ing, but should be thought of as all belonging to the same Euclidean line.

The approach outlined above is inherently sequential. However, we can revise
the algorithm so that it can be implemented on a RAM or on a variety of parallel
architectures. Such an architecture-independent algorithm follows.

 1. For each t ∈ S, find its successor, if one exists.

 2. For each t ∈ S, take the union of t and its successor as a chain of at most two
connected intervals. Then take the union of this chain of at most two intervals
and its final line segment’s successor’s chain of at most two intervals to pro-
duce a chain of at most four. Repeat this doubling until the chain starting with
t either does not have a successor chain or covers b.

 3. Use a minimum operation to find a chain that covers [a, b] with a minimal
number of intervals.

FIGURE 10-22 A minimal-cardinality cover of [a, b] consists of line
 segments 3, 4, 6, and 7.

a2 b2

a1 b1 a7 b7

a5 b5

a4 b4

a3 b3 a6 b6

a b

a8 b8

C8208_ch10.indd 276C8208_ch10.indd 276 11/15/12 9:35 AM11/15/12 9:35 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Line Intersection Problems 277

As is so often the case, “find” operations, including those mentioned above,
are typically facilitated by having the data appropriately sorted. It is useful to have
the intervals ordered from left to right. However, since the data consists of inter-
vals rather than single values, some thought must be given to what such an order-
ing means. Our primary concern is to order the intervals in such a way as to enable
an efficient solution to the problem at hand, by enabling us to identify successor
intervals efficiently. The ordering that we use is embedded in the algorithm given
below, which relies on a postfix operation on the ordered intervals in order to
determine maximal overlap of [a, b] with a minimum number of intervals.

a. Sort the interval records by left endpoint, breaking ties in favor of maximal
right endpoints.

b. We observe that if {[ai, bi], [aj, bj]} � S and [ai, bi] � [aj, bj], then any con-
nected chain of members of S of minimal-cardinality among those chains
that start with [ai, bi] and cover [a, b], will have at least as many members as
a connected chain of members of S of minimal-cardinality among those
chains that start with [aj, bj] and cover [a, b]. Therefore, we can remove all
such nonessential intervals [ai, bi] by performing a simple prefix operation
on the ordered set of interval data. Without loss of generality, we will pro-
ceed under the assumption that no remaining member of S is a subset of
another remaining member of S.

c. For each remaining [ai, bi] ∈ S, create two records. The first set of records,
called successor records, consists of two components, namely, the index i of
the interval and the index j of the successor of the interval. For each interval
[ai, bi] ∈ S, we initialize its successor record to (i, i), with the interpretation
that initially every interval is its own successor. Notice that during the proce-
dure, the first component of these records does not change, while the second
component will eventually point to the successor of interval [ai, bi]. The second
set of records, referred to as information records, contains connectivity infor-
mation. The components of the information records include the following.

 • The first two components are the left and right endpoints, respectively, of
the connected union of members of S represented by the record’s chain
of intervals.

 • The third and fourth components represent the indices of the leftmost and
rightmost members of the record’s chain, respectively.

 • The fifth component is the index of the successor to the rightmost interval
in the record’s chain, i.e., the successor to the interval indexed by the fourth
component.

 • The sixth component is the number of members of S in the line segment’s
chain.

 For each record [ai, bi] ∈ S, we initialize an information record to (ai, bi, i, i, i, 1).

C8208_ch10.indd 277C8208_ch10.indd 277 11/15/12 9:35 AM11/15/12 9:35 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

278 Chapter 10 Computational Geometry

d. Sort the information records into ascending order by the second component.

e. In this step, we use the first four components of the information records.
Determine the span of the chain of intervals starting at ai as follows, where ° is
an operation defined as

(ai, bj, i, j) ° (ak, bm, k, m) = e (ai, bm, i, m) if ai ≤ ak ≤ bj < bm;

(ai, bj, i, j) otherwise.

 The result of this operation represents [ai, bj] ∪ [ak, bm], provided these line
segments intersect and [ak, bm] extends [ai, bi] to the right more than does
[aj, bj]. In this case, we can say the result represents [ai, bm], and that [ak, bm] is
the successor of [ai, bj]. Otherwise, the result of this operation is its first fac-
tor, representing [ai, bj]. Note the interval we call the successor of [ai, bj] may
change as the algorithm proceeds. Use a parallel postfix operation with opera-
tion ° to compute, for each information record representing [ai, bi], the transi-
tive closure of ° on all records representing line segment i up through and
including the information record representing line segment n. Since the inter-
vals are ordered by their left endpoints, it follows that the fourth component of
the postfix information record representing line segment [ai, bi] is the index of
the successor of the chain initiated by [ai, bi].

f . For all i ∈ {1, 2, . . . , n}, copy the fourth component of the postfix information
record created in the previous step, representing [ai, bi], to the second compo-
nent of the successor record representing [ai, bi], so that the successor record
for [ai, bi] will have the form (i, si), where si is the index of the successor of
[ai, bi].

g. For all i ∈ {1, 2, . . . , n}, compute the chain of intervals vi obtained by starting
with [ai, bi] and adding successors until either b is covered or we reach an
interval that is its own successor. This can be done by way of a parallel postfix
computation in which we define • as

(ai, bj, i, j, k, c) • (am, bq, m, q, r, s) = e (ai, bq, i, q, r, c + s) if k = m;

(ai, bj, i, j, k, c) otherwise.

h. A minimum operation on 5vi6 i=1
n

, in which we seek the minimal sixth compo-
nent such that the interval determined by the first and second components
contains [a, b], determines whether or not a minimal-cardinality covering of
[a, b] by members of S exists, and, if so, its cardinality. If j is an index such
that vj yields a minimal-cardinality covering of [a, b] by members of S, the
members of S that make up this covering can be listed by a parallel prefix
operation that marks a succession of successors starting with [aj, bj].

C8208_ch10.indd 278C8208_ch10.indd 278 11/15/12 9:35 AM11/15/12 9:35 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter Notes 279

Computational Geometry on NOW, Clusters,
and Grids

Many large-scale applications require the evaluation and/or construction of geo-
metric objects as part of their solution strategy. Many such applications require the
use of large-scale computing systems in order to solve problems of interest. Such
systems include large-scale NOW, clusters, grids, and clouds. Algorithms to solve
problems in computational geometry on such systems typically require the redis-
tribution of data so that data on each node consists of records representing objects
that are in close proximity in space. After such a redistribution of data, the algo-
rithm is typically implemented by solving subproblems within computational
nodes, followed by stitching such results together.

That is, the solutions typically mimic algorithms presented in this and previ-
ous chapters on parallel architectures when considering a cost-effective solution,
i.e., an architecture in which asymptotically fewer processors are utilized than the
number of data to be processed. So, these geometric algorithms are typically of a
hybrid nature. That is, solve the local subproblems in the nodes and then use the
fine-grained communication protocols to stitch such solutions together into a final
result, which is then typically distributed to all of the nodes/processors.

Summary

In this chapter, we consider algorithms for several interesting problems from com-
putational geometry. Problems considered include computation of the convex hull
of a set of planar points, computation of a smallest enclosing box for a set of pla-
nar points, the All-Nearest Neighbor Problem, and several problems concerning
line intersections and overlaps in the Euclidean plane.

Chapter Notes

The focus of this chapter is on efficient sequential and parallel solutions to funda-
mental problems in the field of computational geometry. The reader interested in a
more comprehensive exploration of computational geometry is referred to
Computational Geometry by F.P. Preparata & M.I. Shamos (Springer-Verlag,
1985). In fact, the proof that sorting is linear-time transformable to the convex hull
problem comes from this source. The reader interested in parallel implementations
of solutions to problems in computational geometry is referred to S.G. Akl & K.A.
Lyons’ Parallel Computational Geometry (Prentice Hall, 1993).

The Graham’s Scan algorithm was originally presented in “An efficient algo-
rithm for determining the convex hull of a finite planar set,” by R.L. Graham in
Information Processing Letters 1, 1972, 132–133. The Jarvis March algorithm was
originally presented by R.A. Jarvis in the paper “On the identification of the

C8208_ch10.indd 279C8208_ch10.indd 279 11/15/12 9:35 AM11/15/12 9:35 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

280 Chapter 10 Computational Geometry

convex hull of a finite set of points in the plane,” Information Processing Letters 2,
1973, 18–21. These algorithms are also presented in a thorough fashion in
Introduction to Algorithms (3rd ed.: The MIT Press, Cambridge, MA, 2009) by
T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein.

The generic divide-and-conquer solution to the convex hull problem presented
in this chapter is motivated by the material presented in Parallel Algorithms for
Regular Architectures by R. Miller & Q.F. Stout (The MIT Press, 1996). The
 “teeter-totter” binary search algorithm referred to when describing an intricate
binary search for determining common tangent lines was originally presented by
M.H. Overmars and J. van Leeuwen in “Maintenance of configurations in the
plane,” in the Journal of Computer and Systems Sciences, vol. 23, 1981, 166–204.
The interesting divide-and-conquer algorithm for the PRAM was first presented
by M. Atallah and M. Goodrich in “Efficient parallel solutions to some geometric
problems,” in the Journal of Parallel and Distributed Computing 3, 1986,
492–507. One might note that this algorithm exploits the CR capabilities of a
CREW PRAM. We should point out that an optimal Θ(log n) time EREW PRAM
algorithm to solve the convex hull problem has been presented by R. Miller &
Q.F. Stout in “Efficient parallel convex hull algorithms,” in IEEE Transactions on
Computers, 37 (12), 1988. However, the presentation of the Miller and Stout algo-
rithm is beyond the scope of this book.

The notion of angles of support is interesting in that it allows multiple parallel
searches to be implemented by a series of sort steps. Details of the mesh convex
hull algorithm that relies on angles of support can be found in Parallel Algorithms
for Regular Architectures.

The reader interested in learning more about the Voronoi Diagram and its
application to problems involving proximity might consult Computational
Geometry by F.P. Preparata & M.I. Shamos (Springer-Verlag, 1985). Details of the
all-nearest neighbor algorithm for the mesh can be found in Parallel Algorithms
for Regular Architectures.

A RAM algorithm for the circular version of the cover problem was pre-
sented by C.C. Lee and D.T. Lee in “On a Cover-Circle Minimization Problem,”
in Information Processing Letters 18 (1984), 180–185. A CREW PRAM algo-
rithm for the circular version of this problem appears in “Parallel Circle-Cover
Algorithms,” by A.A. Bertossi in Information Processing Letters 27 (1988),
133–139. The algorithm by Bertossi was improved independently in each of the
following papers:

• M.J. Atallah and D.Z. Chen, “An Optimal Parallel Algorithm for the Minimum
Circle-Cover Problem,” Information Processing Letters 32 (1989), 159–165.

• L. Boxer and R. Miller, “A Parallel Circle-Cover Minimization Algorithm,”
Information Processing Letters 32 (1989), 57–60.

• D. Sarkar and I. Stojmenovic, “An Optimal Parallel Circle-Cover Algorithm,”
Information Processing Letters 32 (1989), 3–6.

C8208_ch10.indd 280C8208_ch10.indd 280 11/15/12 9:35 AM11/15/12 9:35 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter Notes 281

The exercises of this chapter, which appear in the next section, include ques-
tions concerning the all maximal equally spaced collinear points problem. This
and several related problems were studied in the following papers:

• A.B. Kahng and G. Robins, “Optimal Algorithms for Extracting Spatial
Regularity in Images,” Pattern Recognition Letters 12 (1991), 757–764.

• L. Boxer and R. Miller, “Parallel Algorithms for All Maximal Equally Spaced
Collinear Sets and All Maximal Regular Coplanar Lattices,” Pattern
Recognition Letters 14 (1993), 17–22.

• L. Boxer, R. Miller, and A. Rau-Chaplin, “Scalable Parallel Algorithms
for Geometric Pattern Recognition,” Journal of Parallel and Distributed
Computing 58 (1999), 466–486.

• G. Robins, B.L. Robinson, and B.S. Sethi, “On Detecting Spatial Regularity in
Noisy Images,” Information Processing Letters 69 (1999), 189–195.

• L. Boxer and R. Miller, “A Parallel Algorithm for Approximate Regularity,”
Information Processing Letters 80 (2001), 311–316.

These problems have considerable practical value, as the presence of the
regularity amidst seeming or expected chaos is often meaningful. For example,
the members of S might represent points observed in an aerial or satellite photo,
and the maximal equally spaced collinear sets might represent traffic lights,
military formations, property or national boundaries in the form of fence posts,
and so forth. The paper of Kahng and Robins presents a RAM algorithm for the
all maximal equally spaced collinear sets problem that runs in optimal Θ(n2)
time. This algorithm seems to be essentially sequential. The 1993 Boxer and
Miller paper and the 1999 paper of Boxer, Miller, and Rau-Chaplin show how a
rather different algorithm can be implemented in efficient to optimal time on
parallel architectures. These three papers are concerned with exact solutions. The
Robins et al. paper gives an approximate sequential solution that runs in O(n5/2)
time. The asymptotically slower running time for an approximate solution, as
opposed to an exact solution, is due to the fact that an approximate solution may
have more output than an exact solution. Notice, however, that an approximate
solution is likely to be more useful than an exact solution, since data is gener-
ally not exact. On the other hand, the approximate solution to this problem is
beyond the scope of this book. The algorithm of Robins et al. seems essentially
sequential. A rather different algorithm appears in the 2001 Boxer and Miller
paper, giving an approximate parallel solution that can be implemented on mul-
tiple platforms.

A prominent area of Computational Geometry that we have not discussed is
that of “guarding an art gallery,” in which a typical problem is the following. Given
a polygon P and a point x of P or its interior, determine efficiently what portions of
P are visible from x. Notice that if P is known to be convex, then this problem is
trivial. Sources of further information on this topic include the following.

C8208_ch10.indd 281C8208_ch10.indd 281 11/15/12 9:35 AM11/15/12 9:35 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

282 Chapter 10 Computational Geometry

M. DeBerg, O. Cheong, M. van Kreveld, and M. Overmars, Computational
Geometry: Algorithms and Applications, Springer, Berlin, 2010.

J. O’Rourke, Art Gallery Theorems and Algorithms, Oxford University Press,
New York, 1987 - available for free downloading from the author’s Web site at
http://maven.smith.edu/~orourke/books/ArtGalleryTheorems/Art_Gallery_Full_
Book.pdf

Exercises

Notes: Several of the exercises are concerned with polygons. Assume that by
“polygon” we do not mean just the edges. Rather, we mean the union of its edges
and the interior of the polygon.

Also, among the exercises are those with solutions that can use the lexico-
graphic order of points in the Euclidean plane. The lexicographic order is defined
as follows. If p = (px, py) and q = (qx, qy), then p < q if either px < qx or both
px = qx and py < qy.

 1. Given a set S of n planar points, construct an efficient algorithm to determine
whether or not there exist three points in S that are collinear. Hint: While there
are Θ(n3) triples of members of S, you should be able to construct an algorithm
that runs in o(n3) sequential time.

 2. Given a set of n line segments in the plane, prove that there may be as many as
Θ(n2) intersections.

 3. Show that the algorithm sketched in this chapter to solve the intersection query
problem runs in Θ(n log n) time on a RAM.

 4. Given a set of n line segments in the plane that have a total of k intersections,
show that a RAM algorithm can report all intersections in O((n + k)log n) time.

 5. Given a convex polygon with n vertices, construct an algorithm that can be
implemented efficiently on a variety of architectures to determine the area of
the polygon. The input to the problem consists of the circularly ordered verti-
ces of the polygon. Analyze the running time of this algorithm for a RAM, ER
PRAM with n/log n processors, hypercube of size n/log n, mesh of size n2/3,
and CGM (n, q).

 6. Given a polygon with n vertices, construct an efficient algorithm to determine
whether or not the polygon is simple.

 7. Given a simple polygon P and a point p, give an efficient algorithm to deter-
mine whether or not p is contained in P.

 8. Given two simple polygons, each consisting of n vertices, give an efficient
algorithm to determine whether or not the polygons intersect.

 9. Give an efficient algorithm to determine the convex hull of a simple polygon.

 10. On a fine-grained parallel computer, a very different approach can be taken to
the Intersection Reporting Problem. Suppose input to a PRAM, mesh, or

C8208_ch10.indd 282C8208_ch10.indd 282 11/15/12 9:35 AM11/15/12 9:35 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Exercises 283

hypercube of n processors consists of the n line segments in the Euclidean
plane. In the case of a mesh or hypercube, assume the segments are initially
distributed one per processor. Give a solution to the Intersection Reporting
Problem that is optimal in the worst case, and prove the optimality, for each of
these architectures. Hints: This can be done with an algorithm that “seems”
simpler to describe than the RAM algorithm described in the text. Also, the
processors of a hypercube may be renumbered in a circular fashion.

 11. In this chapter, we sketched an algorithm to solve the following problem: For a
set of n intervals and a range [a, b], give an efficient algorithm to determine a
minimal-cardinality subset of the intervals that cover [a, b] or show, when
appropriate, that no such cover exists. Prove the algorithm runs

 • in Θ(n log n) time on a RAM,

 • in Θ(log n) time on a CREW PRAM of size n, and

 • in Θ(n1/2) time on a mesh of n processors, assuming the intervals are initially
distributed one per processor.

 12. In the Graham Scan procedure given in this chapter, prove that both the point
chosen as the origin, and the last point encountered in the tour, must be extreme
points of the convex hull.

 13. Given a set S of n planar points, prove that a pair of farthest neighbors, i.e.,
a pair of points at maximum distance over all pairs of points in S, must be
 chosen from the set of extreme points.

 14. Given two sets of points, P and Q, give an efficient algorithm to determine
whether P and Q are linearly separable. That is, give an efficient algorithm
to determine whether or not it is possible to define a line l with the property
that all points of P lie on one side of l while all points of Q lie on the other
side of l.

 15. In this problem, we consider the all maximal equally spaced collinear points
problem in the Euclidean plane �2: Given a set S of n points in �2, identify all
of the maximal equally spaced collinear subsets of S that have at least three
members. A collinear set {p1, p2, . . . , pk}, for which we assume in the following
that the points are numbered according to their order on their common line, is
equally spaced if all the line segments pi pi+1, i ∈ {1,2, . . . , k − 1}, have the
same length. Assume that we are given a set S of n points in �2, where each
point is represented by its Cartesian coordinates (see Figure 10-23).

 a. Show that O(n2) is an upper bound for the output of this problem. Hint:
Show that every pair of distinct points {p, q} � S can be a consecutive pair
of at most one maximal equally spaced collinear subset of S.

 b. Show that Ω(n2) is a lower bound for the worst-case output of this problem.
Hint: Let n be a square and let S be the square of integer points

S = 5(a,b) 0 1 ≤ a ≤ n1/2, 1 ≤ b ≤ n1/26 .

C8208_ch10.indd 283C8208_ch10.indd 283 11/15/12 9:35 AM11/15/12 9:35 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

284 Chapter 10 Computational Geometry

 Let S0 � S be defined by

S0 = e (a, b) ` n1/2

3
≤ a ≤

2n1/2

3
,

n1/2

3
≤ b ≤

2n1/2

3
f .

 Show that if {p, q} � S0, p ≠ q, then {p, q} is a consecutive pair in a maxi-
mal equally spaced collinear subset C of S such that 0C 0 ≥ 3. Together with
part a) of this exercise, this shows the worst-case output for this problem
is Θ(n2).

 c. Consider the following algorithm, which can be implemented on a variety
of architectures, although the details of implementing some of the steps
will vary with the architecture.

 i. Form the set P of all ordered pairs (p, q) ∈ S such that p < q in the
lexicographic order of points in �2.

 ii. Sort the members (p, q) of P in ascending order with respect to all the
following keys:

 • The primary key of (p, q) is the slope of the line determined by
(p, q), using ∞ as the slope of a vertical line.

 • The secondary key of (p, q) is d(p, q), the Euclidean distance from
p to q.

 • The tertiary key of (p, q) is (p, q), which is lexicographically
ordered.

 iii. Use a parallel postfix operation on P to identify all maximal equally
spaced collinear subsets of S. The operation is based on the formation
of quintuples and a binary operation specified as follows. Initial quin-
tuples are of the form (p, q, length, 2, true), where the components are
as follows. The first two components are the endpoints, i.e., members

FIGURE 10-23 The all maximal equally spaced collinear points
 problem. An illustration of three equally spaced collinear line
segments.

C8208_ch10.indd 284C8208_ch10.indd 284 11/15/12 9:35 AM11/15/12 9:35 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Exercises 285

of S, in an equally spaced collinear set. The third component is the
length of segments that make up the current equally spaced collinear
set. The fourth component is the number of input points in the equally
spaced collinear set. The fifth component is true or false according to
whether the first component is the first point in an equally spaced col-
linear set. The binary operation is defined by

 (a, b, c, d, u) ⊗ (e, f, g, h, v) =

 e (a, f, c, d + h − 1, u) if b = e and c = g and {a, b, f } is collinear;

(a, b, c, d, u) otherwise,

 and in the former case, set v ← false.

 iv. A postfix operation on the members of P is used to enumerate mem-
bers of each equally spaced collinear set of more than two points. This
operation is based on members of P with a postfix quintuple having the
fifth component true and the fourth component greater than 2.

 Analyze the running time of this algorithm for each of a RAM, a CREW
PRAM of n2 processors, and a mesh of size n2. In the case of the mesh,
assume that the members of S are initially distributed so that no processor
has more than one member of S. Formation of the set P can thus be done on
the mesh by appropriate row and column rotations, and/or random-access
write operations. The details are left to the reader.

 16. In the chapter, an architecture-independent algorithm was given for solving
the minimal-cover problem for intervals on the real line. Analyze efficient
implementations of this algorithm for a mesh of size n and for a hypercube of
size n, where the input is of size n.

C8208_ch10.indd 285C8208_ch10.indd 285 11/15/12 9:35 AM11/15/12 9:35 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Preliminaries

Transitive Closure of a Binary Matrix

Component Labeling

Convex Hull

Distance Problems

Image Processing on a Cluster

Summary

Chapter Notes

Exercises

11
Image Processing

Background Photo Credit © Spectral-Design / Shutterstock
All Images used within the chapter are © 2013 Cengage Learning

C8208_ch11.indd 286C8208_ch11.indd 286 11/15/12 9:38 AM11/15/12 9:38 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In this chapter, we consider some fundamental problems in image processing, an
important and challenging area of computer science. In particular, image process-

ing, image analysis, and pattern recognition are related fields that typically fall into an
area of computer science known as Artificial Intelligence. In this chapter, we present
several divide-and-conquer solutions to problems in image analysis for the mesh
 computer. In addition, we present algorithms for the RAM, as appropriate. Finally, it is
important to note that a combination of solution strategies for the mesh and RAM
often serve as core strategies for solving image-based problems for large images on
clusters and multicore machines.

C8208_ch11.indd 287C8208_ch11.indd 287 11/15/12 9:38 AM11/15/12 9:38 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

288 Chapter 11 Image Processing

Preliminaries

In this chapter, we consider the input to problems to be an n × n digitized black-
and-white picture. That is, the input can be viewed as a matrix of data in which
every data element is either a 0 or a 1, where a 0 represents a white background data
item and a 1 represents a black foreground data item. These pieces of data are often
referred to as “picture elements,” or pixels, where the interpretation of the image is
that it is a black image on a white background. The set of black pixels, represented
by the 1s, is often referred to as a digital image. The terminology and assumptions
that we use in this chapter represent the norm in the field of image processing.

Readers must be careful to recalibrate their expectations. In most of the pre-
ceding chapters, the input consisted of n data elements, whereas in this chapter the
input is of size n2, i.e., an n × n image. Therefore, a linear time sequential algo-
rithm will run in Θ(n2) time, not in Θ(n) time. If the input data is to be sorted on a
RAM, then an optimal worst-case comparison-based sequential sorting algorithm
will run in Θ(n2 log n2) = Θ(n2 log n) time, not in Θ(n log n) time.

Since we want to map the n × n image directly onto a mesh of size n2, we
assume that pixel pi, j resides in mesh processor Pi, j. Again, we need to recalibrate.
Given a mesh of size n2, the communication diameter is Θ(n). So, for any problem
that might require pixels at opposite ends of the mesh to be combined in some way,
a lower bound for the running time of an algorithm to solve the problem is Ω(n).
Note that the bisection width is also Θ(n).

Transitive Closure of a Binary Matrix

There is an important result that we will use in this chapter concerned with deter-
mining the transitive closure of a matrix. Let G be a directed graph with n vertices,
represented by an adjacency matrix A. That is, A(i, j) = 1 if and only if there is a
directed edge in G from vertex i to vertex j. Otherwise, A(i, j) = 0. The transitive
closure of A, which is written as A*, is an n × n matrix such that A*(i, j) = 1 if and
only if there is a directed path in G from vertex i to vertex j. A*(i, j) = 0 otherwise.

It is important to note that both A and A* are binary matrices. That is, A and
A* are matrices in which all entries are either 0 or 1. Consider the effect of “mul-
tiplying” matrix A by itself in order to obtain the matrix we denote as A2, where the
usual method of matrix multiplication is modified by replacing addition (+) with
OR (∨) and multiplication (×) with AND (∧). Notice that an entry A2(i, j) = 1 if
and only if either

• A(i, j) = 1 or

• A(i, k) = 1 AND A(k, j) = 1 for some k.

That is, A2(i, j) = 1 if and only if there exists a path of length no more than two
from vertex i to vertex j. Now, consider the matrix A3, which can be computed in a
similar fashion from A2 and A. Notice that A3(i, j) = 1 if and only if there exists a
path from vertex i to vertex j that consists of three or fewer edges. Continuing this

C8208_ch11.indd 288C8208_ch11.indd 288 11/15/12 9:38 AM11/15/12 9:38 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Transitive Closure of a Binary Matrix 289

line of thought, notice that the matrix An is such that An(i, j) = 1 if and only if there
exists a path from vertex i to vertex j that consists of n or fewer edges (see
Exercises). That is, An contains information about the existence of a directed path
in the graph G from vertex i to vertex j, for every pair of vertices (i, j). The matrix
An, which is often referred to as the connectivity matrix, represents the transitive
closure of A. That is, An = A*.

Consider a sequential solution to the problem of determining the transitive clo-
sure of an n × n matrix A. Based on the preceding discussion, it is clear that the
transitive closure can be determined by multiplying A by itself n times. Since the
traditional matrix multiplication algorithm for two n × n matrices runs in Θ(n3) time,
we know that the transitive closure of A can be determined in O(n × n3) = O(n4)
time. So the question is, within the context of a traditional Θ(n3) time matrix multi-
plication algorithm, can we do better?

Consider matrix A2. Once A2 has been determined, we can multiply it by A to
arrive at A3. Alternately, we can multiply A2 × A2 in order to obtain A4. Since a
matrix multiplication runs in Θ(n3) time, then both A2 × A and A2 × A2 can be
determined in Θ(n3) time. Therefore, if our interest is in determining An using the
least number of matrix multiplications, it makes more sense to determine
A2 × A2 = A4 rather than A2 × A = A3. Continuing along this path of matrix multi-
plication doubling, we will either determine or overshoot An after Θ(log n) such
matrix multiplications. It is important to note that it does not matter if we overshoot
An as An+c = An for any positive integer c (see Exercises). Therefore, if we perform
Θ(log n) matrix multiplication operations, each time squaring the most recently
obtained matrix, we can determine the transitive closure in Θ(n3 log n) time.

In fact, we can produce the matrix An even more efficiently, as follows. Define
a binary matrix Ak so that Ak(i, j) = 1 if and only if there is a path from vertex i to
vertex j using no intermediate vertex with label greater than k. Given the matrix A,
an algorithm can be designed that will iteratively transform A0 = A to An = An = A*
through a series of intermediate matrix computations of Ak, 0 < k < n.

We define Ak(i, j) = 1 if and only if

• there is a path from vertex i to vertex j using no intermediate vertex greater
than k − 1, or

• there is a path from vertex i to vertex k using no intermediate vertex greater
than k − 1 and there is a path from vertex k to vertex j using no intermediate
vertex greater than k − 1.

We now present Warshall’s algorithm to determine the transitive closure of a
Boolean matrix.

for k = 1 to n, do
 for i = 1 to n, do
 for j = 1 to n, do
 Ak(i, j) = Ak−1(i, j)∨ 3Ak−1(i,k)∧ Ak−1(k,j)4

C8208_ch11.indd 289C8208_ch11.indd 289 11/15/12 9:38 AM11/15/12 9:38 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

290 Chapter 11 Image Processing

While the running time of Warshall’s algorithm on a RAM is Θ(n3), notice that
the algorithm utilizes Θ(n2) additional memory. This is due to the fact that at the kth
iteration of the outermost loop, the previous iteration’s matrix Ak−1 is retained
in memory.

F.L. Van Scoy has shown that given an n × n adjacency matrix A mapped onto
a mesh of size n2 such that A(i, j) is mapped to processor Pi, j, the transitive closure
of A can be determined in optimal Θ(n) time. Details of this algorithm are presented
in Chapter 12.

Notes on Terminology: Since pixels are mapped to processors of a fine-grained
mesh in a natural fashion, we tend to think about pixels and processors as coupled
when designing mesh algorithms. Therefore, when there is no confusion, we will
use the terms “pixel” and “processor” interchangeably in describing fine-grained
mesh algorithms.

Component Labeling

In this section, we consider the problem of uniquely labeling every maximally con-
nected component in an image. The solution to this component labeling problem is
critical to being able to perform image analysis tasks such as recognizing shapes
and developing relationships among objects.

Specifically, given a digitized black-and-white picture, viewed as a black
image on a white background, we consider the problem of uniquely labeling each
of the distinct figures, i.e., black components, in the picture.

It is often convenient to recast the component-labeling problem in graph
 theoretic terms. Consider every black pixel to be a vertex. Consider that an edge
exists between every pair of vertices represented by neighboring black pixels. We
say that pixels x and y are neighbors if and only if x is directly above, below, left of,
or right of y. This 4-adjacency notion of neighbors means that pixels that are
 diagonally adjacent are not considered neighbors for the purpose of this problem.
However, if one does consider diagonally adjacent pixels as neighbors, the
 asymptotic running time of our component-labeling algorithms would not be
affected.

The goal of a component-labeling algorithm is to label uniquely every maxi-
mally connected set of pixels/vertices. Although the unique label chosen for every
component is irrelevant, in this book we will choose to label every component
with the minimum label over any pixel (vertex) in the figure (component). This is
a fairly standard means of labeling components (see Figure 11-1).

RAM

Initially, let’s consider a sequential algorithm to label the maximally connected
components of an n × n digitized black-and-white picture. Suppose we use a
straightforward propagation-based algorithm.

C8208_ch11.indd 290C8208_ch11.indd 290 11/15/12 9:38 AM11/15/12 9:38 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Component Labeling 291

Initialize the component label for every pixel to null. Initialize the vertex label
for every pixel to the concatenation of its row and column indices. Now traverse
the image in row-major order. When a black pixel is encountered for which the
component label is null, assign that pixel’s vertex label as its component label.
Next, use a backtracking procedure to propagate this component label to all of the
pixel’s black neighbors, which recursively propagate this label to all of their black
neighbors, and so on.

Let’s consider the running time of this simple propagation algorithm. Every
pixel is visited once during the row-major scan. Now consider the backtracking
phase of the algorithm, in which both black and white pixels can be visited. The
black pixels can be visited as the propagation continues and the white pixels serve
as stopping points to the backtracking. Fortunately, every component is only labeled
once, and if backtracking is done properly, every black pixel is only visited a fixed
number of times during a given backtracking/propagation phase. That is, when a
black pixel p is visited, no more than three of its neighbors need to be considered
(why?) and in the recursion, control returns to the pixel p three times before it
returns control to its parent pixel, i.e., the black pixel visited immediately prior to
visiting p for the first time. A white pixel can only be visited by four of its neighbors
during some propagation phase, each time returning control immediately. Therefore,
the running time of the algorithm is linear in the number of pixels, which is Θ(n2).

Mesh

Now, let’s consider a mesh algorithm to solve the component-labeling problem.
Assume that we are given an n × n digitized black-and-white picture mapped in a
natural fashion onto a mesh of size n2 so that pixel pi, j is mapped to processor Pi, j.
The first algorithm we might consider is a direct implementation of the sequential

1 4

12

12 6

6

6

6

(a) (b)

FIGURE 11-1 (a) A digitized 4 × 4 picture. The interpreta-
tion is that the picture represents a black image on a
white background. (b) The same 4 × 4 picture with its
maximally connected components labeled under
4-adjacency definition of connectedness. Every
 component is labeled with the minimum label of any pixel
in its component. In this example, the pixel labels are
given by their row-major indices, with values 1, . . . ,16.

C8208_ch11.indd 291C8208_ch11.indd 291 11/15/12 9:38 AM11/15/12 9:38 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

292 Chapter 11 Image Processing

propagation algorithm. A straightforward implementation of a propagation algo-
rithm will yield a Θ(n2) time algorithm, which is unacceptable for this architecture.

We now consider the natural parallel variant of a propagation-type algorithm.
That is, every processor that maintains a black pixel continually exchanges its cur-
rent component label with each of its, at most four, black neighbors. During each
such exchange, a processor accepts the minimum of its current label and that of its
black neighbors as its new component label. The effect is that the minimum vertex/
processor label in a component is propagated throughout the component in the
minimum time required, i.e., using the minimum number of communication links
required, assuming that all messages must remain within a component. In fact, this
label reaches every processor in its component in the minimum time necessary to
broadcast the label between them, assuming that all messages must remain within
the component.

Therefore, if all the maximally connected components are relatively small, this
mesh propagation algorithm is efficient. Notice that “relatively small” refers to the
internal diameter of a figure, i.e., the maximum of the minimum distance between
any two black pixels in a figure when one is only allowed to consider distance
between neighboring pixels. In fact, if every figure is enclosed in some k × k
region, then the running time of the algorithm is O(k2). This is efficient if k2 = O(n).
So, if we regard k as constant, then the running time is Θ(1) (see Figure 11-2).

FIGURE 11-2 Every connected component is confined to a 3 × 3
region. In such situations, the mesh propagation algorithm will
run in Θ(1) time.

C8208_ch11.indd 292C8208_ch11.indd 292 11/15/12 9:38 AM11/15/12 9:38 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Component Labeling 293

Now, let’s consider the worst-case running time of this parallel propagation
algorithm. Suppose we have a picture that consists of a single figure. Further, sup-
pose that the internal diameter, i.e., the maximum distance between two black pix-
els, assuming that one travels only between pixels that are members of the figure,
is large. For example, consider Figure 11-3, which includes a “spiral” on the left
and a “snake” on the right.

FIGURE 11-3 Two problematic figures. A “spiral” is shown on the left
and a “snake” is shown on the right.

We see that it is easy to construct a figure that has an internal diameter of
Θ(n2). This propagation algorithm will run in Θ(n2) time for such a figure. So, our
parallel propagation algorithm has a running time of Ω(1) and O(n2). For many
situations, we might be willing to accept such an algorithm if we know that these
troublesome situations, i.e., those that result in the worst-case running time, will
rarely occur. There may be situations in which, even if such an image might occur,
we know that no figure of interest could have such characteristics, and we could
then modify the algorithm so that it terminates after some more reasonable prede-
termined amount of time. However, there are many situations in which we care
about minimizing the general worst-case running time.

We now consider a divide-and-conquer solution to the general component-
labeling problem on a mesh. This divide-and-conquer algorithm should feel famil-
iar in its implementation and has the feature of exhibiting an asymptotically
optimal worst-case running time.

 1. Divide the problem into 4 subproblems, each of size (n/2) × (n/2).

 2. Recursively label each of the independent subproblems.

 3. Stitch the partial solutions together to obtain a labeled image.

As with many divide-and-conquer algorithms, the Stitch step is crucial. Notice
that once each (n/2) × (n/2) subproblem has been solved, there are only O(n) pixels
in each such submesh, those on the submesh border, that might have a neighbor

C8208_ch11.indd 293C8208_ch11.indd 293 11/15/12 9:38 AM11/15/12 9:38 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

294 Chapter 11 Image Processing

with a different label. Thus, for every local component, i.e., a component com-
pletely contained within its (n/2) × (n/2) region, the recursive label must be cor-
rect. Only those global components, i.e., components of one of the (n/2) × (n/2)
regions with at least one pixel on an edge between neighboring submeshes, might
need to be relabeled (see Figure 11-4). Therefore, while the initial problem had
Θ(n2) pieces of data (pixels), after the recursive solutions were obtained, there are
only O(n) critical pieces of information necessary to resolve the problem. We can
stitch the partial results together as follows.

First, each processor P containing a black pixel on the border of one of the
(n/2) × (n/2) regions examines its neighbors that are located in a distinct
(n/2) × (n/2) region. For each such border processor P, there are either one or two
such neighbors. For each neighboring black pixel in a different region, processor P
generates a record containing the identity and current component label of both P

FIGURE 11-4 An 8 × 8 image after labeling each of
its 4 × 4 quadrants. Notice that the component
labels come from the shuffled row-major indexing
scheme, starting the numbering of the processors
with 1. The local components that are completely
contained in a quadrant, i.e., components labeled
4 and 20, do not need to be considered further. The
remaining components have pixels on the border
between quadrants and are considered during the
global relabeling procedure.

20

27 32

54

54

54 57 57 39 39

39

16

20 4 4

C8208_ch11.indd 294C8208_ch11.indd 294 11/15/12 9:38 AM11/15/12 9:38 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Convex Hull 295

and the neighboring pixel. Notice that there are at most two records generated by
any processor containing a border vertex. However, also notice that for every
record generated by one processor, a “mirror image” record is generated by its
neighboring processor. Next, compress these O(n) records into an n1/2 × n1/2 region
within the n × n mesh. In the n1/2 × n1/2 region, use these O(n) unordered edge
records to solve the component-labeling problem on the underlying graph.

Notice that the stitch step can perform the compression operation by sorting
the necessary records in Θ(n) time. Once the critical data is compressed to an
n1/2 × n1/2 region, we can perform a logarithmic number of iterations to merge
components together until they are maximally connected. Each such iteration
involves a fixed number of sort-based operations, including concurrent reads
and writes. Therefore, each iteration is performed in Θ(n1/2) time. Hence, the
time required for computing maximally connected components within the
n1/2 × n1/2 region is Θ(n1/2 log n). Completing the stitch step involves a complete
Θ(n) time concurrent read so that every pixel in the image can determine its new
label. Since the compression and concurrent read steps dominate the running
time of the Stitch routine, the running time of the algorithm is given by
T(n2) = T(n2/4) + Θ(n), which sums to T(n2) = Θ(n). It should be noted that the
solution to this recurrence can be obtained by substituting N for n2 and applying
the Master Theorem. Notice that this is a time-optimal algorithm for a mesh of
size n2. However, the total cost of such an algorithm is Θ(n3), while the problem
has a lower bound of Ω(n2) total cost.

We now consider an interesting alternative to the stitch step. In the approach
that we presented, we reduced the amount of data from Θ(n2) to O(n), compressed
the O(n) data, and then spent time leisurely working on it. Instead, we can con-
sider creating a cross-product with the reduced amount of critical data. That is,
once we have reduced the data to O(n) critical pieces, representing an undirected
graph, we can create an adjacency matrix. Notice that the adjacency matrix will
easily fit into the n × n mesh. Once the adjacency matrix is created, we can per-
form the Θ(n) time transitive closure algorithm of Van Scoy mentioned at
the beginning of the chapter in order to determine maximally connected compo-
nents. The minimum vertex label can be chosen as the label of each connected
component, and a concurrent read by all pixels can be used for the final relabel-
ing. Although the running time of this algorithm remains at Θ(n), it is instructive
to show different approaches to dealing with a situation in which one can drasti-
cally reduce the size of the set of data under consideration.

Convex Hull

In this section, we consider the problem of marking the extreme points of the con-
vex hull for each labeled set of pixels in a given image. Notice that a labeled set of
pixels need not be a connected component. In fact, the sets might be intertwined
and their convex hulls might overlap, as shown in Figure 11-5.

C8208_ch11.indd 295C8208_ch11.indd 295 11/15/12 9:38 AM11/15/12 9:38 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

296 Chapter 11 Image Processing

FIGURE 11-5 An illustration of overlapping
 convex hulls of, not necessarily connected,
labeled sets of pixels.

For this problem, it is useful to order the processors of a mesh by snake-
like indexing. This indexing uses a labeling of the processors that follows the pat-
tern on the right side of Figure 11-3. So, the top-left processor in the mesh is
labeled 1. The rightmost processor on the first row is labeled n. The rightmost
processor on the second row is labeled n + 1. The leftmost processor on the sec-
ond row is labeled 2n, and so forth. That is, the first row is labeled 1. . . n in a left
to right fashion, the second row is labeled n + 1. . . 2n in a right to left fashion, and
so on. In general, rows with odd indices have processors numbered from left to
right, and rows with even indices have processors number from right to left. See
Figure 11-6.

Suppose that we have a mesh of size n2 and that we associate every proces-
sor Pi, j with the lattice point (i, j). Suppose that every processor contains a label
in the range of 0 . . . n2, where the interpretation is that 0 represents the back-
ground and that values 1 . . . n2 represent labels of foreground pixels. Finally,
assume that we want to determine the convex hull for every distinctly labeled
set of points.

We have discussed the general convex hull problem for a variety of models in
a preceding chapter. Clearly, the image input considered in this section can be sim-
ply and efficiently converted to the more general form of 2-dimensional point data
input. From such input, the algorithms of the previous chapter can be invoked in a
straightforward fashion. Our goal in this section, however, is to introduce some

C8208_ch11.indd 296C8208_ch11.indd 296 11/15/12 9:38 AM11/15/12 9:38 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Convex Hull 297

new techniques, which will result in a greatly simplified routine for a lattice of
labeled points imposed on a mesh.

Initially, we determine the extreme points for each labeled set as restricted to
each row. Once this is done, we note that there are no more than 2 possible extreme
points in any row for any labeled set. Within each such set, every row-restricted
extreme point can consider all other row-restricted extreme points of its set and
determine whether or not it is contained in some triangle formed by the remaining
points, in which case it is not an extreme point. Further, if no such triangle can be
found, then it is an extreme point. The algorithm follows.

Initially in every row, we wish to identify the extreme points for every labeled
set as restricted to the row. So, in a given row, the extreme points of a set are sim-
ply the, at most two, outermost nonzero points of the set. This identification can be
done by a simple row rotation, simultaneously for all rows, so that every processor
Pi, j can view all of the data within its row and decide whether or not its point at
(i, j) is a row-restricted extreme point for its labeled set.

Next, sort all of these row-restricted extreme points by label so that after the
sort is complete, elements with the same label are stored in consecutively indexed
processors according to the snake-like indexing. Although there are O(n2) such
points, it is important to note that for any label, there are at most 2n such points,
i.e., at most two points per each row. Since we use snake-like indexing of the pro-
cessors, all of the row-restricted extreme points for a given set are now in a set of
consecutively indexed processors. Therefore, we can perform rotations within such
ordered intervals. These rotations are similar to row and column rotations but work
within intervals that might cover fractions of one or more rows. Thus, simultane-
ously for all intervals, i.e., labeled sets, rotate the set of row-restricted extreme
points. During the rotation, suppose a processor is responsible for lattice point X.

FIGURE 11-6 Snake-like indexing of the
 processors of a mesh, shown for a mesh
of size 16. Processors are numbered
 consecutively in consecutive rows, with
the direction of the numbering alternating
by row.

9 10 1

1 2 3 4

8 7 6 5

1 12

16 15 14 13

C8208_ch11.indd 297C8208_ch11.indd 297 11/15/12 9:38 AM11/15/12 9:38 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

298 Chapter 11 Image Processing

Then as a new lattice point Y arrives, the processor responsible for X performs the
following operations.

• If no other point is stored in the processor, then the processor stores Y.

• Suppose the processor has previously stored one other point, say, U. Then the
processor will store Y. However, if X, Y, and U are on the same line, then the
processor eliminates the interior point of these three.

• Suppose the processor has previously stored two other points, U and V, before
Y arrives.

■ If X is in the triangle determined by U, V, and Y, then the processor deter-
mines that X is not an extreme point.

■ Otherwise, if Y is on a line segment determined by X and either U or V,
then of the three collinear points, X is not interior. This is because if X
were interior, the previous case would apply. Discard the interior of the
three collinear points.

■ Otherwise, the processor should eliminate whichever of U, V, and Y is
inside the angle formed by X and the other two, with X as the vertex of the
angle. Note the “eliminated” point is not eliminated as a possible extreme
point, just as a determiner of whether X is an extreme point.

If after the rotation, the processor responsible for row-restricted extreme
point X has not determined that X should be eliminated, then X is an extreme point.

A final concurrent read can be used to send the row-restricted extreme points
back to their originating processors and the extreme points can then be marked for
every labeled set of pixels.

Running Time

The analysis of running time is straightforward since we need not solve a recursive
relation. The algorithm consists of a fixed number of Θ(n) time rotations and sort-
based operations. Therefore, the running time of this algorithm is Θ(n). Notice that
the cost of the algorithm is Θ(n3) and we know that the problem can be solved
sequentially in Θ(n2 log n) time by the traditional convex hull algorithm on arbi-
trary point data.

Distance Problems

In this section, we consider problems of determining distances between labeled
sets of pixels. Specifically, we consider the following.

 1. Given a labeled set of, not necessarily connected, pixels, determine for every
labeled set, a nearest distinctly labeled set.

 2. Given two labeled sets of, not necessarily connected, pixels, determine the dis-
tance between the two sets using the Hausdorff metric as the distance measure.

C8208_ch11.indd 298C8208_ch11.indd 298 11/15/12 9:38 AM11/15/12 9:38 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Distance Problems 299

All-Nearest Neighbor between Labeled Sets

In this section, we consider the all-nearest neighbor between labeled sets problem.
Assume that the input consists of a labeled set of pixels. That is, assume that every
processor Pi, j is associated with the lattice point (i, j) on a mesh of size n2. As we
did in a previous section, assume that every processor contains a label in the range
of 0 . . . n2, where the interpretation is that 0 represents the background and that
values in the range of 1 . . . n2 represent labels of foreground pixels. Recall pixels in
the same labeled set are not necessarily connected.

The problem we are concerned with is that of determining for every labeled
set of pixels, the label of a nearest distinctly labeled set of pixels. We first deter-
mine, for every pixel, the label and distance to a nearest distinctly labeled pixel.
We then determine the minimum of these pixels’ nearest-pixel distances over all
pixels within a labeled set. Details of the algorithm follow.

The first step is to find, for every labeled processor P, a nearest distinctly
labeled processor to P. To do this, we take advantage of the fact that the pixels
are laid out on a grid and that we are using the Euclidean distance as a metric.
Suppose that p and q are labeled pixels that are in the same column. Further,
let r be a nearest distinctly labeled pixel to p in the same row as p, as shown in
Figure 11-7. Since we have made no assumption about the labels of p and q, i.e.,
they could be identical or distinct, then with respect to p’s row, either p or r is a
 nearest distinctly labeled pixel to q. We refer to this observation as “work-
reducing.” An algorithm to solve the all-nearest neighbor between labeled sets
problem follows.

FIGURE 11-7 The all-nearest neighbor-between-
labeled-sets problem. Suppose p, q, and r are
labeled pixels. If r is a closest distinctly labeled
pixel in row two to p, then either p or r is a closest
distinctly labeled pixel to q among those in row 2.

p r

q

C8208_ch11.indd 299C8208_ch11.indd 299 11/15/12 9:38 AM11/15/12 9:38 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

300 Chapter 11 Image Processing

 1. Perform row rotations simultaneously in every row so that every processor Pi, j
finds at most two distinctly labeled nearest processors in its row, if they exist.
With respect to processor Pi, j, we denote these nearest distinctly labeled proces-
sors as Pi, j1

 and Pi, j2
, where either j1 or j2 is equal to j if Pi, j is a labeled proces-

sor. We need two such processors if the row has foreground pixels with distinct
labels, as one of them may have the same label as a processor in column j.

 2. Perform parallel column rotations simultaneously in every column, where
every processor Pi, j circulates its information, labels and positions, and the
information associated with its row-restricted nearest distinctly labeled proces-
sors Pi, j1

 and Pi, j2
. During the rotations, every processor is able to determine its

nearest distinctly labeled processor, using the work-reducing observation.

 3. Sort all of the near neighbor information by initial pixel label.

 4. Within every labeled set of data, perform a semigroup operation, using the
operation of minimum as applied to the nearest distinct label distances, and a
broadcast so that every pixel knows the label of a nearest distinctly labeled set
to its set.

 5. Finally, use a concurrent read so that each labeled pixel can bring the final
result back to its initial processor.

Running Time

The algorithm just presented is dominated by a row rotation, column rotation, semi-
group operation, and sort-based operations. Therefore, given an n × n mesh, the run-
ning time of this algorithm is Θ(n). Notice that the cost of this algorithm is Θ(n3),
which is suboptimal, as the problem can be solved in O(n2 log n) time on a RAM.

Hausdorff Metric for Digital Images

Let A and B be nonempty, closed, bounded subsets of a Euclidean space � k. The
Hausdorff metric, H(A, B), is used to measure how well each of these sets approxi-
mates the other. In general, the Hausdorff metric has the following properties.

• H(A, B) is small if every point of A is close to some point of B and every point
of B is close to some point of A.

• H(A, B) is large if some point of A is far from every point of B, or some point
of B is far from every point of A.

Formally, we can define the Hausdorff metric as follows. Let d be the Euclidean
metric for � k. For x ∈ � k, φ ≠ Y � � k, define d(x, Y) = min{d(x, y) 0 y ∈ Y}. Let
H*(A, B) = max{d(a, B) 0 a ∈ A}, where H*(A, B) is called the “one-way” or “non-
symmetric” Hausdorff distance. Note that H*(A, B) is not truly a “distance” in the
sense of a metric function. The Hausdorff metric, which is indeed a metric func-
tion when applied to sets A and B that are nonempty, bounded, and closed, is
defined by H(A, B) = max{H*(A, B), H*(B, A)}. This definition is equivalent to the

C8208_ch11.indd 300C8208_ch11.indd 300 11/15/12 9:38 AM11/15/12 9:38 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Distance Problems 301

statement that H(A, B) = ε if ε is the minimum of all positive numbers r for
which each of A and B is contained in the r-neighborhood of the other, where the
r-neighborhood of Y in � k is the set of all points in � k that are less than r distant
from some point in Y. See Figure 11-8 for an example of H(A, B).

FIGURE 11-8 An example of the Hausdorff metric.
The distances x and y respectively mark a furthest
member of A from B and a furthest member of B
from A. H(A, B) = max{x, y}.

y

x B

A

Suppose that A and B are finite sets of points in �2 or �3. Further, suppose that
these points represent black pixels corresponding to digital images. That is, sup-
pose A and B represent distinct digital images in the same dimensional space. Then
in order to determine whether or not the probability is high that A and B represent
the same physical object, one might consider the result of applying a rigid motion
M, e.g., translation, rotation, and/or reflection, to B and evaluating the result of
H(A, M(B)). If for some M, H(A, M(B)) is small, then in certain situations, there is
a good chance that A and B represent the same physical object. However, if no
rigid motion translates B close to A in the Hausdorff sense, it is unlikely that A and
B represent the same object. Of course, in some contexts a generalization provides
a more satisfying conclusion. That is, instead of trying to approximate A by M(B),
we might try approximating a magnification or shrinking S(A) by M(B) with
respect to the Hausdorff metric.

It is interesting to note that two sets in a Euclidean space can occupy approxi-
mately the same space and yet have very different geometric features. Although
better image recognition might result from a metric that reflects geometric as well
as positional similarity, such metrics are often much more difficult to work with,
both conceptually and computationally.

A simple, although inefficient, algorithm for computing the Hausdorff metric
for two digital images A and B, each contained in an n × n digital picture, is
described below. The algorithm is a straightforward implementation of the

C8208_ch11.indd 301C8208_ch11.indd 301 11/15/12 9:38 AM11/15/12 9:38 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

302 Chapter 11 Image Processing

definition of the Hausdorff metric as applied to digital images. As we outline a
more efficient algorithm in the Exercises, we will only discuss the current algo-
rithm’s implementation for a RAM.

 1. For every black pixel a ∈ A, compute the distance d(a, b) from a to every point
b ∈ B and compute d(a, B) = min{d(a, b) 0 b ∈ B}. For a RAM, this step runs in
O(n4) time, since each of the O(n2) black pixels of A is compared with each of
the O(n2) black pixels of B.

 2. Compute H*(A, B) = max{d(a, B) 0 a ∈ A} by a semigroup operation. This step
runs in Θ(n2) time on a RAM.

 3. Interchange the roles of A and B and repeat steps 1 and 2 to compute H*(B, A).

 4. Compute H(A, B) = max{H*(A, B), H*(B, A)}. This step runs in Θ(1) time.

The algorithm above has a running time dominated by its first step, which runs
in O(n4) time on a RAM. Clearly, the running time of the algorithm leaves much to
be desired. Indeed, a simple and more efficient algorithm for computing the
Hausdorff metric between two digital images on a RAM can be given using tech-
niques presented in this chapter. This problem appears in the Exercises.

Image Processing on a Cluster

Clusters are typically targeted at solving problems involving large data and/or
large computation. In general, compared to the storage and computation available,
problems involving images are often relatively small. That is, it typically does not
make sense to solve problems on a cluster for an individual image in terms of
spreading the image across a cluster and using the cluster to solve a problem in
parallel. The reason for this is that the communication time significantly domi-
nates the computation time, rendering such a solution strategy unreasonable.
However, a cluster would make sense given a situation where one is interested in
using a cluster as a high-throughput network of processors in order to solve prob-
lems simultaneously on multiple images.

In terms of utilizing parallel computing to solve problems for individual images,
it often makes sense to use a computing system that involves an individual proces-
sor, i.e., a standard multi-core processor, with an attached computational unit. For
example, experimentation shows that it is often effective to solve a series of prob-
lems on an individual image on a single processor system with an attached GPGPU
(General Purpose Graphics Processing Unit). Therefore, an efficient solution to
many an image processing problem requires a combination of medium-grained and
fine-grained processing. That is, a combination of computing on the multi-core sys-
tem combined with fine-grained SIMD computing on the GPGPU. Note that the
GPGPU typically contains several orders of magnitude more processors, where
each of the processors is quite simple, but where groups or blocks of such simple
processors can operate in a synchronous fashion.

C8208_ch11.indd 302C8208_ch11.indd 302 11/15/12 9:38 AM11/15/12 9:38 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Exercises 303

Summary

In this chapter, we examine several fundamental problems involving digitized
 pictures. These problems typically fall into the broad field of image processing.
Problems examined include component labeling, determining the convex hulls of
figures, and problems of distances between sets of pixels, including that of com-
puting the Hausdorff distance between two digital images, a tool for image pattern
matching. We present both RAM and mesh solutions in this chapter. In particular,
the mesh is a natural architecture for implementing efficient algorithms on images
because of the natural mapping of an image to a mesh.

Chapter Notes

This chapter focuses on fundamental problems in image analysis for the RAM
and mesh. These problems make up a nice vehicle to present interesting para-
digms. Many of the mesh algorithms presented in this chapter are derived from
algorithms presented by R. Miller & Q.F. Stout in Parallel Algorithms for Regular
Architectures (The MIT Press, 1996). These algorithms include the component-
labeling algorithm, the all-nearest-neighbor-between-labeled-sets algorithm, and
the minimum internal distance within connected components algorithm. The book
by R. Miller and Q.F. Stout also contains details of some of the data movement
operations that were presented and utilized in this chapter, including rotation
operations based on ordered intervals and so on. The ingenious algorithm used
to compute the transitive closure of an n × n matrix on a RAM was devised by
S. Warshall in his paper “A theorem on Boolean matrices,” in the Journal of the
ACM 9 (1962), 11–12. Further, in 1980, F.L. Van Scoy (“The parallel recognition
of classes of graphs,” IEEE Transactions on Computers 29 (1980), 563–570)
showed that the transitive closure of an n × n matrix could be computed in Θ(n)
time on an n × n mesh.

A classic reference concerning the Hausdorff metric is Hyperspaces of Sets,
by S.B. Nadler, Jr. (Marcel Dekker, New York, 1978).

The paper that introduced the notion of digitally continuous functions (used in
the exercises) is A. Rosenfeld, “‘Continuous’ functions on digital pictures” in
Pattern Recognition Letters 4 (1986), 177–184.

Exercises

 1. Given an n × n digitized image, give an efficient algorithm to determine both
i) the number of black pixels in the image, and ii) the number of white pixels
in the image. Present an algorithm and analysis for both the RAM and mesh.

 2. Let A be the adjacency matrix of a graph G with n vertices. For integer k > 0,
let Ak be the kth power of A, as discussed in the chapter.

C8208_ch11.indd 303C8208_ch11.indd 303 11/15/12 9:38 AM11/15/12 9:38 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

304 Chapter 11 Image Processing

 a. Prove that for i ≠ j, Ak(i, j) = 1 if and only if there is a path in G from vertex
i to vertex j that has at most k edges, for 1 ≤ k ≤ n.

 b. Prove that An+c = An for any positive integer c.

 3. Given an n × n digitized image in which each pixel is associated with a numer-
ical value, provide an efficient algorithm that will set to zero (0) all of the pixel
values that are below the median pixel value of the image. Present analysis for
both the RAM and mesh.

 4. Given an n × n digitized image for which each pixel is associated with a real
number, give an efficient algorithm that will compute for each pixel the aver-
age of its number and those of its eight (8) nearest neighbors. Present analysis
for both the RAM and mesh.

 5. Given a labeled n × n digitized image, give an efficient algorithm to count the
number of connected components in the image. Present analysis for both the
RAM and mesh.

 6. Given a labeled n × n digitized image and a single “marked” pixel somewhere
in the image, give an efficient algorithm that will mark all other pixels in the
same connected component as the “marked” pixel. Present analysis for both
the RAM and mesh.

 7. Given a labeled n × n digitized image, give an efficient algorithm to determine
the number of pixels in every connected component. Present analysis for both
the RAM and mesh.

 8. Given a labeled n × n digitized image and one “marked” pixel per component,
give an efficient algorithm for every pixel to determine its distance to its
marked pixel. Present analysis for both the RAM and mesh.

 9. Given a labeled n × n digitized image, give an efficient algorithm to determine
a minimum-enclosing box of every connected component. Present analysis for
both the RAM and mesh.

 10. Give an efficient algorithm for computing H(A, B), the Hausdorff metric
between A and B, where each of A and B is an n × n digital image. Hint: the
algorithm presented in the text may be improved upon by using row and
 column rotations similar to those that appeared in our algorithm for the all-
nearest-neighbor-between-labeled-sets problem, modified to allow that a pixel
could belong to both A and B. Show that your algorithm can be implemented
to run in worst-case Θ(n2) time on the RAM and in worst-case Θ(n) time on
the mesh.

 11. Suppose A and B are sets of black pixels for distinct n × n digital pictures. Let
f : A → B be a function, i.e., for every (black) pixel a ∈ A, f (a) is a (black)
pixel in B. Using the 4-adjacency notion of neighboring pixels, we say f is
(digitally) continuous if for every pair of neighboring pixels a0, a1 ∈ A, either

C8208_ch11.indd 304C8208_ch11.indd 304 11/15/12 9:38 AM11/15/12 9:38 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Exercises 305

f (a0) = f (a1) or f (a0) and f (a1) are neighbors in B. Prove that the following
are equivalent:

 • f : A → B is a digitally continuous function.

 • For every connected subset A0 of A, the image f (A0) is a connected subset
of B.

 • Using the Euclidean metric (in which 4-connected neighboring pixels are
at distance one apart and non-neighboring pixels are at distance greater
than one), for every a0 ∈ A and every ε ≥ 1, there is a d ≥ 1 such that if
a1 ∈ A and d(a0, a1) ≤ d, then d[f (a0), f (a1)] ≤ ε .

 12. Refer to the previous exercise. Let A and B be sets of black pixels within
respective n × n digital pictures. Let f : A → B be a function. Suppose the
value of f (a) can be computed in Θ(1) time for every a ∈ A. Present an algo-
rithm to determine whether or not the function f is digitally continuous. In the
case of the mesh, the algorithm should let every processor know the result of
this determination. Give your analysis for the RAM and for the n × n mesh.
Your algorithm should run in Θ(n2) time on the RAM and Θ(n) time on an
n × n mesh.

 13. Conway’s Game of Life can be regarded as a population simulation that is
implemented on an n × n digitized picture A. The focus of the “game” is the
transition between a “parent generation” and a “child generation.” The child
generation becomes the parent generation for the next transition. In one ver-
sion of the game, the transition proceeds as follows:

 • If in the parent generation A[i, j] is a black pixel and exactly two or three of
its nearest 8-neighbors are black, then in the child generation A[i, j] is a
black pixel. This simulates life propagated under favorable living condi-
tions. However, if in the parent generation A[i, j] is a black pixel with less
than two black 8-neighbors or more than three black 8-neighbors, then in
the child generation A[i, j] is a white pixel. This simulates life not propa-
gated due to isolation or overcrowding, respectively.

 • If in the parent generation A[i, j] is a white pixel, then in the child generation
A[i, j] is a black pixel if and only if exactly three of its nearest 8-neighbors
are black. As above, this simulates life propagated or not propagated accord-
ing to whether conditions are favorable.

 Present and analyze an algorithm to compute the child generation matrix A
from the parent generation matrix for one transition, for the RAM and the
mesh. Your algorithm should run in Θ(n2) time for the RAM and in Θ(1) time
for the mesh.

C8208_ch11.indd 305C8208_ch11.indd 305 11/15/12 9:38 AM11/15/12 9:38 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Terminology

Representations

Fundamental Algorithms

Computing the Transitive Closure of an Adjacency Matrix

Connected Component Labeling

Minimum-Cost Spanning Trees

Shortest-Path Problems

Summary

Chapter Notes

Exercises

12
Graph Algorithms

Background Photo Credit © Spectral-Design / Shutterstock
All Images used within the chapter are © 2013 Cengage Learning

C8208_ch12.indd 306C8208_ch12.indd 306 11/16/12 12:04 PM11/16/12 12:04 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In this chapter, we focus on algorithms and paradigms to solve fundamental problems
in graph theory, where the input consists of data representing sets of vertices and

edges. We present efficient solutions to traditional problems from graph theory,
 including determining the connected components of a graph, constructing a minimal-
cost spanning tree of a connected graph, and determining shortest paths between
 vertices in a connected graph. The algorithms will be presented for the RAM, the
PRAM, and the mesh.

Many important problems can be expressed in terms of graphs, including prob-
lems involving power grids, water flow, line-of-sight coverage, relationships between
objects, as well as problems involving communication, including telephone land lines,
cellular phones and towers, and satellite communications, to name a few. In addition,
problems involving general scheduling and routing that are critical to a variety of
industrial and governmental concerns can be expressed in terms of graphs, including
land and air transport, local and global delivery services, Internet- and cable-based
services, and so forth. Tasks for which graphs are often used include the following.

• Given a set of locations, determine the cost between locations, where the cost can
be distance, time, or money, to name a few metrics.

• Given a set of objects, determine connectivity between the objects. The resulting
graph can represent a network that is internal to devices such as computer chips,
cell phones, and gaming systems. Such a graph can also represent networks involv-
ing telephone, cable, and satellites, among more macroscopic interconnections.

• Given a set of objects and the network flow between a subset of pairs of the objects,
determine the network flow capacity between the objects. This is an important prob-
lem in a variety of industries, including those involving water, gas, electric, cable,
and Internet.

• Determine an ordered list of tasks. For example, one might create an ordered list
of the tasks necessary to build a guitar.

C8208_ch12.indd 307C8208_ch12.indd 307 11/16/12 12:05 PM11/16/12 12:05 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

308 Chapter 12 Graph Algorithms

Terminology

Let G = (V, E) be a graph consisting of a set V of vertices and a set E of edges. The
edges, which connect members of V, can either all be directed or all undirected,
resulting in either a directed graph or an undirected graph, respectively. That is,
given a directed graph G = (V, E), an edge (a, b) ∈ E represents a directed connec-
tion from vertex a to vertex b, where both a, b ∈ V . Given an undirected graph, an
edge (a, b) ∈ E represents an undirected connection, or bidirectional connection,
between vertices a and b. Problems in graph theory typically do not include i) self-
edges, in which an edge connects a vertex to itself, or ii) multiple occurrences of
an edge. See Figure 12-1 for examples of directed and undirected graphs.

FIGURE 12-1 Four sample graphs. (a) shows a complete undirected graph of
5 vertices. (b) is a directed graph with pairs of vertices (u, v) such that the graph
has no directed path from u to v. (c) is an undirected tree with 7 vertices. (d) is an
undirected mesh of 9 vertices.

(a) (b)

(c) (d)

The number of vertices in G = (V, E) is written as 0V 0 and the number of edges
is written as 0E 0 . However, for convenience, whenever the number of vertices or
number of edges is represented inside of asymptotic notation, we will typically
avoid using the absolute value signs since there is no ambiguity. For example, an
algorithm that runs in time linear in the sum of the vertices and edges will be said
to run in Θ(V + E) time.

C8208_ch12.indd 308C8208_ch12.indd 308 11/16/12 12:05 PM11/16/12 12:05 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Terminology 309

In any description of a graph, we assume that there are unique representations
of all vertices and edges. That is, no vertex will have more than one identity and no
edge will be represented more than once. Given a directed graph, the maximum
number of edges is 0V 0 (0V 0 − 1), while for an undirected graph, the maximum
number of unique edges is 0V 0 (0V 0 − 1)/2. Therefore, the number of edges in a
graph G = (V, E) is such that 0E 0 = O(V 2).

A complete graph G = (V, E) is one in which all possible edges are present.
That is, in a complete graph, there is an edge between every pair of distinct verti-
ces. A sparse graph is one in which there are “relatively few” edges, while a dense
graph is one in which a “high percentage of possible edges” is present. Alternately,
a graph may be termed sparse if 0E 0 / 0V 0 2 is “small,” while a graph may be referred
to as dense if 0E 0 / 0V 0 2 is at least of “moderate” size.

Vertex b is said to be adjacent to vertex a if and only if (a, b) ∈ E. At times,
adjacent vertices will be described as neighbors. An edge (a, b) ∈ E is said to be
incident on vertices a and b. In a weighted graph, every edge (a, b) ∈ E will have
an associated weight or cost (see Figure 12-2).

FIGURE 12-2 An undirected weighted graph is given in (a) that consists of
8 pairs of adjacent vertices. Notice in (a) that the entire graph is connected
since there is a path between every pair of vertices. A directed weighted graph
is given in (b), in which paths are not formed between every pair of vertices.
In fact, notice that vertex e is isolated in that e does not serve as the source of
any nontrivial path. Notice in (a) that a minimum-weight path from a to e is 8a, c, d, e9 , which has a total weight of 3, while in (b) minimum-weight paths
from a to e are 8a, d, e9 and 8a, b, f, d, e9 .

(a)

a

d

c

f

b

2

4

11

1 1

3

1

e

(b)

a

d

c

f

b

2

4

11

1 1

3

1

e

A path in a graph G = (V, E) is a sequence of vertices v1, v2, . . . , vk such that
(vi, vi+1) ∈ E for all 1 ≤ i ≤ k − 1. The length of such a path is defined to be the
number of edges in the path, which in this case is k − 1. A simple path is a path in
which all vertices are unique. A cycle is a path of length 3 or more in which v1 = vk.
A graph is acyclic if it has no cycles. Note that a tree in which all edges point away
from the root is a directed acyclic graph.

C8208_ch12.indd 309C8208_ch12.indd 309 11/16/12 12:05 PM11/16/12 12:05 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

310 Chapter 12 Graph Algorithms

An undirected graph is connected if and only if there is at least one path from
every vertex to every other vertex. Given a graph G = (V, E), a subgraph S of G is
a pair S = (V ', E'), where V ' � V and E ' is a subset of those edges in E that contain
vertices only in V '. The connected components of an undirected graph G = (V, E)
are the maximally connected subgraphs of G (see Figure 12-3).

FIGURE 12-3 An undirected graph with three
 connected components.

A directed graph is called strongly connected if and only if there is at least one
path from every vertex to every other vertex. If a directed graph is not strongly
connected but the underlying graph in which all directed edges are replaced by
undirected edges is connected, then the original directed graph is called weakly
connected (see Figure 12-4).

FIGURE 12-4 A directed graph with three weakly
 connected components and seven strongly
 connected components.

Let G = (V, E) be a connected graph. We say e ∈ E is a bridge edge of G if the
graph Ge = (V, E �{e}) is disconnected. It is easy to see that if G represents a traffic
system, its bridge edges represent potential bottlenecks. We define an articulation

C8208_ch12.indd 310C8208_ch12.indd 310 11/16/12 12:05 PM11/16/12 12:05 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Terminology 311

point of G to be a vertex v ∈ V with the property that its removal would leave the
resulting graph disconnected. That is, v is an articulation point of G if and only if
the graph Gv = (V �{v}, Ev), where Ev = {e ∈ E 0 e is not incident on v}, is a discon-
nected graph. Thus, an articulation point plays a role among vertices analogous to
that of a bridge edge among edges. See Figure 12-5 for examples of bridge edges
and articulation points.

FIGURE 12-5 In this graph, (x, y) and (y, z) are bridge
edges. The vertices y and z are articulation points.

x z

y

In an undirected graph, the degree of a vertex is the number of edges incident
on the vertex, and the degree of the graph is the maximum degree of any vertex in
the graph. In a directed graph, the in-degree of a vertex is the number of edges that
terminate at the vertex and the out-degree of a vertex is the number of edges that
originate at the vertex (see Figure 12-6).

FIGURE 12-6 A directed graph. The in-degree of 8a, b, c, d, e9 is 82,0,1,2,29 , respectively, and the out-
degree of 8a, b, c, d, e9 is 81,1,2,1,29 , respectively.

a

b c

d e

For some problems in graph theory, it makes sense to assign weights to the
edges or vertices of a graph. A graph G = (V, E) is edge-weighted if there is a
weight W(vi, vj) associated with every edge (vi, vj) ∈ E. In the case of edge-weighted
graphs, the distance, or minimal-weight path, between vertices vi and vj is the sum
over the edge weights in a path from vi to vj of minimum total weight. The diame-
ter of such a graph is the maximum of the distances between all pairs of vertices.

C8208_ch12.indd 311C8208_ch12.indd 311 11/16/12 12:05 PM11/16/12 12:05 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

312 Chapter 12 Graph Algorithms

For many applications, it makes sense to consider all edges in an unweighted graph
as having a weight of 1.

Representations

There are several ways to represent a graph. In this book, we will consider three of
the most common, namely, i) a set of adjacency lists, ii) an adjacency matrix, and
iii) a set of arbitrarily distributed edges. It is important to note that in some cases,
the user may have a choice of representations and can therefore choose a represen-
tation for which the computational resources may be optimized. In other situa-
tions, the user may be given the graph in a particular form and may need to design
and implement efficient algorithms to solve problems on the structure.

Adjacency Lists

The adjacency-list representation of a graph G = (V, E) typically consists of 0V 0
lists, one corresponding to each vertex vi ∈ V . For each such vertex vi, its list con-
tains an entry for every edge (vi, vj) ∈ E. To navigate efficiently through a graph,
the headers of the 0V 0 lists are typically stored in an array or linked list, which we
call Adj, as shown in Figure 12-7. In this chapter, unless otherwise specified, we
will assume an array implementation of Adj so that we can refer to the adjacency
list associated with vertex vi ∈ V as Adj(vi). It is important to note that we do not
assume the adjacency lists are ordered.

FIGURE 12-7 A directed graph and its adjacency-list representation.

1 Adj

2
3
4
5

2

4
5
3

3

5

1 4

2 3

4 5

1

If the graph G = (V, E) is a directed graph, then the total number of entries in all
adjacency lists is 0E 0 , since every edge (vi, vj) ∈ E is represented only in Adj(vi).
However, if the graph G = (V, E) is an undirected graph, then the total number of
entries in all adjacency lists is 2 0E 0 , since every edge (vi, vj) ∈ E is represented in
both Adj(vi) and Adj(vj). Notice that, regardless of the type of graph, an adjacency-
list representation has the feature that the space required to store the graph is Θ(V + E).
Assuming that one must store some information about every vertex and about every
edge in the graph, this is an optimal representation with respect to the space used.

Suppose the graph G = (V, E) is weighted. Then the elements in the individual
adjacency lists can be modified to store the weight of every edge or vertex, as

C8208_ch12.indd 312C8208_ch12.indd 312 11/16/12 12:05 PM11/16/12 12:05 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Representations 313

appropriate. For example, given an edge-weighted graph, an entry in Adj(vi) cor-
responding to edge (vi, vj) ∈ E can store the identity of vj, a pointer to Adj(vj), the
weight W(vi, vj), other miscellaneous fields required for necessary operations, and
a pointer to the next record in the list, all in Θ(1) space.

While the adjacency-list representation is robust, in that it can be modified to sup-
port a wide variety of graphs and is asymptotically efficient in storage, it does have
the drawback of not allowing quick detection of whether or not an edge (vi, vj) exists.
In the next section, we consider a representation that will overcome this deficiency.

Adjacency Matrix

An adjacency matrix is presented in Figure 12-8 that corresponds to the adjacency
list presented in Figure 12-7. For a graph G = (V, E), the adjacency matrix A is a 0V 0 × 0V 0 matrix in which entry A(i, j) = 1 if (vi, vj) ∈ E and A(i, j) = 0 if (vi, vj) ∉ E.
Thus, row i of the adjacency matrix contains all information in Adj(vi) of the
 corresponding adjacency list. Notice that the matrix contains a single bit at each of
the Θ(V 2) positions. Further, if the graph is undirected and i ≠ j, there is no need to
store both A(i, j) and A(j, i), since A(i, j) = A(j, i). That is, for an undirected graph,
one only needs to maintain either the upper triangular or lower triangular portion
of the adjacency matrix. More generally, for an edge-weight graph, each entry
A(i, j) will be set to the weight of edge (vi, vj) if the edge exists and will be set to 0
otherwise. Given either a weighted or unweighted graph that is either directed or
undirected, the total space required by an adjacency matrix is Θ(V 2).

FIGURE 12-8 An adjacency matrix representation
of the graph presented in Figure 12-7.

0
0
0
0
1

1
2
3
4
5

1
0
0
0
0

1
0
0
0
1

0
0
1
0
1

0
1 2 3 4 5

0
1
1
0

The adjacency matrix has the advantage of providing direct access to informa-
tion concerning the existence or absence of an edge. Given a dense graph, the
adjacency matrix also has the advantage that it requires only one bit per entry, as
opposed to the additional pointers required by the adjacency-list representation.
However, for relatively sparse graphs, the adjacency list has the advantage of
requiring less space and providing a relatively simplistic manner in which to tra-
verse a graph. For an algorithm that requires the examination of all vertices and all
edges, an adjacency-list implementation can provide a sequential algorithm with
running time of Ω(V + E), while an adjacency matrix representation would result

C8208_ch12.indd 313C8208_ch12.indd 313 11/16/12 12:05 PM11/16/12 12:05 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

314 Chapter 12 Graph Algorithms

in a sequential running time of Ω(V 2). Thus, the algorithm based on the adjacency
list might be significantly more efficient.

Unordered Edges

A third form of input that we mention is that of unordered edges, which provides
the least amount of information and structure. Given a graph G = (V, E), unordered
edge input is such that the 0E 0 edges are distributed in an arbitrary fashion through-
out the memory of the machine. On a sequential computer, one will typically
restructure this information in order to create adjacency-list or adjacency-matrix
input. However, on parallel machines, it is not always economical or feasible to
perform such a conversion.

Fundamental Algorithms

In this section, we consider fundamental algorithms for traversing and manipulat-
ing graphs. It is often useful to be able to visit the vertices of a graph in some well-
defined order based on the graph’s topology. We first consider sequential approaches
to this concept of graph traversal. The two major techniques we consider, breadth-
first search and depth-first search, both have the property that they begin with a
specified vertex and then visit all other vertices in a deterministic fashion. In the
presentation of both of these algorithms, the reader will notice that we keep track of
the vertices as they are visited. Following the presentations of fundamental sequen-
tial traversal methods, we will review the fundamental problem of computing the
transitive closure of a binary matrix, for the RAM, PRAM, and mesh.

Breadth-First Search

The first algorithm we consider for traversing a graph is called breadth-first search
(BFS). The general flow of a BFS traversal is first to visit a predetermined “root”
vertex r, then visit all vertices at distance 1 from r, then visit all vertices at dis-
tance 2 from r, and so on. This is a standard technique for traversing a graph
G = (V, E). On a RAM, the search procedure is as follows.

• Start the search at a root vertex r ∈ V .

• Add all neighboring vertices of the vertex under consideration to a queue.

• Process the queue in a standard first-in, first-out (FIFO) order.

So, initially all vertices v ∈ V are marked as unvisited, and the queue is initial-
ized to contain only a root vertex r ∈ V . The algorithm proceeds by removing the
root from the queue, leaving us with an empty queue, determining all neighbors of
this root vertex just removed from the queue, and placing every neighbor of the root
into the queue. In general, each iteration of the algorithm consists of the following.

• Remove the next vertex v ∈ V from the queue.

• Examine all neighbors of v in G in order to determine those that have not yet
been visited during the search.

C8208_ch12.indd 314C8208_ch12.indd 314 11/16/12 12:05 PM11/16/12 12:05 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Fundamental Algorithms 315

1

3

16
2

15 12

13 14

11

10

17

9

7

8

18

19

6

5

4

7, 4, 6, 18
traversals

(c) This tree is associated with a traversal
<10, 9, 12, 11, 3, 17, 7, 13, 14, 15, 16,
2, 1, 5, 18, 8, 6, 4, 19> of G, though
the traversals of G would also yield this tree.

• Mark each of these previously unvisited neighbors as visited.

• Enter these previously unvisited neighbors of v into the queue.

This process of removing an element from the queue and entering its unvisited
neighbors into the queue continues until the queue is empty and the last vertex
removed from the queue has no unvisited neighbors. Once the queue is empty at
the conclusion of a remove-explore-enter step, all vertices reachable from the root
vertex r ∈ V , i.e., all vertices in the same component of G as r, have been visited.
Further, if the vertices are output as they are removed from the queue, the resulting
list corresponds to a breadth-first search tree over the graph G = (V, E) with root
r ∈ V (see Figure 12-9).

FIGURE 12-9 An example of a breadth-first search traversal. Depending on the
order in which the vertices of a graph are stored, a breadth-first search could
yield a variety of breadth-first search trees.

1

3

16
2

15 12

13 14

11

10

17

9

7

8

18

19

6

5

4

(a) A given graph G.

1

3

16
2

15 12

13 14

11

10

17

9

7

8

18

19

6

5

4

(b) This tree is associated with a traversal
<10, 3, 12, 11, 9, 5, 17, 16, 2, 1, 15, 13, 14,
7, 4, 6, 18, 8, 19> of G, though other
traversals of G would also yield this tree.

C8208_ch12.indd 315C8208_ch12.indd 315 11/16/12 12:05 PM11/16/12 12:05 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

316 Chapter 12 Graph Algorithms

We now present an algorithm for the RAM that will implement a breadth-first
search of a graph and record the distance from the root to every reachable vertex
(see Figure 12-10). That is, every vertex that can be reached by a path from the
root. The reader should note that our algorithm is presented as a graph traversal.
That is, this procedure will visit every vertex of the root’s component. Such a pro-
cedure is easily modified to solve the query problem by returning to the calling
routine with the appropriate information when a vertex is reached that is associ-
ated with the requested key.

BFSroutine (G, r)
CreateEmptyQueue(Q) {Initialize the queue}
For all vertices v ∈ V, do
 visited(v) ← false {Initialize vertices to
 “unvisited”}
 dist(v) ← ∞ {Initialize all distances}
 parent(v) ← null {Initialize parents of
 all vertices}
End For

{*} visited(r) ← true {Initialize root vertex — it
 dist(r) ← 0 is visited, it has distance 0

PlaceInQueue(Q, r) from itself, and it goes into
 the queue}
While NotEmptyQueue(Q), do
 v ← RemoveFromQueue(Q) {Take first element from
 queue: v}
 For all vertices w ∈ Adj(v), do {Examine all neighbors
 of v}
 If not visited(w) then {Process unvisited neighbors}
 visited(w) ← true {Mark neighbor as visited}
 parent(w) ← v {The BFS parent of w is v}
 dist(w) ← dist(v) + 1 {Dist. fr. w to r is 1 more
 than distance from its
 parent, v, to r}
 PlaceInQueue (Q, w) {Place w at end of queue}
 End If
 End For
End While

Notice that the steps that compute the parent of a vertex v and the distance of v
from the root are not necessary to the graph traversal. We have included these steps
as they are useful to other problems we discuss below. Also note that what we have
described as “v ← RemoveFromQueue(Q)” may involve not only dequeuing a node
from the queue, but also processing the node as required by the graph traversal.

C8208_ch12.indd 316C8208_ch12.indd 316 11/16/12 12:05 PM11/16/12 12:05 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Fundamental Algorithms 317

Given a connected undirected graph G = (V, E), a call to BFSroutine(G, r) for
any r ∈ V will visit every vertex and every edge. In fact, a careful examination
shows that every edge will be visited exactly twice and that every vertex will be
considered at least once. Further, each vertex is visited only once. Every other
consideration of a vertex is part of the consideration of an edge incident on the
vertex. Therefore, assuming that entering and removing items from a queue are
performed in Θ(1) time, the sequential running time for this BFSroutine on a con-
nected undirected graph is Θ(V + E).

Now, suppose that the undirected graph G = (V, E) is not necessarily con-
nected. We can extend the BFSroutine in order to visit all vertices of G. See
Figure 12-11 while considering the algorithm below.

BFS-all-undirected (G = (V, E))
CreateEmptyQueue(Q) {Initialize the queue}
For all vertices v ∈ V, do
 visited(v) ← false {Initialize vertex to “unvisited”}
 dist(v) ← ∞ {Initialize distance}
 parent(v) ← nil {Initialize parent}
End For
For all v ∈ V, do {Consider all vertices in the graph}
 If not visited(v), then
 BFSroutine(G, v) at line {*} {Perform a BFS starting
 at every vertex not previously
 visited—call BFSroutine, but jump
 immediately to line {*}}
End For

FIGURE 12-10 An undirected connected graph with distances from the root vertex r
recorded next to the vertices. One possible traversal of the vertices in this graph by
a breadth-first search is 8r, c, b, a, e, f, d, i, j, g, h, k, l, m, n, o9 .

a

d

g i h

e kf

j

l

n

o

mb

r
0

1 1 5 51

2

3 4 3 3 7

2
42 6

c

C8208_ch12.indd 317C8208_ch12.indd 317 11/16/12 12:05 PM11/16/12 12:05 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

318 Chapter 12 Graph Algorithms

Analysis similar to that given above for BFSroutine yields that given an undi-
rected graph G = (V, E), the procedure BFS-all-undirected will visit all vertices
and traverse all edges in the graph in Θ(V + E) time on a sequential machine.

Depth-First Search

The second algorithm we consider for traversing a graph is called depth-first
search (DFS). The philosophy of DFS is to start at a predetermined “root” vertex r
and recursively visit a previously unvisited neighbor v of r. These vertices are vis-
ited one by one, until all neighbors of r have been visited. As we remarked earlier,
BFS and DFS are standard techniques for traversing or presenting a graph.
Algorithmically, the DFS procedure on a RAM follows.

 1. Start at a root vertex r ∈ V .

 2. Determine a previously unvisited neighbor v of r.

 3. Recursively visit v. That is, consider v as r when performing step 1 of the
recursion.

 4. If not all neighbors of v have been visited, then go to step 2.

The algorithm is recursive in nature. A more detailed description follows.
Given a graph G = (V, E), choose an initial vertex r ∈ V , which we again call the
root, and mark r as visited. Next, find a previously unvisited neighbor of r, say, v.
Recursively perform a depth-first search on v and then return to consider any other
neighbors of r that have not been visited (see Figure 12-12). A simple recursive
presentation of this algorithm is given below.

FIGURE 12-11 An undirected graph that
is not connected. The two connected
components can be labeled in time linear
in the number of vertices plus the number
of edges by a simple extrapolation of the
breadth-first search algorithm.

a

d

g i h

e kf

l

n

o

mb

r

c

C8208_ch12.indd 318C8208_ch12.indd 318 11/16/12 12:05 PM11/16/12 12:05 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Fundamental Algorithms 319

{Assume that visited(v) ← false
for all v ∈ V prior to this routine being called}

DFSroutine(G,r)
visited(r) ← true {Mark r as being visited.}
For all vertices v ∈ Adj(r), do {Consider all
 neighbors of r in turn.}
 If not visited(v) do {If a given neighbor has
 not been visited, mark its
 parent(v) ← r parent as r and recursively
 visit this neighbor. Note
 DFSroutine (G, v) the recursive step causes v
 to be marked visited.}
 End If
End For

FIGURE 12-12 An example of a depth-first search traversal. Notice that the graph
given in (a) is identical to the graph G utilized in Figure 12-9a.

1

3

16
2

15 12

13 14

11

10

17

9

7

8

18

19

6

5

4

(a) A given graph G.

traversals of G w

(c) This tree is associated with a traversal
<10, 12, 16, 3, 17, 9, 11, 7, 18, 19, 6, 5,
4, 8, 1, 2, 15, 14, 13> of G, though
other traversals of G would also yield this tree.

1

3

16
2

15 12

13 14

11

10

17

9

7

8

18

19

6

5

4

(b) This tree is associated with a traversal
<10, 3, 1, 2, 15, 12, 13, 14, 16, 5, 4, 6, 19,
18, 7, 8, 9, 11, 17> of G, though other
traversals of G would also yield this tree.

1

3

16
2

15 12

13 14

11

10

17

9

7

8

18

19

6

5

4

C8208_ch12.indd 319C8208_ch12.indd 319 11/16/12 12:05 PM11/16/12 12:05 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

320 Chapter 12 Graph Algorithms

As in the breadth-first search graph traversal, the step that computes the parent
of a vertex is not necessary to perform a depth-first search graph traversal, but it is
included for its usefulness in a number of related problems. The step we have
described as “visited(r) ← true” is typically preceded or followed by steps that
process the vertex r as required by the graph traversal. Also, as with a breadth-first
search, we have presented depth-first search as a graph traversal algorithm that can
be modified by the insertion of a conditional exit instruction if a traditional search
is desired that stops upon realizing success.

The RAM implementation of depth-first search, as presented, is an example of
a “backtracking” algorithm. That is, when considering a given vertex v, the algo-
rithm considers all of v’s “descendants” before backtracking to the parent of v in
order to allow its parent to continue with the traversal. Now, consider the analysis
of DFSroutine on a sequential platform. Notice that every vertex is initialized to
unvisited and that every vertex is visited exactly once during the search. Also,
notice that every directed edge in a graph is considered exactly once. Note that
every undirected edge would be considered twice, once from the point of view of
each incident vertex. Therefore, the running time of DFSroutine on a graph
G = (V, E) is Θ(V + E), which is the same as the running time of BFSroutine.

Discussion of Depth-First and Breadth-First Search

A depth-first search tree T = (V, E ') of a graph G = (V, E) is formed during a depth-
first search of the graph G, as follows. An edge (u, v) ∈ E is a member of E ' if and
only if one of its vertices is the parent of the other vertex. Given a depth-first
search tree T = (V, E ') of G, it should be noted that if an edge (u, v) ∈ E is not in E ',
then either

• u is a descendant of v in T and v is not the parent of u, or

• v is a descendant of u in T and u is not the parent of v. See Figure 12-13.

FIGURE 12-13 A depth-first search tree T = (V, E ') of a graph G = (V, E). An edge
(u, v) ∈ E is a member of E ' if and only if one of its vertices is the parent of the
other vertex. Edge (u, x) ∈ E is not in E ', corresponding to the fact that one of its
vertices is an ancestor but not the parent of the other.

G=(V, E)

xv

u

r

T=(V, E ')

v

u

r

x

C8208_ch12.indd 320C8208_ch12.indd 320 11/16/12 12:05 PM11/16/12 12:05 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Computing the Transitive Closure of an Adjacency Matrix 321

Each vertex v in a depth-first search tree of G can be given a time stamp corres-
ponding to when the vertex was first encountered and another time stamp corre-
sponding to when the search finished examining all of v’s neighbors. These time
stamps can be used in higher-level graph algorithms to solve interesting and impor-
tant problems. Problems typically solved through a depth-first search include label-
ing the strongly connected components of a directed graph, performing a topological
sort of a directed graph, determining articulation points and biconnected compo-
nents, and labeling connected components of undirected graphs, to name a few.

A breadth-first search tree is similarly formed from the edges joining parent
and child vertices in a BFS of a graph G = (V, E). Given a breadth-first search tree
T = (V, E ') of G, it should be noted that if an edge (u, v) ∈ E is not in E ', then u is
not a descendant of v in T and v is not a descendant of u in T (see Figure 12-14).

FIGURE 12-14 A breadth-first search tree
T = (V, E ') of G = (V, E). If an edge (u, v) ∈ E is
not in E ', then u is not a descendant of v in T
and v is not a descendant of u in T.

u v

r

u v

r

v

(a) G=(V, E) (b) T=(V, E ')

u

r

v u

r

The vertices in a breadth-first search tree T = (V, E ') of G = (V, E) are at mini-
mum distance from the root r ∈ V of the tree. That is, the distance of u ∈ V in T
from r is the length of a shortest path in G from u to r. This is a useful property
when we consider certain minimal path-length problems, including the single-
source shortest-path problem. Such searches, however, are not useful when one is
considering weighted paths, which occurs, e.g., when solving the minimal weight
spanning tree problem. A breadth-first search of a graph can be used to solve a
number of problems, including determining whether or not a graph is bipartite.

Computing the Transitive Closure
of an Adjacency Matrix

In this section, we review both the sequential and mesh implementations of a tran-
sitive closure algorithm. The algorithm to compute the transitive closure of a
matrix is a critical component in terms of developing efficient algorithms to solve
a variety of fundamental graph problems. We assume that we are given a directed

C8208_ch12.indd 321C8208_ch12.indd 321 11/16/12 12:05 PM11/16/12 12:05 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

322 Chapter 12 Graph Algorithms

graph G = (V, E), where n = 0V 0 , represented by an n × n adjacency matrix. In such
a representation, A(i, j) = 1 if and only if there is an edge from vi to vj in E.
Otherwise, A(i, j) = 0.

The transitive closure of A is represented as a binary matrix A*n×n in which
A*(i, j) = 1 if and only if there is a path in G from vi to vj. Therefore, A*(i, j) = 0 if
no such path exists. As we have previously discussed, one way to obtain the transi-
tive closure of an adjacency matrix A is to multiply A by itself n times. This is not
very efficient, however. Alternatively, one could perform ⎡log2 n⎤ operations of
squaring the matrix. That is, we could perform the computations A × A = A2,
A2 × A2 = A4, and so on until a matrix Am is obtained, where m ≥ n. Sequentially,
this squaring procedure would result in a Θ(n3 log n) time algorithm, while on a
mesh of size n2, the procedure would run in Θ(n log n) time.

Consider the binary matrix Ak(i, j) representing G, with the interpretation that
Ak(i, j) = 1 if and only if there is a path from vi to vj that only uses {v1, . . . , vk} as
intermediate vertices. Notice that A0 = A and that An = A*. Further, notice that there
is a path from vi to vj using intermediate vertices {v1, . . . , vk} if and only if either
there is a path from vi to vj using intermediate vertices {v1, . . . , vk−1} or there is a path
from vi to vk using intermediate vertices {v1, . . . , vk−1} and a path from vk to vj also
using only intermediate vertices {v1, . . . , vk−1}. This observation forms the founda-
tion of Warshall’s algorithm, which can be used to compute the transitive closure of
A on a sequential machine in Θ(n3) time. The sequential algorithm follows.

For k = 1 to n, do
 For i = 1 to n, do
 For j = 1 to n, do
 Ak(i, j) ← Ak−1(i, j)∨ 3Ak−1(i, k)∧ Ak−1(k, j)4
 End For j
 End For i
End For k

Now, consider an implementation of Warshall’s algorithm on a mesh computer.
Suppose A is stored in an n × n mesh such that processor Pi, j stores entry A(i, j).
Further, suppose that at the end of the algorithm processor Pi, j is required to store
entry A*(i, j) = An(i, j). This can be accomplished with some interesting movement
of data that adheres to the following conditions.

 1. Entry Ak(i, j) is computed in processor Pi, j at time 3k + 0 k − i 0 + 0 k − j 0 − 2.

 2. For all k and i, the value of Ak(i, k) moves in a horizontal lock-step fashion in
row i away from processor Pi, k.

 3. For all k and j, the value of Ak(k, j) moves in a vertical lock-step fashion in
column j away from processor Pk, j.

See Figure 12-15 for an illustration of this data movement. Notice from condi-
tion 1 that the algorithm runs in Θ(n) time. The reader is advised to spend some

C8208_ch12.indd 322C8208_ch12.indd 322 11/16/12 12:05 PM11/16/12 12:05 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Connected Component Labeling 323

time with small examples of the mesh implementation of Warshall’s algorithm in
order to be comfortable with the fact that the appropriate items arrive at the appro-
priate processors at the precise time that they are required. Therefore, there is no
congestion or bottleneck in any of the rows or columns.

FIGURE 12-15 Data movement of van Scoy’s implementation of Warshall’s
 transitive closure algorithm on a mesh. Ak(k, k) is computed at time t = 3k − 2, in
processor Pk, k. During the next time step, this value is transmitted to processors
Pk, k+1, Pk, k−1, Pk+1, k, and Pk−1, k, as shown in (a). At time t + 1 = 3k − 1, the values
Ak(k − 1, k), Ak(k, k + 1), Ak(k + 1, k), and Ak(k, k − 1) are computed in processors
Pk−1, k, Pk, k+1, Pk+1, k, and Pk, k−1, respectively, as shown in (b). The arrows
 displaying data movement in (b) show the direction that this information begins
to move during time step t + 2 = 3k.

Ak(k,k)

(a) At time t = 3k – 2, Ak(k, k)
is computed in processor Pk, k.

(b) The values Ak(k – 1, k), Ak(k, k + 1),
Ak(k + 1, k), and Ak(k, k – 1) are
computed in processors Pk–1, k, Pk, k+1,
Pk+1, k, and Pk, k–1, respectively.

Ak(k,k�1)

Ak(k�1,k)

Ak(k+1,k)

Ak(k,k+1)

The mesh algorithm for the generalized transitive closure can be used to solve
the connected component labeling problem, the all-pairs shortest-path problem,
and to determine whether or not a graph is a tree, to name a few. The first two
algorithms will be discussed in more detail later in the chapter.

Connected Component Labeling

In this section, we consider the problem of labeling the connected components of
an undirected graph. The labeling should be such that if vertex v is assigned a label
label(v), then all vertices to which v is connected are assigned the same compo-
nent label of label(v).

RAM

A simple sequential algorithm can be given to label all of the vertices of an undi-
rected graph. Such an algorithm consists of applying the breadth-first search

C8208_ch12.indd 323C8208_ch12.indd 323 11/16/12 12:05 PM11/16/12 12:05 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

324 Chapter 12 Graph Algorithms

procedure to a given vertex. During the breadth-first search, the label corresponding
to the initial vertex is propagated. Once the breadth-first search is complete, a search
is made for any unlabeled vertex. If one is found, then the BFS is repeated, labeling
the next component, and so on. An algorithm follows. The reader should observe
that this is a modification of the BFS-all-undirected algorithm presented earlier in
the chapter.

1. Given a graph G = (V, E), where V = {v1, v2, . . . vn}.
2. Assign label(v) = null for all v ∈ V {Initialize
 labels of all vertices,
 representing each vertex
 as currently unvisited}
3. For i = 1 to n, do
4. If label(vi) = null, then {If vertex hasn’t been
 visited/labeled so far,
 then initiate a search,
5. BFSroutine(G, vi) during which we set
 label(v) = i for every
 vertex visited}
6. End If
7. End For

The algorithm is straightforward. Since the graph is undirected, every invoca-
tion of BFSroutine will visit and label all vertices that are connected to the given
vertex vi. Due to the For-loop, the algorithm will consider every connected compo-
nent. The running time for the step that calls BFSroutine in aggregate is Θ(V + E)
since every vertex and every edge in the graph is visited within the context of one
and only one breadth-first search. Hence, the running time of the algorithm is
Θ(V + E), which is optimal in the size of the graph.

PRAM

The problem of computing the connected components of a graph G = (V, E) is
considered a fundamental problem in the area of graph algorithms. Unfortunately,
an optimal parallel strategy for performing a breadth-first search or a depth-first
search of a graph on a PRAM is not known. For this reason, a significant amount
of effort has been applied to the development of an efficient PRAM algorithm to
solve the graph-based connected component problem. Several efficient algorithms
have been presented with slightly different running times and on a variety of
PRAM models. The basic strategy of these algorithms consists of processing the
graph for O(log V) stages. During each stage, the vertices are organized as a forest
of directed trees, where each vertex is in one tree and has a link, i.e., a directed

C8208_ch12.indd 324C8208_ch12.indd 324 11/16/12 12:05 PM11/16/12 12:05 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Connected Component Labeling 325

3131

2 10

12 11 15

497

148 6

5

(a) The initial undirected graph G = (V,E).

(b) The initial forest consisting of a distinct tree representing every vertex in V.

1

8

2

9

3

10

4

11

5

12

6

13

7

14 15

(c) The result of every vertex in V attaching to its minimum-labeled neighbor.

1

6 5

14

13
4

9

7

2

12

3

11

15

10

8

edge or pointer, to its parent in that tree. All vertices in such a tree are in the same
connected component of the graph. The algorithm repeatedly combines trees con-
taining vertices in the same connected component. However, until the algorithm
terminates, there is no guarantee that every such tree represents a maximally con-
nected component.

Initially, there are 0V 0 directed trees, each consisting of a vertex pointing to
itself. (Refer to the example presented in Figure 12-16.) During the i th stage of
the algorithm, trees from stage i − 1 are hooked or grafted together and com-
pressed by a pointer-jumping operation so that the trees do not become unwieldy.
Each such compressed tree is referred to as a supervertex. When the algorithm
terminates, each supervertex corresponds to a maximally connected component
in the graph and takes the form of a star, i.e., a directed tree in which all vertices
point directly to the root vertex. It is the implementation of hooking that is critical
to designing an algorithm that runs in O(log V) stages. We will present an algo-
rithm for an arbitrary CRCW PRAM that runs in O(log V) time using Θ(V + E)
processors.

C8208_ch12.indd 325C8208_ch12.indd 325 11/16/12 12:05 PM11/16/12 12:05 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

326 Chapter 12 Graph Algorithms

Define index(vi) = i to be the index of vertex vi. Define root(vi) as a pointer to
the root of the tree, or supervertex, that vi is a currently a member of. Then we can
define the hooking operation hook(vi, vj) as an operation that attaches root(vi) to
root(vj), as shown in Figure 12-17.

We can determine, for each vertex vi ∈ V, whether or not vi belongs to a star,
by the following procedure.

 1. Determine the Boolean function star(vi) for all
vi ∈ V, as follows.

 2. For all vertices vi, do in parallel
 3. star(vi) ← true
 4. If root(vi) ≠ root(root(vi)), then
 5. star(vi) ← false
 6. star(root(vi)) ← false
 7. star(root(root(vi))) ← false
 8. End If
 9. star(vi) ← star(root(vi))
10. End For

FIGURE 12-16 A general description of a parallel component labeling algorithm.
Note that when we present supervertices, the first vertex in the list will serve as the
label for the supervertex.

(d) The four disjoint subgraphs resulting from the compression given in (c).

< 1, 4, 5, 6, 9, 13> < 2, 3, 10, 12 > < 7, 8, 14 > < 11, 15 >

(e) The result from each of these four supervertices choosing its
minimum-labeled neighbor.

< 1, 4, 5, 6, 9, 13 >

< 2, 3, 10, 12 > < 7, 8, 14 >

< 11, 15 >

(f) The final stage of the algorithm in which all vertices in the connected
graph have been compressed into a single supervertex.

< 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 >

C8208_ch12.indd 326C8208_ch12.indd 326 11/16/12 12:05 PM11/16/12 12:05 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Connected Component Labeling 327

(c) The two supervertices are merged.

parent(vi
)

root(

parent(vi

))

vi

root(

parent(vi

))

(b) The supervertex that v
i
 is a member of chooses to

hook to the supervertex containing parent(v
i
) since

since root(parent(v
i
)) is a minimum label over

all of the supervertices to which members of the
supervertex labeled root(v

i
) are connected.

root(vi
)

vi

parent(vi
)

(a) v
i
 and parent(v

i
) are in different supervertices.

root(vi
)

vi parent(vi
)

root(

parent(vi

))

FIGURE 12-17 A demonstration of the hooking
operation.

See Figure 12-18 for an example that shows the necessity of Step 9. It is easily
seen that this procedure runs in Θ(1) time.

The basic component labeling algorithm follows.

• The goal is to label the connected components of an undirected graph
G = (V, E).

• Assume that every edge between vertices vi and vj is represented by a pair of
unordered edges (vi, vj) and (vj, vi).

• Recall that we assume an arbitrary CRCW PRAM. That is, if there is a write
conflict, one of the writes will arbitrarily succeed.

C8208_ch12.indd 327C8208_ch12.indd 327 11/16/12 12:05 PM11/16/12 12:05 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

328 Chapter 12 Graph Algorithms

For all vi ∈ V, set root(vi) = vi {Initialize
 supervertices.}
For all (vi, vj) ∈ E, do {Loop uses arbitrary
 CRCW property}
 If index(vi) > index(vj), then hook(vi, vj)
 {Hook larger indexed vertices into
 smaller indexed vertices.}
End For all (vi, vj) ∈ E
Repeat
 Determine star(vi) for all vi ∈ V
 For all (vi, vj) ∈ E, do
 If vi is in a star and
 index(root(vi)) > index(root(vj)), then
 hook(vi, vj) {Hook vertices in star
 to neighbors with
 lower-indexed roots}
 Determine star(vi) for all vi ∈ V
 For all vertices vi, do
 If vi is not in a star, then
 root(vi) ← root(root(vi)) {pointer jumping}
Until no changes are produced by the steps of the Repeat
loop

FIGURE 12-18 Computing the star function in
parallel. Arrows represent root pointers. Step 3
initializes star(vi) ← true for all vertices.
Steps 5-7 change star(a), star(b), star(c), and
star(d) to false. However, we require Step 9 to
change star(e) to false.

a

eb

c

d

C8208_ch12.indd 328C8208_ch12.indd 328 11/16/12 12:05 PM11/16/12 12:05 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Minimum-Cost Spanning Trees 329

While it is beyond the scope of this book, it can be shown that the algorithm
above is correct for an arbitrary CRCW PRAM. Critical observations can be made,
including the following.

• At any time during the algorithm, the structure defined by the set of root point-
ers corresponds to a proper upward-directed forest, as no vertex ever has a root
with a larger index.

• When the algorithm terminates, the forest defined by the root pointers consists
of stars.

Given an arbitrary CRCW PRAM with Θ(V + E) processors, every computa-
tional step in the algorithm defined above runs in Θ(1) time. Therefore, we only
need to determine the number of iterations required for the main loop before the
algorithm naturally terminates with stars corresponding to every connected com-
ponent. It can be shown that each pass through the loop reduces the height of a
non-star tree by a fixed fraction. Therefore, the algorithm will terminate after
O(log V) steps, yielding an algorithm with total cost of O((V + E) log V), which is
not optimal. In fact, slightly more efficient algorithms are possible, but they are
beyond the scope of this book.

Mesh

Recall that a single step of a PRAM computation with n processors operating on a
set of n data items can be simulated on a mesh of size n in Θ(n1/2) time by sort-based
associative read and associative write operations. Therefore, given a graph G = (V, E)
represented by a set of 0E 0 unordered edges, distributed arbitrarily one per proces-
sor on a mesh of size 0E 0 , the component labeling algorithm can be solved in
Θ(E1/2 log E) time. Notice that this is at most a factor of Θ(log E) from optimal on
a mesh of size 0E 0 . However, it is often convenient to represent a dense graph by an
adjacency matrix. So consider the situation in which a 0V 0 × 0V 0 adjacency matrix
is distributed in a natural fashion on a mesh of size 0V 0 2. Then, by applying the
time-optimal transitive closure algorithm followed by a simple row or column
 rotation, the component labeling algorithm can be solved in Θ(V) time, which is
optimal for this combination of architecture and graph representation.

Minimum-Cost Spanning Trees

Suppose we want to install an Internet backbone at an office park so that there is at
least one path between every pair of buildings. Further, suppose we want to mini-
mize the total amount of “cable” that we lay. Viewing the buildings as vertices and
the cables between buildings as edges, then this cabling problem is reduced to
determining a spanning tree covering the buildings in which the total length of
cable that is laid is minimized. This leads to the definition of a minimum-cost
spanning tree.

C8208_ch12.indd 329C8208_ch12.indd 329 11/16/12 12:05 PM11/16/12 12:05 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

330 Chapter 12 Graph Algorithms

Given a connected undirected graph G = (V, E), we define a spanning tree
T = (V, E '), where E ' � E, as a connected acyclic graph. The reader should verify
that in order for T to have the same vertex set as the connected graph G, and for T
not to contain any cycles, T must contain exactly 0V 0 − 1 edges. Suppose that for
every edge e ∈ E, there exists a weight w(e), where such a weight might represent,
for example, the cost, length, or time required to traverse the edge. Then a mini-
mum-cost spanning tree T is a spanning tree over G in which the weight of the tree
is minimized with respect to every spanning tree of G. The weight of a tree
T = (V, E') is defined intuitively to be

w(T) = a e∈E '
w(e).

Note that a minimum-cost spanning tree is sometimes referred to as a minimal
spanning tree, minimum-weight spanning tree, minimum spanning tree, or MST.

RAM

In this section, we consider three traditional algorithms for determining a mini-
mum-cost spanning tree of a connected, weighted, undirected graph G = (V, E) on
a RAM. All three algorithms use a greedy approach to solving the problem by
repeatedly making the best local choice in an effort to obtain the global solution.
At any point during these algorithms, a set of edges E ' exists that represents a sub-
set of some minimal spanning tree of G. At each step of these algorithms, a “best”
edge is selected from those that remain, based on certain properties, and added to
the working minimal spanning tree. One of the critical properties of any edge that
is added to E ' is that it is safe, i.e., that the updated edge set E ' will continue to
represent a subset of the edges of some minimal spanning tree for G.

Kruskal’s Algorithm
The first algorithm we consider is Kruskal’s algorithm. In this greedy algorithm,
E ' is a forest over all vertices V in G. Furthermore, this forest will always be a sub-
set of some minimum spanning tree. Initially, we set E ' = φ, which represents the
forest of isolated vertices. We also sort the edges of the graph into increasing order
by weight. At each step in the algorithm, the next smallest weight edge from the
ordered list is chosen and that edge is added to E ' so long as it does not create a
cycle. The algorithm follows.

Kruskal’s MST Algorithm
In 1956, J.B. Kruskal proposed a greedy algorithm for determining the minimal
spanning tree of a graph. Kruskal’s approach was to assume initially that every
vertex of a graph G = (V, E) is an independent connected component of a graph
G ' = (V, φ), which will morph into the minimal spanning tree G' = (V, E ') by add-
ing edges to E ' in a greedy fashion. Specifically, at each iteration of the algorithm,
an edge of minimal weight that does not create a cycle in G ' will be added to E '.

C8208_ch12.indd 330C8208_ch12.indd 330 11/16/12 12:05 PM11/16/12 12:05 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Minimum-Cost Spanning Trees 331

The algorithm terminates when there are no edges left to add to G' = (V, E '), the
minimal spanning tree of G = (V, E).

The resources required by the algorithm are dependent on the data structures
chosen. We choose data structures that balance i) the time to perform an operation
to sort the edges E by weight, ii) the time to determine the component label of a
vertex, and iii) the time to combine two components of the graph G ' as it is being
constructed. In addition, the data structures we use to implement the graph do not
use an unreasonable amount of space.

The algorithm that we provide will utilize two critical data structures. The
first data structure will provide easy access for determining the component label
of a vertex. It takes the form of a set of upward directed trees. There is direct
access to each node. The label of the root of a component will serve as the label
of the component and can be determined for any vertex by following the unique
path of upward directed links to the root of the tree. The second data structure
will be used to keep track of the edges as they are being added to E ' to form
the minimal spanning tree G' = (V, E '). This second data structure can be a simple
bag, unordered list, stack, or queue, to name a few. However, since a MST algo-
rithm is typically used in the middle of a larger solution, we will use a set of adja-
cency lists to store the edges of the MST under the assumption that this will make
these edges more easily accessible upon completion of Kruskal’s algorithm.

The input consists of a connected, weighted, undirected
graph G = (V, E) with weight function w on the edges e ∈ E.
E' ← φ {E' will become the edge set of the MST.}
For each v ∈ V, create Component(v) = {v}. That is, every
vertex is initially its own connected component in G'.
This means, for each v ∈ V, set v.parent = null and
v.vertex_count = 1.
Sort E into nondecreasing order by the weight
function w.
For each (u,v) ∈ E considered by sorted order, do the
following.
 Let ru = Component(u) and rv = Component(v) be the root
 vertices of the components of u and v, respectively.
 If ru ≠ rv then
 E' ← E' ∪ (u, v) {update the edges of the MST}
 If ru.vertex_count ≤ rv.vertex_count then
 ru.parent ← rv and add ru.vertex_count to
 rv.vertex_count else rv.parent ← ru and add
 rv.vertex_count to ru.vertex_count. {This step
 combines components of G'.}
 End If ru ≠ rv
End For

C8208_ch12.indd 331C8208_ch12.indd 331 11/16/12 12:05 PM11/16/12 12:05 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

332 Chapter 12 Graph Algorithms

25
8

1

2 3

4

5 6
30

2218

15

10

(a) On the left, the graph G with both vertex labels and edge weights shown. In
the middle, the initial forest of G with vertices accessed through an array of pointers.
In this initial forest, each vertex is an isolated tree. We use vc for the vertex count
of a tree-like component in this graph. On the right, the initial adjacency lists in
which no edges have yet been determined for G' , the minimal spanning tree (MST)
of G.

[1] [2] [3] [4] [5] [6]

name = 1
vc = 1

name = 2
vc = 1

name = 3
vc = 1

name = 4
vc = 1

name = 5
vc = 1

name = 6
vc = 1

1

2

3

4

5

6

[1] [2] [3] [4] [5] [6]

1

12

2

3

4

5

6

(b) The edge of G between v1 and v2 is the smallest-weight edge. It is
used to combine two components of G' and is added in the adjacency lists.

name = 1
vc = 2

name = 3
vc = 1

name = 4
vc = 1

name = 5
vc = 1

name = 6
vc = 1

[1] [2] [3] [4] [5] [6]

1

12

2

3

34

4

5

6

(c) The edge between v3 and v4 is the smallest-weight edge currently
available. It is used to combine two components of G' and is added in
the adjacency lists.

name = 1
vc = 2

name = 3
vc = 2

name = 5
vc = 1

name = 6
vc = 1

[1] [2] [3]

name = 3
vc = 2

name = 1
vc = 3

name = 6
vc = 1

[4] [5] [6]

1

5

4

3

1

2

6

5

4

3

2

1

(d) The edge between v1 and v5 is the smallest-weight edge currently
available. It is used to combine two components of G' and is added
in the adjacency lists.

C8208_ch12.indd 332C8208_ch12.indd 332 11/16/12 12:05 PM11/16/12 12:05 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Minimum-Cost Spanning Trees 333

[1] [2] [3]

name = 1
vc = 4

name = 3
vc = 2

[4] [5] [6]

6

5

4

3

1

1

2

26

5

4

3

2

1

(e) The smallest-weight edge now available, between v2 and v5, is not added
since these vertices were already in the same component of G'. Instead, the
next smallest-weight edge, between v2 and v6 is added to the adjacency lists.
Notice that in the connectivity graph to the left, the parent pointer of v6
indexes v1 rather than v2, since v1 is the root vertex of the component of G'
containing v2.

[1] [2] [3]

name = 1
vc = 6

[4] [5] [6]

3

5

2

3

1

6

2

4

1

26

5

4

3

2

1

(f) The next smallest-weight edge, between v2 and v3, is added to the
adjacency lists. As before, in G' the parent pointer of v3 indexes v1
rather than v2, since v1 is the root vertex in its component of G' before
the union of the components of v2 and v3. The edge between v5 and v6
is not added, since these vertices are already in the same component of G'.

FIGURE 12-19 Our implementation of Kruskal’s algorithm involves two data structures. The
first is an auxiliary graph that shows the connectivity of the emerging Minimal Spanning
Tree (MST). In this graph, all components are upward-pointing trees that will eventually be
combined into a single tree-like graph. During the algorithm, this structure is used to keep
track of the component of each vertex at each stage of the algorithm. The second data struc-
ture is an adjacency list structure that is built up and will eventually contain the edges cor-
responding to the MST. E ', the edge set of the eventual MST, is initially empty. We add one
edge to E ' during every stage of the algorithm, while simultaneously combining the compo-
nents of each vertex of the edge added. When there are no more edges to add, the algorithm
is done and we have the final E ', which represents the final MST G '.

C8208_ch12.indd 333C8208_ch12.indd 333 11/16/12 12:05 PM11/16/12 12:05 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

334 Chapter 12 Graph Algorithms

Given the data structures described, the statement E ' ← w is equivalent to cre-
ating the initial graph G ', represented by empty adjacency lists in the structure that
eventually will represent G ', the MST of G. The initialization of the adjacency lists
and of G ' as a set of isolated vertices is performed in Θ(V) time. Sorting the edges
takes Θ(E log E) time.

Suppose that edge (u, v) ∈ E is added to E ' in the algorithm given above. Let
r1 and r2 be the root vertices of the components of G ' containing u and v, respec-
tively. Without loss of generality, assume the component rooted at r2 has fewer
vertices than the component rooted at r1. Then the two components are combined
by assigning r2 to point to r1, and updating the number of vertices in the combined
component by adding together the number of vertices in the two original compo-
nents. This step is performed in Θ(1) time.

When two components of G ' are combined, the identity of the smaller of the
two components takes on that of the larger component. Notice that every vertex is
updated O(log V) times since a vertex of G ' is only updated when its component
in G ' is combined with a larger component. Further, the combine operation
increases by at most 1 the number of edges of a vertex from the root of its compo-
nent in G '. Thus, the number of edges between any vertex and the root of its com-
ponent in G ' is O(log V). Hence, each call of the Component function is performed
in O(log V) time. Since a component in G ' has connectivity properties of a tree,
and a tree of 0V 0 vertices has Θ(V) edges, there are Θ(V) combine operations per-
formed in a total of Θ(V) time. Since every edge in E generates Θ(1) calls to the
Component function, it follows that the time to perform all Component operations
is Θ(E log V). Therefore, the running time of the algorithm, as described, is
Θ(E log E), which is Θ(E log V).

An alternative implementation to our presentation of Kruskal’s algorithm fol-
lows. Suppose that instead of initially sorting the edges into nondecreasing order
by weight, we place the weighted edges into a heap, and that during each iteration
of the algorithm, we simply extract the minimum weighted edge left in the heap.
Note that such a heap can be constructed in Θ(E log E) = O(E log V) time, and a
heap extraction can be performed in Θ(log E) = O(log V) time. Therefore, the
heap-based variant of this algorithm runs in O(E log V) time to set up the initial
heap and O(log V) time to perform the operation required during each of the O(E)
iterations. Therefore, a heap-based approach results in a total running time of
O(E log V), including the operations that combine components.

Prim’s Algorithm
The second algorithm we consider is Prim’s algorithm for determining a minimum-
cost spanning forest of a weighted, connected, undirected graph G = (E, V), with
edge weight function w. The approach taken in this greedy algorithm is to add
edges continually to E ' � E so that E ' represents a tree with the property that it is
a subtree of some minimum spanning tree of G. Initially, an arbitrary vertex r ∈ V
is chosen to be the root of the tree that will be grown. Next, an edge (r, u) is used

C8208_ch12.indd 334C8208_ch12.indd 334 11/16/12 12:05 PM11/16/12 12:05 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Minimum-Cost Spanning Trees 335

to initialize E ', where (r, u) has minimal weight among edges incident on r. As the
algorithm continues, an edge of minimum weight between some vertex in the cur-
rent tree, represented by E ', and some vertex not in the current tree, is chosen and
added to E '. The algorithm follows.

Prim’s MST Algorithm
 1. The input consists of a connected, weighted,

 undirected graph G = (E, V) with weight function w
on the edges e ∈ E.

 2. Let vertex set V = {v1, v2, . . . , vn}.
 3. Let the root of the tree be r = v1.
 4. Initialize NotInTree = {v2, . . . , vn}.
 5. For all v ∈ NotInTree, initialize smalledge(v) ← ∞.
 6. Set smalledge(r) ← 0 since r is in the tree.
 7. Set parent(r) ← null since r is the root of the

tree.
 8. For all v ∈ Adj(r), do
 9. parent(v) ← r
10. smalledge(v) ← w(r, v)
11. End For all v ∈ Adj(r)
12. While NotInTree ≠ φ, do
13. u ← ExtractMin(NotInTree) {Member of NotInTree
 with minimal-weight edge
 to a member of the tree}
14. Add (u, parent(u)) to E' and remove u from

NotInTree.
15. For all v ∈ Adj(u) do
16. If v o NotInTree and w(u, v) < smalledge(v), then
 {If v is already in the tree, update}
17. parent(v) ← u
18. smalledge(v) ← w(u, v)
19. End If
20. End For
21. End While

The structure NotInTree is most efficiently implemented as a priority queue
since the major operations include finding a minimum weight vertex in NotInTree
and removing it from NotInTree. Suppose that NotInTree is implemented as a heap.
Then the heap can be initialized (lines 4-11) in Θ(V log V) time. The While-loop
(lines 12-21) is executed 0V 0 − 1 times. Therefore, the O(log V) time ExtractMin
operation is invoked Θ(V) times. Thus, the total time to perform all ExtractMin
operations is O(V log V).

C8208_ch12.indd 335C8208_ch12.indd 335 11/16/12 12:05 PM11/16/12 12:05 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

336 Chapter 12 Graph Algorithms

The test at line 16 can be performed in Θ(1) time. This follows from the obser-
vation that to see if a vertex is in the tree, i.e., is not in NotInTree, it suffices to
check whether or not the parent of the vertex is null. Now consider the time
required to perform the operations specified in lines 17 and 18. Since every edge
in a graph is determined by two vertices, lines 17 and 18 of the procedure can be
invoked at most twice for every edge. Therefore, these assignments are performed
at most Θ(E) times. However, notice that line 17 requires the adjustment of an
entry in the priority queue, which runs in O(log V) time. Therefore, the running
time for the entire algorithm is O(V log V + E log V), which is O(E log V), since
the graph is assumed to be connected. Notice that this is the same asymptotic run-
ning time as Kruskal’s algorithm. However, by using Fibonacci heaps instead of
traditional heaps, it should be noted that the time to perform Prim’s algorithm on a
RAM can be reduced to Θ(E + V log V).

Sollin’s Algorithm
Finally, we mention Sollin’s algorithm. In this greedy algorithm, E ' will always
represent a forest over all vertices V in G. Initially, E ' = φ, which represents the for-
est of isolated vertices. At each step in the algorithm, every tree in the forest nomi-
nates one edge to be considered for inclusion in E '. Specifically, every tree
nominates an edge of minimal weight between a vertex in its tree and a vertex in a
distinct tree. So during the i th iteration of the algorithm, the 0V 0 − (i − 1) trees rep-
resented by E ' generate 0V 0 − (i − 1) not necessarily distinct edges to be considered
for inclusion. The minimal weight edge will then be selected from these nominees
for inclusion in E'. The sequential algorithm and analysis is left as an exercise.

PRAM

In this section, we consider the problem of constructing a minimum-cost spanning
tree for a connected graph represented by a weight matrix on a CREW PRAM. Given
a connected graph G = (V, E), we assume that the weights of the edges are stored in
a matrix W. That is, entry W(i, j) corresponds to the weight of edge (i, j) ∈ E. Since
the graph is not necessarily complete, we define W(i, j) = ∞ if the edge (i, j)o E.
Since we assume that self-edges are not present in the input, we should note that
W(i, i) = ∞ for all 1 ≤ i ≤ n. Notice that we use ∞ to represent nonexistent edges
since the problem is one of determining a minimum-weight spanning tree.

The algorithm we consider is based on Sollin’s algorithm, as previously
described. Initially, we construct a forest of isolated vertices, which are then repet-
itively merged into trees until a single tree, i.e., a minimum spanning tree, remains.
The procedure for merging trees at a given stage of the algorithm is to consider
one candidate edge ei from every tree Ti. The candidate edge ei corresponds to an
edge of minimum weight connecting a vertex of Ti to a vertex in some Tj where
i ≠ j. All candidate edges are then added to the set of edges representing a minimum
weight spanning tree of G, as we have done with previously described minimum
spanning tree algorithms. Note that some of the added edges may be removed later.

C8208_ch12.indd 336C8208_ch12.indd 336 11/16/12 12:05 PM11/16/12 12:05 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Minimum-Cost Spanning Trees 337

During each of the merge steps, we must collapse every tree in the forest into
a virtual vertex, i.e., a supervertex. Throughout the algorithm, every vertex must
know the identity of the tree that it belongs to so that candidate edges can be cho-
sen properly during each iteration of the algorithm. We will use the component
labeling technique, described earlier in this chapter, to accomplish this task.

Without loss of generality, we assume that every edge has a unique weight.
Notice that in practice, ties in edge weight can be broken by appending unique
edge labels to every weight. The basic algorithm follows.

The input consists of a connected, weighted, undirected graph G = (V, E) with
weight function w on the edges e ∈ E. Let weight matrix W be used to store the
weights of the edges, where W(i, j) = w(i, j)

Let vertex set V = {v1, . . . , vn}.
Let G' = (V, E') represent a minimum spanning tree
of G that is under construction.
Initially, set E' = φ.
Initially, set the forest of trees F = {T1, . . . , Tn}
where Ti = ({vi}, φ). That is, every vertex is its
own tree.
While 0F 0 > 1, do
 For all Ti ∈ F, determine Candi, an edge of
 minimum weight between a vertex in Ti and
 a vertex in Tj where i ≠ j.
 For all i, add Candi to E'.
 Combine all trees in F that are in the same connected
component with respect to the edges just added to E'.
Assuming that r trees remain in the forest, relabel
these virtual vertices, i.e., connected components, so
that F = {T1, . . . , Tr}.

 Relabel the edges in E so that the vertices correspond
to the appropriate virtual vertices. This can be ac-
complished by reducing the weight matrix W so that it
contains only information pertaining to the r virtual
vertices.

End While

Consider the running time of the algorithm as described. Since the graph G is
connected, we know that every time through the While-loop, the number of trees in
the forest will be reduced by at least half. That is, every tree in the forest will hook
up with at least one other tree. Therefore, the number of iterations of the While-loop
is O(log V). The operations described inside of the While-loop can be performed
by invoking procedures to sort edges based on vertex labels, perform parallel prefix
in order to determine candidate edges, and apply the component-labeling algorithm

C8208_ch12.indd 337C8208_ch12.indd 337 11/16/12 12:05 PM11/16/12 12:05 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

338 Chapter 12 Graph Algorithms

in order to collapse connected components into virtual vertices. Since each of these
procedures can be performed in time logarithmic in the size of the input, the run-
ning time for the entire algorithm as given is O(log2 V).

Mesh

The mesh algorithm we discuss in this section is identical in spirit to that just pre-
sented for the PRAM. Our focus in this section is on the implementation of the
specific steps of the algorithm. We assume that the input to the problem is a weight
matrix W representing a graph G = (V, E), where 0V 0 = n. Initially, W(i, j), the
weight of edge (i, j) ∈ E, is stored in mesh processor Pi, j. Again we assume that
W(i, j) = ∞ if the edge does not exist or if i = j. We also assume, without loss of
generality, that the edge weights are unique.

We define the forest F = {T1, . . . , Tn}, where Ti = ({vi}, φ). During each of the
⎡log2 n⎤ iterations of the algorithm, the number of virtual vertices, i.e., superverti-
ces, in the forest is reduced by at least half. The reader might also note that at any
point during the course of the algorithm, only a single minimum-weight edge
needs to be maintained between any two virtual vertices. We need to discuss the
details of reducing the forest during a generic iteration of the algorithm. Suppose
that the forest F currently has r virtual vertices. Notice that at the start of an itera-
tion of the While-loop, as given in the previous section, every virtual vertex is
represented by a unique row and column in an r × r weight matrix W. As shown in
Figure 12-20, entry W(i, j), 1 ≤ i, j ≤ r, denotes the weight and identity of a mini-
mum-weight edge between virtual vertex i and virtual vertex j.

FIGURE 12-20 The r × r matrix W, as distributed one entry per processor in a
natural fashion on an r × r submesh. Notice that each entry in processor Pi, j,
1 ≤ i, j ≤ r, contains the record (Wi, j, ei, j), which represents the minimum weight
of any edge between virtual vertices, i.e., supervertices, vi and vj, as well as
 information about one such edge ei, j to which the weight corresponds. In this
situation, the “edge” ei, j is actually a record containing information identifying its
original vertices and its current virtual vertices.

. . .

. . .

. . .

. . .

. . .

. .
 .

–

–

–

–

C8208_ch12.indd 338C8208_ch12.indd 338 11/16/12 12:05 PM11/16/12 12:05 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Minimum-Cost Spanning Trees 339

In order to determine the candidate edge for every virtual vertex vi, 1 ≤ i ≤ r,
simply perform a row rotation simultaneously over all rows of W, where the rota-
tion is restricted to the r × r region of the mesh currently storing W. The edge in E
that this virtual edge represents can be conveniently stored in the rightmost col-
umn of the r × r region since there is only one such edge per row, as shown in
Figure 12-21. Based on the virtual vertex indices of these edges being added to
E ', an adjacency matrix can be created in the r × r region that represents the con-
nections being formed between the current virtual vertices, as shown in
Figure 12-22. Warshall’s algorithm can then be applied to this adjacency matrix
in order to determine the connected components. That is, an application of
Warshall’s algorithm will determine which trees in F have just been combined
using the edges in E '. The rows of the matrix can now be sorted according to their
new virtual vertex number. Next, in a similar fashion, the columns of the matrix
can be sorted with respect to the new virtual vertex numbers. Now within every
interval of rows, a minimum weight edge can be determined to every other new
virtual vertex by a combination of row and column rotations. Finally, a concur-
rent write can be used to compress the r × r matrix to an r ' × r ' matrix, as shown
in Figure 12-23.

Notice that each of the critical mesh operations working in an r × r region can
be performed in O(r) time. Since the size of the matrix is reduced by at least a
constant factor after every iteration, the running time of the algorithm is Θ(n),

FIGURE 12-21 A sample 6 × 6 weight matrix in
which, for simplicity’s sake, only the weights of
the records are given. Notice that the processors
in the last column also contain a minimum-weight
edge and its identity after the row rotation.

17,e1,3

1

1

98¥

¥

¥

¥

¥

¥

2

17

3

36

4

47

5

58

21,e2,5

982 38 89 21 39

17,e3,1

173 38 97 27 73

9,e4,6

364 89 97 18 9

18,e5,4

475 21 27 18 47

9,e6,4

586 39 73 9 47

6

C8208_ch12.indd 339C8208_ch12.indd 339 11/16/12 12:05 PM11/16/12 12:05 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

340 Chapter 12 Graph Algorithms

FIGURE 12-22 The 6 × 6 adjacency matrix corre-
sponding to the minimum-weight edges selected
by the row rotations as shown in Figure 12-21.

01

1

0

2

1

3

0

4

0

5

0

02 0 0 0 1 0

13 0 0 0 0 0

04 0 0 0 0 1

05 0 0 1 0 0

06 0 0 1 0 0

6

1
1 2

1 2

2

1

2

r

r
r

r

'
'

FIGURE 12-23 A concurrent write is used within the
r × r region of the mesh to compress and update the r'
rows and columns corresponding to the r' supervertices.
This results in the creation of an r' × r' weight matrix in
the upper-left regions of the r × r region so that the
algorithm can proceed to the next stage.

C8208_ch12.indd 340C8208_ch12.indd 340 11/16/12 12:05 PM11/16/12 12:05 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Shortest-Path Problems 341

which includes the time to perform a final concurrent read to mark all of the edges
in the minimum spanning tree that was determined.

Shortest-Path Problems

In this section, we consider problems involving shortest paths within graphs.
Specifically, we consider two fundamental problems, defined below.

 1. Single-Source Shortest-Path Problem: Given a weighted, directed graph
G = (V, E), a solution to the single-source shortest-path problem requires that
we determine a shortest, i.e., minimum-weight, path from source vertex s ∈ V
to every other vertex v ∈ V. Notice that the notion of a minimum-weight path
generalizes that of a shortest path in that a shortest path, i.e., a path containing
a minimal number of edges, can be regarded as a minimum-weight path in a
graph in which all edges have weight 1.

 2. All-Pairs Shortest-Path Problem: Given a weighted, directed graph G = (V, E),
a solution to the all-pairs shortest-path problem requires the determination of
a shortest, i.e., minimum weight, path between every pair of distinct vertices
u, v ∈ V.

For problems involving shortest paths, several issues must be considered,
such as whether or not negative weights and/or cycles are permitted in the input
graph. It is also important to decide whether the total weight of a minimum-
weight path will be presented as the sole result or if a representation of a path that
generates such a weight is also required. Critical details such as these, which
often depend on the definition of the problem, have a great effect on the algo-
rithm that is to be developed and utilized. In the remainder of this section, we
consider representative variants of shortest-path problems as ways to introduce
critical paradigms.

Single-Source Shortest-Path RAM Algorithm

For the RAM, we will consider the single-source shortest-path problem, for
which we need to determine the weight of a shortest path from a unique source
vertex to every other vertex in the graph. Further, we assume that the result must
contain a representation of an appropriate shortest path from the source vertex to
every other vertex in the graph. Assume that we are given a weighted, directed
graph G = (V, E), in which every edge e ∈ E has an associated weight w(e). Let
s ∈ V be the known source vertex. The algorithm that we present will produce a
shortest-path tree T = (V ', E '), rooted at s, where V ' � V, E ' � E, V ' is the set of
vertices reachable from s, and for all v ∈ V ', a simple path from s to v in T that
is a minimum-weight path from s to v in G. It is important to emphasize that
“shortest” paths, i.e., minimum-weight paths, are not necessarily unique and
that shortest-path trees, i.e., trees representing minimum-weight paths, are also

C8208_ch12.indd 341C8208_ch12.indd 341 11/16/12 12:05 PM11/16/12 12:05 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

342 Chapter 12 Graph Algorithms

not necessarily unique. See Figure 12-24, which shows two shortest path trees
for the given graph G.

We consider Dijkstra’s algorithm for solving the single-source shortest-path
problem on a weighted, directed graph G = (V, E) where all of the edge weights are
nonnegative. Let s ∈ V be the predetermined source vertex. The algorithm will cre-
ate and maintain a set V ' of vertices that, when complete, is used to represent the
final shortest-path tree T. When a vertex v is inserted into V ', it is assumed that the
edge (parent(v), v) is inserted into E '.

Initially, every vertex v ∈ V is assumed to be at distance dist(v) = ∞ from the
source vertex s, with the exception of all vertices directly connected to s by an
edge. Let u be a neighboring vertex of s. Then, since (s, u) ∈ E, we initialize the
distance from s to u to be dist(u) = w(s, u), the weight of the edge originating at s
and terminating at u.

The algorithm consists of continually identifying a vertex that has not been
added to V ', which is at minimum distance from s. Suppose the new vertex to be
added to V ' is called x. Then after adding x to V ', all vertices t for which (x, t) ∈ E,

FIGURE 12-24 A demonstration that shortest paths and shortest-path trees need
not be unique.

1

2
4

2

3 3

3
466

4

6

8

3

7
7

8

5

(a) A weighted, undirected
graph G = (V, E).

(c) A different shortest-path tree. Notice that
the path <1, 6, 5, 7> chosen between
vertices 1 and 7 is also of total weight 12.

(b) A shortest-path tree. Notice the path
<1, 2, 8, 7> of weight 12 chosen between
source vertex 1 and sink vertex 7.

7

4

5

6

8

2

1
8

3

3
6

7

2 6

3

7

4

5

6

8

2

1
8

3

3

3

6

2

6

3

C8208_ch12.indd 342C8208_ch12.indd 342 11/16/12 12:06 PM11/16/12 12:06 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Shortest-Path Problems 343

s
dist=0 dist=

dist=

dist= dist=

(a) After initializations.

s=u0
dist=0 dist=8

dist=

dist=2 dist=

2 3

5

1

8

2 3

5

1

8

s=u0
dist=0 dist=8

dist=

u1
dist=2 dist=3

(c) After adding u1.

2 3

5

1

8
s=u0
dist=0 dist=6

dist=8

u1
dist=2

u2
dist=3

2 3

5

1

8

s=u0
dist=0

u3
dist=6

dist=8

u1
dist=2

u2
dist=3

(e) After adding u3.

2 3

5

1

8
s=u0
dist=0

u3
dist=6

u4
dist=8

u1
dist=2

u2
dist=3

(b) After adding s = u0.

(d) After adding u2. Note the vertex
with distance of 6 has a new parent.

(f) After adding u4.

2 3

5

1

8

FIGURE 12-25 A demonstration of the progress of Dijkstra’s algorithm, through
the iterations of its While-loop, for constructing a shortest-path tree. The vertices
are numbered u0, u1, . . . , in the order in which they are inserted into the tree.
Arrows represent parent pointers. Dark edges are those inserted into the tree.

are examined. If the current minimum distance from s, which is maintained in
dist(t), can now be improved based on the fact that x is in V ', then dist(t) is updated,
and parent(t) is set to x (see Figure 12-25).

The algorithm follows.

• The algorithm takes a weighted, directed graph G = (V, E) as input.

• Initialize the sets of vertices and edges in the shortest-path tree T = (V ', E')
that this algorithm produces to be empty sets. That is, set V ' ← φ and E ' ← φ.

• Initialize the set of available vertices to be added to V ' to be the entire set of
vertices. That is, set Avail ← V.

For every vertex v ∈ V, do
 Set dist(v) ← ∞. That is, the distance from every
 vertex to the source is initialized to be infinity.
 Set parent(v) ← null. That is, the parent of every
 vertex is initially assumed to be nonexistent.
End For

C8208_ch12.indd 343C8208_ch12.indd 343 11/16/12 12:06 PM11/16/12 12:06 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

344 Chapter 12 Graph Algorithms

Set dist(s) ← 0. That is, the distance from the source
to itself is 0. This step is critical to seeding the
While-loop that follows.
GrowingTree ← true
While Avail ≠ φ and GrowingTree, do
 Determine u ∈ Avail, where dist(u) is a minimum over
 all distances of vertices in Avail. Notice that the
 first pass through the loop yields u = s.
 If dist(u) is finite, then
 V' ← V' ∪ {u} and Avail ← Avail\{u}. That is, add u to
 the shortest-path tree and remove u from Avail.
 If u ≠ s, then E' ← E' ∪ 5 1parent(u), u2 6. That is, add
 1parent(u), u2 to the edge set of T.
 For every vertex v ∈ Adj(u), do {Check to see
 if neighboring vertices
 should be updated.}
 If dist(v) > dist(u) + w(u, v), then {Update
 distance and parent information since
 a shorter path is now possible.}
 dist(v) ← dist(u) + w(u, v)
 parent(v) ← u
 End If dist(v) > dist(u) + w(u, v)
 End For
 End If dist(u) is finite
 Else GrowingTree ← false {(V', E') is the finished
 component of source vertex.}
End While

The algorithm is greedy in nature in that at each step the best local choice is
taken and that choice is never undone. Dijkstra’s algorithm relies on an efficient
implementation of a priority queue, since the set Avail of available vertices is
continually queried in terms of minimum distance. Suppose that the priority
queue of Avail is maintained in a simple linear array. Then a generic query to the
priority queue will, on average, run in Θ(V) time. Since there are Θ(V) such que-
ries, they run in a total of Θ(V 2) time. Since each vertex is inserted into the
shortest-path tree exactly once, this means that every edge in E is examined
exactly twice in terms of trying to update distance information to neighboring
vertices. Therefore, the total time to update distance and parent information is
Θ(E). It follows that the running time of the algorithm is Θ(V 2 + E), or Θ(V 2),
since E = O(V 2).

Notice that this algorithm is efficient for dense graphs. That is, if E = Θ(V 2),
then the algorithm has an efficient running time of Θ(E). However, if the graph is

C8208_ch12.indd 344C8208_ch12.indd 344 11/16/12 12:06 PM11/16/12 12:06 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Shortest-Path Problems 345

sparse, then this implementation is not necessarily efficient. In fact, for a sparse
graph, one might implement the priority queue as a binary heap or a Fibonacci
heap in order to achieve a slightly more efficient running time.

All-Pairs Shortest-Path Parallel Algorithm

For the PRAM and the mesh, we consider the all-pairs shortest-path problem,
given a weight matrix as input. Specifically, suppose we are given a weighted,
directed graph G = (V, E) as input, where 0V 0 = n and every edge (u, v) ∈ E has an
associated weight w(u, v). Further, assume that G is represented by an n × n weight
matrix W, where W(u, v) = w(u, v) if (u, v) ∈ E and W(u, v) = ∞ otherwise.

Let Wk(u, v) represent the weight of a minimum-weight path from vertex u to
vertex v, assuming that the intermediate vertices traversed on the path from u to v
are indexed in {1, 2, . . . , k}. Then the matrix Wn will contain the final weights rep-
resenting a directed minimum-weight path between every pair of vertices. That is,
Wn(u, v) will contain the weight of a minimum-weight directed path with source u
and sink v, if such a path exists. Wn(u, v) will have a value of ∞ if a u → v path
does not exist.

Notice that we have recast the all-pairs shortest-path problem as a variant of
the transitive closure problem discussed earlier in this chapter in the section
“Computing the Transitive Closure of an Adjacency Matrix”. Given a mesh of size
n2 in which processor Pi, j stores weight information concerning a path from vertex
i to vertex j, we can represent the computation of W as

Wk(i, j) = min{Wk−1(i, j), Wk−1(i, k) + Wk−1(k, j)}.

Therefore, we can apply van Scoy’s implementation of Warshall’s algorithm,
as described earlier in this chapter, in order to solve the problem on a mesh of size
n2 in optimal Θ(n) time. Notice that if the graph is dense (that is, E = Θ(V 2)), then
the weight matrix input is an efficient representation.

On a PRAM, notice that we can also implement Warshall’s algorithm for com-
puting the transitive closure of the input matrix W. Recall that two matrices can be
multiplied in Θ(log n) time on a PRAM containing n3/log n processors. Given an
n × n matrix as input on a PRAM, Wn can be determined by performing Θ(log n)
such matrix multiplications. Therefore, given an n × n weight-matrix as input, the
running time to solve the all-pairs shortest-path problem on a PRAM with n3/log n
processors is Θ(log2 n).

Notice that the algorithms we have presented for the all-pairs shortest-path
problem give as output the total weight for every shortest path, but do not give
shortest paths. Minor changes in the algorithms would enable us to have the short-
est paths as part of the output, although the algorithms would become computa-
tionally more expensive as a result of doing so.

C8208_ch12.indd 345C8208_ch12.indd 345 11/16/12 12:06 PM11/16/12 12:06 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

346 Chapter 12 Graph Algorithms

Summary

In this chapter, we study algorithms to solve a variety of problems concerned with
graphs. We present several methods, i.e., adjacency list, adjacency matrix, and
unordered edges, of representing a graph. We introduce efficient RAM solutions
to fundamental problems such as breadth-first search and depth-first search.
Warshall’s efficient algorithm for computing the transitive closure of the adjacency
matrix is discussed for the RAM, and van Scoy’s efficient adaptation of the algo-
rithm to the mesh is also presented. Connected component labeling algorithms are
given for several models of computation. Several sequential and parallel algo-
rithms for computing minimal-cost spanning trees are discussed. Solutions to
shortest-path problems are given for multiple models of computation. These prob-
lems remain interesting open research problems for large-scale machines, includ-
ing NOWs, clusters, and grids.

Chapter Notes

In this chapter, we consider algorithms and paradigms to solve fundamental graph
problems on a RAM, PRAM, and mesh computer. For a more in-depth treatment
of sequential graph algorithms, please refer to the following sources:

• Graph Algorithms by S. Even (Computer Science Press, 1979).

• Data Structures and Network Algorithms by R.E. Tarjan (Society for Industrial
and Applied Mathematics, 1983).

• “Basic Graph Algorithms” by S. Khuller and B. Raghavachari, in Algorithms
and Theory of Computation Handbook, M.J. Atallah, ed., CRC Press, Boca
Raton, FL, 1999.

For a survey of PRAM graph algorithms, complete with an extensive citation
list, please refer to

• “A survey of parallel algorithms and shared memory machines” by R.M. Karp
and V. Ramachandran, in the Handbook of Theoretical Computer Science:
Algorithms and Complexity, A.J. van Leeuwen, ed. (Elsevier, New York, 1990,
pp. 869–941).

The depth-first search procedure was developed by J.E. Hopcroft and R.E.
Tarjan. Early citations to this work include

• “Efficient algorithms for graph manipulation” by J.E. Hopcroft and R.E.
Tarjan, Communications of the ACM (16:372–378, 1973), and

• “Depth-first search and linear graph algorithms” by R.E. Tarjan, SIAM Journal
on Computing, 1(2):146–160, June, 1972.

Warshall’s innovative and efficient transitive closure algorithm was first pre-
sented in “A theorem on Boolean matrices” by S. Warshall in the Journal of the

C8208_ch12.indd 346C8208_ch12.indd 346 11/16/12 12:06 PM11/16/12 12:06 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Exercises 347

ACM 9, 1962, 11–12. An efficient mesh implementation of Warshall’s algorithm is
discussed in detail in Parallel Algorithms for Regular Architectures by R. Miller
and Q.F. Stout (The MIT Press, Cambridge, 1996).

An Introduction to Parallel Algorithms by J. Já Já (Addison Wesley, 1992), con-
tains details of PRAM algorithms for problems discussed in this chapter, including
component labeling and minimum spanning trees. The PRAM component-labeling
algorithm presented in this chapter comes from a combination of the algorithms
presented in these sources:

• “A survey of parallel algorithms and shared memory machines” by R.M. Karp
and V. Ramachandran, cited above, and

• “Introduction to Parallel Connectivity, List Ranking, and Euler Tour
Techniques” by S. Baase in Synthesis of Parallel Algorithms, J.H. Reif, ed.
(Morgan Kaufmann Publishers, San Mateo, CA, 1993, pp. 61–114).

The sequential minimum spanning tree algorithm presented in this chapter
combines techniques presented in Data Structures and Algorithms in JAVA by M.T.
Goodrich and R. Tamassia (John Wiley & Sons, Inc., New York, 1998), with those
presented in Introduction to Algorithms by T.H. Cormen, C.E. Leiserson, R.L.
Rivest, and C. Stein (3rd ed.: The MIT Press, Cambridge, MA, 2009). The mini-
mum spanning tree algorithm for the PRAM was inspired by the one presented in
An Introduction to Parallel Algorithms by J. Já Já (Addison Wesley, 1992), while
the MST algorithm for the mesh was inspired by the one that appears in Parallel
Algorithms for Regular Architectures by R. Miller and Q.F. Stout (The MIT Press,
Cambridge, 1996).

For additional problems involving shortest paths, as well as techniques and
algorithms for solving such problems, see the following sources.

• Introduction to Algorithms by T.H. Cormen, C.E. Leiserson, R.L. Rivest, and
C. Stein (3rd ed.: The MIT Press, Cambridge, MA, 2009).

• An Introduction to Parallel Algorithms by J. Já Já (Addison Wesley, 1992).

• Parallel Algorithms for Regular Architectures by R. Miller and Q.F. Stout
(The MIT Press, Cambridge, 1996).

Exercises

 1. Suppose a graph G is represented by unordered edges. Give an efficient algo-
rithm, as well as an analysis of its running time, to solve each of the following
problems.

 a. Construct an adjacency-list representation of G on a RAM. Provide an
analysis of the running time of your algorithm.

 b. Construct an adjacency-list representation of G on a PRAM with 0V 0 + 0E 0
processors. Provide an analysis of the running time of your algorithm.

C8208_ch12.indd 347C8208_ch12.indd 347 11/16/12 12:06 PM11/16/12 12:06 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

348 Chapter 12 Graph Algorithms

 c. Construct an adjacency matrix representation of G for the RAM, for a
PRAM with Θ(V 2) processors, and for a mesh of size Θ(V 2) For the mesh,
assume an initial distribution so that no processor has more than one edge,
and include appropriate data movement operations in your algorithm.

 2. Give an efficient RAM algorithm, along with an analysis of its running time,
to compute the height of a nonempty binary tree. The height of a tree is the
maximum number of edges between the root node and any leaf node. Hint:
consider a recursive solution to the problem.

 3. Prove that if v0 and v1 are distinct vertices of a graph G = (V, E) and a path
exists in G from v0 to v1, then there is a simple path in G from v0 to v1.

 4. Recall that a graph G = (V, E) is complete if an edge exists between every pair
of vertices. Given an adjacency-list representation of G, describe an efficient
algorithm to determine whether or not G is complete. Analyze the algorithm
for the RAM and for a CREW PRAM with n2 = 0V 0 2 processors.

 5. Suppose the graph G = (V, E) is represented by an adjacency matrix, where
n = 0V 0 . Give an efficient algorithm to determine whether or not G is com-
plete, as defined in the previous exercise. Provide an analysis of your algo-
rithm for the RAM, for an arbitrary CRCW PRAM with n2 processors, and for
an n × n mesh. Note for the mesh, at the end of the algorithm, every processor
should know whether or not G is complete.

 6. Let v0 and v1 be distinct vertices of a graph G = (V, E). Suppose we want to
determine whether or not these two vertices are in the same component of
G. One way to answer this query is to perform a component-labeling
 algorithm and then compare the component labels of v0 and v1. Give a
“simple” search-based algorithm for the RAM and provide an analysis of
its running time.

 7. The distance between two vertices of a graph is the number of edges in a
shortest path connecting the vertices. The distance between two vertices that
are not connected is defined to be ∞ . The diameter of a connected graph is the
maximum distance between a pair of vertices of the graph. Give an algorithm
to find the maximal diameter of the components of a graph. Provide an analy-
sis of the running time of your algorithm for a PRAM of size n3/log n and a
mesh of size n2.

 8. Let G = (V, E) be a connected graph. Suppose there is a Boolean function
hasTrait(vertex) that can be applied to any vertex of G in order to determine in
Θ(1) time on a RAM whether or not the vertex has a certain trait.

 • Given a graph represented by adjacency lists, describe an efficient RAM
algorithm to determine whether or not there are adjacent vertices with the
trait tested for by this function. Give an analysis of your algorithm.

C8208_ch12.indd 348C8208_ch12.indd 348 11/16/12 12:06 PM11/16/12 12:06 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Exercises 349

 • Suppose instead that the graph is represented by an adjacency matrix.
Describe an efficient RAM algorithm to determine whether or not there are
adjacent vertices with the trait tested for by this function. Give an analysis
of your algorithm.

 9. A bipartite graph is an undirected graph G = (V, E) with nonempty subsets
V0, V1 of V such that V0 ∪ V1 = V, V0 ∩ V1 = φ, and every member of E joins a
member of V0 to a member of V1. Let T = (V, E ') be a minimum spanning tree
of a connected bipartite graph G. Show that T is also a bipartite graph.

 10. Suppose G is a connected graph. Give an efficient algorithm to determine
whether or not G is a bipartite graph, as defined in the previous problem.
Analyze the running time of the algorithm on the RAM.

 11. Let S = 5Ii = [ai, bi]6i=1
n

 be a set of intervals on the real line. An interval
graph G = (V, E) is determined by S as follows. V = {vi}i=1

n , and for distinct
indices i and j, there is an edge from vi to vj if and only if Ii ∩ Ij ≠ w. Give
an efficient algorithm to construct an interval graph determined by a given
set S of intervals and analyze the algorithm’s running time for a RAM.
Note: there is a naïve algorithm that runs in Θ(n2) time, where n = 0V 0 . You
should be able to give a more sophisticated algorithm that runs in
Θ(n log n + E) time.

 12. Suppose T = (V, E) is a tree. Explain the asymptotic relationship between 0E 0
and 0V 0 .

 13. Let G = (V, E) be a connected graph. Recall we say e ∈ E is a bridge edge of G
if the graph Ge = (V, E �{e}) is disconnected.

 a. A naïve algorithm may be given to identify all bridge edges as follows.
Every edge e is regarded as a possible bridge edge, and the graph Ge is
tested for connectedness. Show that such an algorithm runs in O(E(V + E))
time on a RAM.

 b. Let T be a minimal spanning tree for G. Show that every bridge edge of G
must be an edge of T.

 c. Use the result of part b to obtain an algorithm for finding all bridge edges
of G that runs in O(V 2 + E log V) time on a RAM. Hint: use the result of
Exercise 12.

 14. Let G = (V, E) be a connected graph. Recall an articulation point is a ver-
tex of G with the property that its removal would leave the resulting
graph disconnected. That is, v is an articulation point of G if and only if the
graph Gv = (V \{v}, Ev), where Ev = {e ∈ E 0 e is not incident on v}, is a dis-
connected graph.

 a. Suppose 0V 0 > 2. Show that at least one vertex of a bridge edge of G must
be an articulation point of G.

C8208_ch12.indd 349C8208_ch12.indd 349 11/16/12 12:06 PM11/16/12 12:06 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

350 Chapter 12 Graph Algorithms

 b. Let v ∈ V be an articulation point of G. Must there be a bridge edge of G
incident on v? If so, give a proof; if not, give an example.

 c. Let G be a connected graph for which there is a positive number C such that
no vertex has degree greater than C. Let v ∈ V be a vertex of G. Give an
algorithm to determine whether or not v is an articulation point. Discuss the
running time of implementations of your algorithm on the RAM, CRCW
PRAM of size 0V 0 + 0E 0 , and mesh of size 0E 0 .

 15. Let ⊗ be an associative binary operation that is commutative and that can be
applied to data stored at the vertices of a graph G = (V, E). Assume a single
computation of ⊗ runs in Θ(1) time. Suppose 0V 0 > 1. Suppose G is connected
and represented in memory by unordered edges. Give an efficient RAM algo-
rithm for a semigroup computation based on ⊗, on the vertices of G. Give the
running time of your algorithm.

 16. Suppose it is known that a graph G = (V, E) is a tree with root vertex v* ∈ V,
but the identity of the parent vertex parent(v) is not known for v ∈ V \{v*}.
How can every vertex v determine parent(v)? What is the running time of your
algorithm on a RAM?

 17. Give an efficient RAM algorithm to determine the number of descendants of
every vertex of a binary tree T = (V, E) with root vertex v* ∈ V. What is the
running time of your algorithm?

 18. Analyze the running time of Sollin’s algorithm, as described in the text.

 19. Given a labeled n × n digitized image, and one “marked” pixel per component,
provide an efficient algorithm to construct a minimum-distance spanning tree
within every component with respect to using the “marked” pixel as the root.
Present analysis for the RAM.

C8208_ch12.indd 350C8208_ch12.indd 350 11/16/12 12:06 PM11/16/12 12:06 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C8208_ch12.indd 351C8208_ch12.indd 351 11/16/12 12:06 PM11/16/12 12:06 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Primality

Greatest Common Divisor

Integral Powers

Evaluating a Polynomial

Approximation by Taylor Series

Trapezoidal Integration

Approximate Solution of an Equation

Summary

Chapter Notes

Exercises

13
Numerical Problems

Background Photo Credit © Spectral-Design / Shutterstock
All Images used within the chapter are © 2013 Cengage Learning

C8208_ch13.indd 352C8208_ch13.indd 352 11/15/12 12:26 PM11/15/12 12:26 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

With the exception of Chapter 6, “Matrix Operations,” most of this book has been
concerned with “non-numerical” problems and algorithms. That is not to say

that we have avoided doing arithmetic. Rather, we have concentrated on problems in
which algorithms do not require the intensive use of floating point calculations or the
unusual storage required for large integers or highly precise floating point numbers. It
is important to realize that a stable, accurate, and efficient use of numerically intensive
calculations is critical to scientific and technical computing.

As we have mentioned previously, the emerging discipline of computational
 science and engineering is now accepted as the third science, complementing both
theoretical science and laboratory science. Computational science and engineering is
an interdisciplinary subject that unites computing and mathematics with disciplinary
efforts in chemistry, biology, physics, and other scientific and engineering fields. In
terms of computing, major components include high-end computing systems, state-of-
the art networking, high-end visualization, and high-end storage. In order for these
systems to perform at their fullest, they require advanced paradigms, fundamental
algorithms, middleware, and disciplinary applications. Computational science and
engineering focuses on problems that require simulation and modeling in order to
make significant advances to efforts in scientific and engineering fields. In this chap-
ter, we examine algorithms for some fundamental numerical problems.

In most of our previous discussions, we have used n as a measure of the size of a
problem, in the sense of how much data is processed by an algorithm or how much
storage is required by the data processed. This is not always the case for the problems
discussed in this chapter. For example, the value of xn is based on a constant number of
data items. However, the value of n will still play a role in determining the running
time and memory usage of the algorithms discussed. The focus of this chapter is on
RAM algorithms, but several of the exercises consider the design and analysis of paral-
lel algorithms to solve numerical problems.

We also call the reader’s attention to the fact that we make an important change in
the focus of our analysis in this chapter. Rather than analyzing the running time of a
RAM algorithm, we analyze the number of operations performed by an algorithm.
That is, we consider an asymptotic evaluation of the number of high-level operations
utilized. These operations include addition, subtraction, multiplication, division, and
the computation of square roots. This is because for some of the problems we consider,
we can no longer assume that these are constant-time operations. When operands are
not restricted to representations of a fixed number of bits, the number of bits in the
 operands impacts the running time of these operations.

C8208_ch13.indd 353C8208_ch13.indd 353 11/15/12 12:26 PM11/15/12 12:26 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

354 Chapter 13 Numerical Problems

Primality

Given an integer n > 1, suppose we want to determine whether or not n is a prime
number. That is, we want to determine whether or not the only positive integer fac-
tors of n are 1 and n. This problem, from the area of mathematics known as Number
Theory, was once thought to be largely of theoretical interest. However, modern
data encryption techniques depend on factoring large integers, so there is consid-
erable practical value in the primality problem.

We recall that n is prime if and only if the only factorization n = u × v of n with
integers 1 ≤ u ≤ v is u = 1 and v = n. This naturally suggests a RAM algorithm in
which we test every integer u from 2 to n − 1 to see if u is a factor of n. Such an
algorithm utilizes O(n) operations.

We can improve the performance of the algorithm by observing that any fac-
torization n = u × v of n with integers 1 ≤ u ≤ v must satisfy 1 ≤ u ≤ n1/2. To prove
this claim, notice that otherwise, we would have n1/2 < u < v, which implies
n = n1/2 × n1/2 < u × u ≤ u × v = n. Therefore, we would have the contradictory con-
clusion that n < n. Thus, we obtain the following RAM algorithm.

Procedure Primality(n, nIsPrime, factor)
Input: n, an integer greater than 1.
Output: nIsPrime, true or false according to whether n is prime.
factor, the smallest prime factor of n if n is not prime.
Local variable: Root_n, integer approximation of n1/2.

Action:

 factor = 2
 Root_n = ⎣n1/2⎦p
 nIsPrime ← true
 Repeat
 If n/factor = ⎣n/factor⎦,pthen nIsPrime ← false
 Else factor ← factor + 1
 Until (not nIsPrime) or (factor > Root_n)

This algorithm utilizes O(n1/2) operations. In fact, when n is prime, Θ(n1/2)
operations are utilized. This asymptotic worst-case scenario also occurs if n is not
prime and the smallest prime factor of n is Θ(n1/2), since in this case a prime factor
is not detected until Θ(n1/2) iterations of the loop have occurred.

Notice that exploring non-prime values of factor in the algorithm above is
unnecessary, since if n is divisible by a composite integer u × v, it follows that n is
divisible by u. This has the following implications.

• With only minor modifications to the algorithm above, we can reduce the
number of operations utilized by a constant factor if we consider only 2 and
odd numbers as possible factors of n.

C8208_ch13.indd 354C8208_ch13.indd 354 11/15/12 12:26 PM11/15/12 12:26 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Greatest Common Divisor 355

• If we have in memory a list L of the prime integers that are no greater than n1/2
and use only these values for factor in the algorithm above, we obtain a more
efficient algorithm. It is known that the number π(n) of prime numbers that
are less than or equal to n satisfies π(n) = Θ(n/log n). This follows from the
Prime Number Theorem, which states that

lim
n→∞
c π(n)

n/ln n
d = 1.

Thus, we can modify the previous algorithm, as follows.

Procedure Primality(n, L, nIsPrime, factor)
Input: n, a positive integer.
L, a list in which consecutive entries are successive primes including all
primes ≤ n1/2, and the next prime.
Output: nIsPrime, true or false according to whether n is prime.
factor, the smallest prime factor of n if n is not prime.
Local variables: i, an index.
Root_n, integer approximation of n1/2.

Action:

 i ← 1 {set index for first entry of prime}
 Root_n ← ⎣n1/2⎦p
 nIsPrime ← true
 Repeat
 factor ← L[i]
 If n/factor = ⎣n/factor⎦,pthen nIsPrime ← false
 Else i ← i + 1
 Until (not nIsPrime) or (L[i] > Root_n)
 Return nIsPrime, factor

In light of the asymptotic behavior of the function π(n), it is easily seen that
this RAM algorithm utilizes O(n1/2/log n) operations.

In the Exercises, the reader is asked to devise a parallel algorithm for the
 primality problem.

Greatest Common Divisor

Another problem concerned with factoring integers is the greatest common divisor
(gcd) problem. Given nonnegative integers n0 and n1, we wish to find the largest
positive integer, denoted (n0, n1), that is a factor of both n0 and n1. We will find it
useful to define gcd(0, n) = gcd(n, 0) = n for all positive integers n.

C8208_ch13.indd 355C8208_ch13.indd 355 11/15/12 12:26 PM11/15/12 12:26 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

356 Chapter 13 Numerical Problems

The greatest common divisor is used in the familiar process of “reducing a
fraction to its lowest terms.” This can be important when calculations originating
with integer quantities must compute divisions without roundoff error. For exam-
ple, we would store 1/3 as the pair (1, 3) rather than as 0.333 . . . 33. In such a repre-
sentation of real numbers, for example, we would have (5, 60) = (3, 36), since each
of the pairs represents the fraction 1/12.

The Euclidean algorithm, a classical solution to the gcd problem, is based on
the following observation. Suppose there are integers q and r, i.e., quotient and
remainder, respectively, such that

n0 = q × n1 + r.

Then any common factor of n0 and n1 must also be a factor of r. Therefore, if
n0 ≥ n1 and q = ⎣n0/n1⎦ , we have n1 > r ≥ 0 and

gcd(n0, n1) = gcd(n1, r).

These observations give us the following recursive algorithm.

Function gcd(n0, n1) {greatest common divisor of arguments}
Input: nonnegative integers n0, n1
Local variables: integer quotient, remainder

Action:

 If n0 < n1, then swap(n0, n1) {Thus, we assume n0 ≥ n1.}
 If n1 = 0, return n0
 Else
 quotient ← ⎣n0/n1⎦p
 remainder ← n0 − n1 × quotient
 return gcd(n1, remainder)
 End else

In terms of the variables discussed above, the number of operations utilized by
this algorithm, T(n0, n1), satisfies the recursive relation

T(n0, n1) = T(n1, r) + Θ(1).

It is perhaps not immediately obvious how to solve this recursion, but we can
make use of the following.

Lamé’s Theorem

The number of division operations needed to find gcd(n0, n1), for integers satisfy-
ing n0 ≥ n1 ≥ 0, using the Euclidean algorithm, is no more than five times the num-
ber of decimal digits of n1.

C8208_ch13.indd 356C8208_ch13.indd 356 11/15/12 12:26 PM11/15/12 12:26 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Integral Powers 357

It follows from our solution to the primality problem that our implementation
of the Euclidean algorithm on a RAM utilizes T(n0, n1) = O(log (min{n0, n1}))
operations for positive integers n0, n1.

The Euclidean algorithm seems inherently sequential. In the exercises, a very
different approach is suggested that can be parallelized efficiently.

Integral Powers

Let x be a real, i.e., floating point, number and let n be an integer. Often we con-
sider that computing xn utilizes Θ(1) operations. This is a reasonable assumption
to make if the absolute value of n is bounded by some constant. For example, we
might assume that the computation of xn utilizes Θ(1) operations for 0 n 0 ≤ 100.
However, one can assume that the number of operations utilized in computing xn is
related to the value of n.

We can easily reduce this problem to the assumption that n ≥ 0 since an algo-
rithm to compute xn for an arbitrary integer n can be constructed as follows.

 1. Compute temp = x 0n 0.
 2. If n ≥ 0, return temp else return 1/temp.

Notice that step 2 utilizes Θ(1) operations. Therefore, the number of opera-
tions utilized by the algorithm is dominated by the computation of a nonnegative
power. Thus, without loss of generality in the analysis of the algorithm to solve this
problem, we will assume that n ≥ 0. A standard, brute-force, algorithm is given
below for computing a simple power function on a RAM.

Function power(x, n) {return the value of xn}
Input: x, a real number.
n, a nonnegative integer.
Output: xn.
Local variables: product, a partial result.
counter, the current power.

Action:

 product = 1
 If n > 0, then
 For counter = 1 to n, do
 product = product × x
 End For
 End If
 Return product

The reader should verify that the number of operations utilized by the RAM
algorithm given above is Θ(n), and that this algorithm requires extra space for
Θ(1) data items.

C8208_ch13.indd 357C8208_ch13.indd 357 11/15/12 12:26 PM11/15/12 12:26 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

358 Chapter 13 Numerical Problems

Now let’s consider computing x19 for any real value x. The brute-force algo-
rithm given above utilizes 19 multiplications. However, by exploiting the concept
of recursive doubling that has been used throughout the book, observe that we can
compute x19 much more efficiently, as follows.

 1. Compute and save x2 = x × x.

 2. Compute and save x4 = x2 × x2.

 3. Compute and save x8 = x4 × x4.

 4. Compute and save x16 = x8 × x8.

 5. Compute and return x19 = x16 × x2 × x.

Notice that this procedure utilizes a mere six multiplications, although we pay
a small price in requiring extra memory.

In order to generalize from our example, we remark that the key to our recur-
sive doubling algorithm is in the repeated squaring of powers of x instead of the
repeated multiplication by x. The general recursive doubling algorithm follows.

Function power(x, n) {return the value of xn}
Input: x, a real number.
n, a nonnegative integer.
Output: xn.
Local variables: product, a partial result.
 counter, exponent: integers.
 p30 . . . ⎣log2 n⎦4, an array used for certain powers of x.

 q3[0 . . . ⎣log2 n⎦4, an array used for powers of 2.

Action:

 product = 1
 If n > 0, then
 p[0] = x
 q[0] = 1
 For counter = 1 to ⎣log2 n⎦, do
 q[counter] = 2 × q[counter − 1] {= 2counter}
 p[counter] = 1p[counter − 1]22 {p[i] = xq[i] = x2i}
 End For
 exponent = 0
 For counter = ⎣log2 n⎦ downto 0, do
 If exponent + q[counter] ≤ n then
 exponent = exponent + q[counter]
 product = product × p[counter]
 End If exponent + q[counter] ≤ n
 End For
 End If n > 0
 Return product

C8208_ch13.indd 358C8208_ch13.indd 358 11/15/12 12:26 PM11/15/12 12:26 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Evaluating a Polynomial 359

The reader should be able to verify that this algorithm utilizes Θ(log n) opera-
tions on a RAM, using extra space for Θ(log n) data items. The reader will be
asked to consider parallelizing this RAM algorithm as an exercise.

Evaluating a Polynomial

Let f (x) be a polynomial function,

f (x) = an xn + an−1xn−1 + . . . + a1x + a0

for some set of real numbers {ai}i=0
n , with an ≠ 0 if n > 0. Then n is the degree of

f (x). As was the case in evaluating xn, a straightforward algorithm for evaluating
f (t), for a given real number t, does not yield optimal performance. Consider the
following naïve algorithm.

 evaluation = 0
 For i = 0 to n, do
 If ai ≠ 0, then evaluation = evaluation + ai × xi

 Return evaluation

Notice that we could, instead, use an unconditional assignment in the body of
the For-loop. However, the calculation of xi utilizes ω (1) operations, so it is often
useful to omit this calculation when it isn’t necessary, i.e., when ai = 0.

It is clear that the For-loop dominates the work of the algorithm. If we use the
naïve algorithm given above to compute xn, then the algorithm presented above for
evaluating a polynomial utilizes

Θaa
n

i=1

ib = Θ(n2)

operations on a RAM in the worst case. Even if we use our recursive doubling
algorithm for computing xn, this straightforward algorithm for evaluating a poly-
nomial utilizes

Θaa
n

i=1

log ib = Θ(n log n)

operations on a RAM in the worst case. However, we can do better than this.
Let’s consider a 3rd-degree polynomial. We have

a3x3 + a2x2 + a1x + a0 = 1(a3x + a2)x + a12x + a0.

For example,

10x3 + 5x2 − 8x + 4 = 1(10x + 5)x − 82 x + 4.

C8208_ch13.indd 359C8208_ch13.indd 359 11/15/12 12:26 PM11/15/12 12:26 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

360 Chapter 13 Numerical Problems

This illustrates a general principle, that by grouping expressions appropriately,
we can reduce the number of arithmetic operations to a number that is linear in n,
the degree of the polynomial. This observation is the basis for Horner’s Rule and a
corresponding algorithm, given below.

Function Evaluate(a, x)
{evaluate the polynomial represented by the coefficient array a at the input
value x}
Input: Array of real coefficients a[0 . . . n], real number x.

Output: Value f (x) = a
n

i=0

a[i] × xi.

Local variables: i, an index variable, and result to accumulate the return value.

Action:

 result = a[n]
 If n > 0, then
 For i = n downto 1, do
 result = result × x + a[i − 1]
 End For
 End If
 Return result

The reader should verify that the algorithm given above implements Horner’s
Rule on a RAM while utilizing Θ(n) operations. Alternately, one can construct an
algorithm based on a parallel prefix calculation that runs in a linear number of
operations, but also uses a linear amount of additional memory. By contrast,
Horner’s algorithm requires only a constant amount of additional memory. In the
Exercises, the reader is asked to consider constructing an efficient parallel algo-
rithm to evaluate a polynomial.

Approximation by Taylor Series

Recall from calculus that a function that is sufficiently differentiable may be
approximately evaluated by using a Taylor polynomial, i.e., a Taylor series. In par-
ticular, let f (x) be continuous everywhere on a closed interval [a, b] and n times
differentiable on the open interval (a, b) containing values x and x0. Let 5pk6k=0

n−1
 be

the set of polynomial functions defined by

pk(x) = a
k

i=0

f (i)(x0)

i!
 (x − x0)i,

where f (i) denotes the ith order derivative function and i! denotes i factorial. Then
the error term in approximating f (x) by pn−1(x) is

εn(x) = f (x) − pn−1(x) =
f (n)(τ)

n!
 (x − x0)n,

for some τ between x and x0.

C8208_ch13.indd 360C8208_ch13.indd 360 11/15/12 12:26 PM11/15/12 12:26 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Approximation by Taylor Series 361

The expression εn(x) is defined to be the truncation error, which is used when
replacing an exact value of an infinite computation by the approximation obtained
by using truncating to a finite computation. By contrast, as we mentioned in
Chapter 6, a roundoff error occurs whenever an exact calculation yields more non-
zero decimal places than can be stored. In the remainder of this section, we will
consider only truncation errors.

Often, we do not know the exact value of τ in the error expression. If we knew
the value of τ , we could compute the error and adjust our calculation by its value
to obtain a net truncation error of 0. However, we can often obtain a useful upper
bound on the magnitude of the error. Such a bound may provide us with informa-
tion regarding how hard we must work to obtain an acceptable approximation.

For example, we may have an error tolerance ε > 0. This means we wish to
allow no more than ε of error in our approximation. The value of ε may give us a
measure of how many operations are necessary in order to compute an acceptable
approximation. Therefore, we may wish to express our number of operations uti-
lized as a function of ε . Notice that this is significantly different from the analysis
of algorithms presented in previous chapters. We are used to the idea that the larger
the value of n, the larger the number of operations performed by an algorithm.
However, in a problem in which error tolerance determines running time, it is usu-
ally the case that the smaller the value of ε , the larger the number of operations
performed. That is, the smaller the error we can tolerate, the more we must work to
obtain a satisfactory approximation. It is difficult to give an analysis for large
classes of functions. This is due to the fact that the rate of convergence of a Taylor
series for the function f (x) that it represents depends on the nature of f (x) and
the interval [a, b] on which the approximation is desired. Of course, the analysis
also depends on the error tolerance. Below, we present examples to illustrate typi-
cal methods.

EXAMPLE

We show how to give a polynomial of minimal or nearly minimal degree that
will approximate the exponential function ex to d decimal places of accuracy
on the interval [−1, 1], for some positive integer d.

Let’s take x0 = 0 and observe that f (i)(x) = ex for all i. Our estimate of the
truncation error then becomes

εn(x) =
eτ

n!
 xn.

Notice that ex is a positive and increasing function since its first derivative
is always positive. Therefore, its maximum absolute value on any interval is at
the interval’s right endpoint. Thus, on the interval [−1, 1], we have

0 εn(x) 0 ≤ e1

n!
1n =

e

n!
<

2.8

n!
.

C8208_ch13.indd 361C8208_ch13.indd 361 11/15/12 12:26 PM11/15/12 12:26 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

362 Chapter 13 Numerical Problems

Note the choice of 2.8 as an upper bound for e is somewhat arbitrary as we
could have used 3 or 2.72 instead. The requirement of approximation accurate
to d decimal places means we need to have 0 εn(x) 0 ≤ 0.5 × 10−d. Therefore, it
suffices to take

2.8

n!
≤ 0.5 × 10−d ⇔

2.8 × 10d

0.5
≤ n! ⇔

 5.6 × 10d ≤ n! (13.1)

in order that the polynomial

pn−1(x) = a
n−1

i=0

xi

i!

approximate ex to d decimal places of accuracy on the interval [−1, 1].
We would prefer to solve inequality (13.1) for n in terms of d, but a solu-

tion does not appear to be straightforward. However, it follows from inequality
(13.1) that n = o(d) (see the Exercises), although for small values of d, as shown
below, this claim may not seem to be suggested. The assertion is important
because we know from an Exercise that on a RAM, evaluating a polynomial by
an optimal algorithm utilizes Θ(n) operations, where n is the degree of the
polynomial.

For a given value of d, let nd be the smallest value of n satisfying inequality
(13.1). Simple calculations based on inequality (13.1) yield the values shown in
Table 13-1.

Table 13-1 Values of d, i.e., decimal places, and
nd, i.e., number of terms, for the Taylor series for
ex expanded about x0 = 0 on [−1, 1].

d nd

1 5
2 6
3 8
4 9
5 10

Thus, if d = 3, the desired approximating polynomial for ex on [−1, 1] is

pn3−1(x) = a
7

i=0

xi

i!
.

C8208_ch13.indd 362C8208_ch13.indd 362 11/15/12 12:26 PM11/15/12 12:26 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Approximation by Taylor Series 363

EXAMPLE

We show how to give a polynomial of minimal or nearly minimal degree that
will approximate the trigonometric function sin x to d decimal places of accu-
racy on the interval [−π , π] for some positive integer d.

Let’s take x0 = 0 and observe that f (i)(0) ∈ {−1, 0, 1} for all i. If the latter
claim is not obvious to the reader, it is a good exercise in mathematical induc-
tion. Our estimate of the truncation error then becomes

0 εn(x) 0 ≤ ` 1
n!

 xn ` ≤ π n

n!
<

3.2n

n!
.

As in the previous example, accuracy to d decimal places implies an error
tolerance of 0 εn(x) 0 ≤ 0.5 × 10−d. Hence, it suffices to take

3.2n

n!
 ≤ 0.5 × 10−d ⇔

 2 × 10d ≤
n!

3.2n
. (13.2)

If we take the minimal value of n that satisfies inequality (13.2) for a given
d, we have n = o(d) (see the Exercises), although for small values of d, this
claim may not seem to be suggested, as shown below.

For a given value of d, let nd be the smallest value of n satisfying inequality
(13.2). Simple calculations based on inequality (13.2) yield the values shown
in Table 13-2.

Table 13-2 Values of d (decimal places) and
nd terms for the Taylor series for sin x expanded
about x0 = 0 on [–π , π].

d nd

1 10
2 12
3 14
4 15
5 17

C8208_ch13.indd 363C8208_ch13.indd 363 11/15/12 12:26 PM11/15/12 12:26 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

364 Chapter 13 Numerical Problems

Trapezoidal Integration

A fundamental theorem of Calculus is that if F '(x) = f (x) for every x ∈ [a, b], then

∫
b

a
 f (x)dx = F(b) − F(a).

Unfortunately, for many important functions f (x), the corresponding antide-
rivative function F(x) is difficult to evaluate for a given value of x. As an example,
consider the function f (x) = x−1 with

F (x) = ln x = ∫
x

1
 f (t)dt.

For such functions, it is important to have approximation techniques in order
to evaluate definite integrals.

One of the best-known approximation techniques for definite integrals is
Trapezoidal Integration, in which we use the relationship between definite inte-
grals and the area between the graph and the x-axis to approximate a slab of the
definite integral with a trapezoid. We will not prove the following statement, as its
derivation can be found in many Calculus or Numerical Analysis textbooks.

Theorem: Let f (x) be a function that is twice differentiable on the interval
[a, b] and let n be a positive integer. Let

h =
b − a

n

Thus, for d = 2 we can approximate sin x on the interval [−π , π] to two
decimal places of accuracy by the polynomial

pn2−1(x) = 0 +
1x

1!
+

0x2

2!
+

−1x3

3!
+

0x4

4!
+

1x5

5!

 +
0x6

6!
+

−1x7

7!
+

0x8

8!
+

1x9

9!
+

0x10

10!
+

−1x11

11!

 = x −
x3

6
+

x5

120
−

x7

5,040
+

x9

362,880
−

x11

39,916,800
.

C8208_ch13.indd 364C8208_ch13.indd 364 11/15/12 12:26 PM11/15/12 12:26 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Trapezoidal Integration 365

and let xi, i ∈ {1, 2, . . . , n − 1}, be defined by xi = a + ih. Let

tn = h c f (a) + f (b)

2
+ a

n−1

i=1
 f (xi)d .

Then tn is an approximation to

∫
b

a
 f (x)dx,

with the error in the estimate given by

 εn = tn − ∫
b

a
 f (x)dx =

(b − a)3 f "(η)

12n2
, (13.3)

for some η ∈(a, b).
The reader should consider Figure 13-1 in order to recall the principles behind

Trapezoidal Integration.

FIGURE 13-1 Trapezoidal Integration. The dashed
lines represent the tops of the trapezoids. The area
under each small arc is approximated by the area
of a trapezoid. It is often much easier to compute
the area of a trapezoid than the exact area under an
arc. The total area of the trapezoids serves as an
approximation to the total area under the curve.

y = f(x)

a x1 x2 xn�1 b

· · ·

The value of η in equation (13.3) is often unknown to us, but an upper bound
for 0 f "(η) 0 is often sufficient, as what we seek is for 0 εn 0 to be small.

If we assume that for x ∈ [a, b], each value of f (x) can be computed on a
RAM with Θ(1) operations, then it is easy to see that tn can be computed on a
RAM with Θ(n) operations (see the Exercises). We expect that the number of oper-
ations performed by an algorithm will be a function of the quality of the approxi-
mation, much as was the case of computing the Taylor series to within a
predetermined error.

C8208_ch13.indd 365C8208_ch13.indd 365 11/15/12 12:26 PM11/15/12 12:26 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

366 Chapter 13 Numerical Problems

If we choose the smallest value of n satisfying the inequality (13.4), we con-
clude that the number of operations performed by our approximation of ln 2, using
Trapezoidal Integration as discussed above, is exponential in the number of deci-
mal places of accuracy, Θ(10d/2).

We remark that it is not unusual to find that the amount of work required is
exponential in the number of decimal places of accuracy required. In these situa-
tions, Trapezoidal Integration may not be a very good technique to use for computing
approximations that are required to be extremely accurate. Another way of looking
at this analysis is to observe that using an error tolerance of ε = 0.5 × 10−d, we have
d = −log10 (2ε). Further, if we substitute this into inequality (13.4), we conclude that
the minimal value of n satisfying the inequality is Θ(ε −1/2).

Notice also, for example, that for d = 6, the minimum value of n to satisfy
inequality (13.4) is n = 578. While this indicates an unreasonable amount of work

EXAMPLE

For some positive integer d, we sketch how to compute ln 2 to d decimal places
by using Trapezoidal Integration, and we give an analysis of the number of
operations performed in terms of d. Recall that ln 2 is loge 2, where
e ≈ 2.7182818 is the “Euler number.” As mentioned previously in the text, “ln”
is typically referred to as the “natural logarithm.” Since

ln 2 = ∫
2

1
 x−1dx,

we take f (x) = x−1, f '(x) = −x−2, f "(x) = 2x−3, f (3)(x) = −6x−4, and [a, b] = [1, 2].
Notice f "(x) > 0 on [1, 2], and f " is a decreasing function since its derivative,
f (3)(x), is negative for all x ∈ [1, 2]. Therefore, f " attains its maximum abso-
lute value on [1, 2] at the left endpoint. It follows that

0 εn 0 ≤ (2 − 1)3 f "(1)

12n2
=

1 × 2(1)−3

12n2
=

1

6n2
.

Since we wish to attain d decimal place accuracy, we want 0 εn 0 ≤ 0.5 × 10−d,
so it suffices to take

1

6n2
≤ 0.5 × 10−d ⇔

10d

3
≤ n2 ⇔

10d/2

31/2
≤ n. (13.4)

We leave to the reader as an exercise the computation of ln 2 accurate to a
desired number of decimal places by Trapezoidal Integration, as discussed above.

C8208_ch13.indd 366C8208_ch13.indd 366 11/15/12 12:26 PM11/15/12 12:26 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Approximate Solution of an Equation 367

for a student in a calculus class using only pencil, paper, and a non-programmable
calculator, it is still a small problem for a modern computer.

Other methods of “numerical integration” such as Simpson’s Method tend to
converge faster to the definite integral represented by the approximation.
Fortunately, for many purposes, only a small number of decimal places of accu-
racy are required. Also, it may be that another technique, such as using a Taylor
series, is more efficient for computing the value of a logarithm.

Approximate Solution of an Equation

Suppose we have an equation of the form f (x) = 0, where the function f (x) is con-
tinuous on an interval [a, b] , and we wish to find a solution, or perhaps all solu-
tions to this equation, i.e., one or all values of x ∈ [a, b] that satisfy the equation. It
is often difficult to find an exact solution, and in such a case, a sufficiently accu-
rate approximate solution will often serve our purposes well.

This problem is often made simpler if we happen to know that the function f (x)
is monotone on [a, b], i.e., either f (x) is an increasing function on [a, b] or f (x) is a
decreasing function on [a, b]. In the case of a monotone function, a Binary Search
type of procedure yields an efficient sequential solution, as follows. For simplicity, we
assume the value of f (x) can be computed in a constant number of operations for any
x ∈ [a, b]. Notice that since f (x) is continuous and monotone on [a, b], if f (a) f (b) > 0
then f (a) and f (b) have the same sign, and there is no solution in [a, b]. Clearly, the
problem is trivial if f (a) = 0 or f (b) = 0. Therefore, we assume below that f (a) and
f (b) have opposite signs, i.e., one is positive and the other is negative.

Algorithm for approximate solution of f (x) = 0 on [a, b], where f (x) is
monotone on [a, b] and f (a) and f (b) have opposite signs.

Function Solution([a, b], ε)
Inputs: [a, b] is the interval considered.
ε > 0 is the error tolerance of the solution, i.e., if the approximate value
returned is denoted by x0, then there is an exact solution x' such that 0 x' − x0 0 < ε .
Local variable: mid, used as the midpoint of the current interval.

Action:

 mid ←
a + b
2

 If b − a < ε or f(mid) = 0 then return mid
 Else {b − a ≥ ε and 0 ∉ {f(a),f(b),f(mid)}}
 If f(a) × f(mid) < 0 then return Solution([a,mid],ε) {*}
 Else return Solution([mid, b],ε)
 End Else {b − a ≥ ε and 0 ∉ {f(a),f(b),f(mid)}}
 End algorithm

C8208_ch13.indd 367C8208_ch13.indd 367 11/15/12 12:27 PM11/15/12 12:27 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

368 Chapter 13 Numerical Problems

It is easily seen that if the condition at the line marked {*} is true, then there is
a solution in the interval [a, mid], and otherwise, there is a solution in the interval
[mid, b], so in either case the algorithm performs correctly.

At each level of recursion, the length of the current interval is decreased by a
factor of ½. It follows that the number of levels of recursion, n, before a solution is
returned, satisfies (b − a)/2n < ε ⇒ log2 [(b − a)/ε] < n. It follows that our algo-
rithm utilizes Θ(log [(b − a)/ε]) operations.

EXAMPLE

How many levels of recursion are necessary in using the algorithm above to
estimate a value for 110 that is accurate to 3 decimal places?

The question isn’t entirely well defined, as we have not directed the reader
concerning what function and what interval to use. It is reasonable to assume
that we seek an approximate solution to the equation x2 − 10 = 0. We note that
f (x) = x2 − 10 is an increasing function for x > 0, which is easily seen since
f '(x) = 2x > 0 for x > 0. Further, f (3) < 0 and f (4) > 0, so we can take our
interval to be [3,4]. Accuracy to 3 decimal places means we can take
ε = 0.5 × 10−3 = 5 × 10−4.

For such choices, the discussion above shows that the number of levels of
recursion beyond the initial call upon the algorithm is

l log2
4 − 3

5 × 10−4
 m = ⎡log2 2,000⎤ = 11.

Summary

In contrast with most previous chapters, this chapter is concerned with numerical
computations. Many problems in computational science/scientific computing/
numerical methods perform operations in numbers that do not depend on the vol-
ume of input to be processed, which is often constant. Rather, problems in these
areas typically rely on the values of a constant number of parameters, or, in some
cases, on an error tolerance. Such problems come from core areas in science and
engineering and involve solution techniques from branches of mathematics, such
as Algebra, Number Theory, Calculus, and Numerical Analysis or Numerical
Methods, as well as methods from computer science. In this chapter, we consider
prime factorization, greatest common divisor, integral powers, evaluation of a
polynomial, approximations by using a Taylor series, Trapezoidal Integration, and

C8208_ch13.indd 368C8208_ch13.indd 368 11/15/12 12:27 PM11/15/12 12:27 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter Notes 369

approximate solutions of equations. The solutions we present are all for the RAM,
though readers will be asked to consider parallel models of computation in the
Exercises.

Chapter Notes

The primality problem and the greatest common divisor problem are taken from
Number Theory, a branch of mathematics devoted to fundamental properties of
numbers, particularly, although not exclusively, integers.

We use the Prime Number Theorem concerning the asymptotic behavior of the
function π(n), the number of primes less than or equal to the positive integer n.
This theorem is discussed in the following sources.

• T.M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, New
York, 2001.

• W. Narkiewicz, The Development of Prime Number Theory, Springer-Verlag,
Berlin, 2000.

• K.H. Rosen, Elementary Number Theory and its Applications, Addison-
Wesley Publishing, Reading, MA, 1993.

The latter also discusses the Euclidean algorithm for the greatest common
divisor problem and contains a proof of Lamé’s Theorem.

Other problems we discuss in this chapter are taken from Numerical Analysis,
an area of applied mathematics and computing that is concerned with computa-
tionally intensive problems involving numerical algorithms, approximation, error
analysis, and related issues. Problems in Numerical Analysis have applications in
branches of mathematics that derive from Calculus, e.g., Differential Equations,
Probability, and Statistics, as well as Linear Algebra, including matrix multiplica-
tion, solution of systems of linear equations, and linear programming, and their
application areas. For an introduction to the field, we refer the reader to the
following.

• N.S. Asaithambi, Numerical Analysis: Theory and Practice, Saunders College
Publishing, Fort Worth, 1995.

• R.L. Burden and J.D. Faires, Numerical Analysis, PWS-Kent Publishing
Company, Boston, 1993.

• R. Butt, Introduction to Numerical Analysis Using MATLAB, Infinity Science
Press, Hingham, MA, 2008.

• S. Yakowitz and Ferenc Szidarovszky, An Introduction to Numerical
Computations, Prentice Hall, Upper Saddle River, NJ, 1990.

We discuss approximation problems with regard to the algorithmic efficiency
of our solutions in terms of error tolerance, sometimes expressed in terms of the
number of decimal places of accurate calculation. It is tempting to say this is rarely

C8208_ch13.indd 369C8208_ch13.indd 369 11/15/12 12:27 PM11/15/12 12:27 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

370 Chapter 13 Numerical Problems

important, that most calculations require only a small number of decimal places of
accuracy. One should note, however, that there are situations in which very large
numbers of accurate decimal places are required. As an extreme example, some
mathematicians are interested in computing the value of π to millions of decimal
places. While these examples involve techniques beyond the scope of this book,
the point is that interest exists in computations with more than “ordinary”
accuracy.

Exercises

In several of the exercises, we ask the reader to construct a parallel version of a
RAM algorithm presented in the chapter. Notice that the number of operations of
a parallel algorithm is typically more than the number of operations of its sequen-
tial analog, since communications issues may come into play. When we discuss a
parallel algorithm and its sequential analog, we are typically interested in compar-
ing running times. Rather than use an awkward ad hoc expression such as the time
equivalent of Θ(f (n)) sequential operations, we will abbreviate with expressions
of the form Θ(f (n)) parallel operations throughout the exercises.

 1. Devise a parallel algorithm to solve the primality problem for the positive inte-
ger n. At the end of the algorithm, every processor should know whether or not
n is prime. Further, if n is not prime, every processor should know the smallest
prime factor of n. Also, assume that no list of primes is initially stored in
memory. Assuming ⎣n1/2⎦ processors, provide an analysis of the number of
parallel operations used by your algorithm on the following.

 a. CREW PRAM

 b. EREW PRAM

 c. Mesh

 d. Hypercube

 2. Suppose we modify the previous problem so that we include the assumption
that a list L, consisting of all the primes pi satisfying pi ≤ ⎣n1/2⎦ , is initially
distributed one prime per processor, where pi is initially stored in processor Pi.
Analyze the number of processors required as well as the number of parallel
operations utilized by your algorithm for each of the following models.

 a. CREW PRAM

 b. EREW PRAM

 c. Mesh

 d. Hypercube

 3. Consider the problem of computing gcd(n0, n1) for nonnegative integers
n0, n1, where n0 ≥ n1. Assume a list L of all primes pi satisfying pi ≤ ⎣n1/2⎦ is
kept in memory. For a parallel model of computation, assume these primes

C8208_ch13.indd 370C8208_ch13.indd 370 11/15/12 12:27 PM11/15/12 12:27 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Exercises 371

are distributed one prime per processor. Devise an algorithm for computing
gcd(n0, n1) efficiently based on finding, for each prime p ∈ L, the maximal
nonnegative integer k such that pk is a common factor of n0 and n1. For paral-
lel machines, at the end of the algorithm, every processor should have the
value of gcd(n0, n1). Analyze the number of parallel operations utilized by
such an algorithm for the following.

 a. CREW PRAM

 b. EREW PRAM

 c. Mesh

 d. Hypercube

 Hint: consider using the efficient sequential algorithm for computing xn that
was presented in the chapter.

 4. Decide whether or not the Θ(log n)-operation algorithm for computing xn pre-
sented in the chapter is effectively parallelizable. That is, either give a version
of this algorithm for a PRAM that utilizes o(log n) parallel operations and
show that it does so, or argue why it is difficult or impossible to do so.

 5. Show that a RAM algorithm to evaluate a polynomial of degree n utilizes Ω(n)
operations, which implies that Horner’s algorithm is optimal.

 6. Devise an algorithm for evaluation of a polynomial of degree n on a PRAM.
This will be somewhat easier on a CREW PRAM than on an EREW PRAM,
but in either case, you should be able to achieve an algorithm that utilizes
Θ(log n) parallel operations using Θ(n/log n) processors, which results in an
optimal cost of Θ(n).

 7. Modify your algorithm from the previous exercise to run on a mesh or hyper-
cube of size n. Assume the coefficients of the polynomial are distributed Θ(1)
per processor. Analyze the number of parallel operations for both of these
architectures.

 8. Devise an efficient algorithm for evaluation of a polynomial of degree at
most n on a CGM(n, q). Assume that the coefficients 5ai6i=0

n
 of the polyno-

mial f (x) are distributed Θ(n/q) per processor and the value x0, such that
f (x0) is to be computed, is initially in just one processor. Derive an algorithm
that utilizes Θ(n/q) parallel operations, either by modifying Horner’s
 algorithm or by using an algorithm based on parallel prefix computation
(Chapter 7, exercise 11).

 9. Show that for any x ∈ [−1, 1], the value of ex can be computed to within
0.5 × 10−d for positive integer d, i.e., to d-decimal place accuracy, in o(d)
operations on a RAM. You may use inequality (13.1).

 10. Show that inequality (13.2) implies n = o(d) and use this result to show that
the function sin x can be computed for any x ∈ [−π , π] to d-decimal place
accuracy by utilizing o(d) operations on a RAM.

C8208_ch13.indd 371C8208_ch13.indd 371 11/15/12 12:27 PM11/15/12 12:27 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

372 Chapter 13 Numerical Problems

 11. Show that if we assume the value of f (x) can be computed by utilizing Θ(1)
operations for all x ∈ [a, b], the Trapezoidal Integration estimate tn can be
computed on a RAM by utilizing Θ(n) operations.

 12. Under the same assumptions as in the previous problem, provide an asymp-
totic analysis in terms of the number of parallel operations utilized for the
efficient computation of the Trapezoidal Integration estimate tn as a function
of n on each of an EREW PRAM, hypercube, and mesh of size n. In addition,
give the asymptotic number of parallel operations as a function of n and q on a
CGM(n, q). Hint: state one parallel algorithm that can be implemented effi-
ciently on all of these architectures.

 13. Analyze the number of operations utilized by of using Trapezoidal Integration

 to compute ∫
1

0
 e−x2 dx to d decimal places on a RAM, as an asymptotic expression

 in d. To simplify the problem, you may assume that for all x ∈ [0, 1], ex can be
computed with sufficient accuracy in Θ(1) time.

C8208_ch13.indd 372C8208_ch13.indd 372 11/15/12 12:27 PM11/15/12 12:27 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C8208_ch13.indd 373C8208_ch13.indd 373 11/15/12 12:27 PM11/15/12 12:27 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Appendix 1

Proof of the
Principle of
Mathematical
Induction

Background Photo Credit © Spectral-Design / Shutterstock

C8208_app1.indd 374C8208_app1.indd 374 11/20/12 6:49 PM11/20/12 6:49 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In this appendix, we provide a proof of the Principle of Mathematical Induction. We
initially discuss induction in Chapter 2. We consider proofs of correctness of algo-

rithms based on induction throughout the text. Recall from Chapter 2 that a predicate
is a statement that is true or false. Some readers might find it useful to think of a predi-
cate on the positive integers as a function P : � → {true, false}, where � is the set of
natural numbers, i.e., the set of positive integers.

C8208_app1.indd 375C8208_app1.indd 375 11/20/12 6:49 PM11/20/12 6:49 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

376 Appendix 1 Proof of the Principle of Mathematical Induction

The proof we give of Mathematical Induction depends on an interesting and
somewhat intuitive axiom, namely, the Greatest Lower Bound Axiom, given below.

Principle of Mathematical Induction: Let P(n) be a predicate, where n is an
arbitrary positive integer. Suppose we can accomplish the following two steps.

 1. Show that P(1) is true.

 2. Show that whenever P(k) is true, it follows that P(k + 1) is also true.

If we can achieve these two goals, then it follows that P(n) is true for all posi-
tive integers n.

Greatest Lower Bound Axiom: Let X be a nonempty subset of the real num-
bers such that the members of X have a lower bound. That is, suppose there
exists a constant C ∈ � such that for every x ∈ X , x ≥ C. Then a greatest lower
bound for X exists. That is, there exists a constant C0 ∈ � such that C0 is a
lower bound for the members of X and such that C0 is greater than any other
lower bound for X.

Proof of the Principle of Mathematical Induction: The proof is “by contradic-
tion.” Suppose the Principle of Mathematical Induction is false. That is, suppose
there exists a predicate P that yields a counterexample. Such a predicate P would
have to satisfy the following.

 1. P(1) is true.

 2. Whenever P(n) is true, P(n + 1) is also true.

 3. For some positive integer k, P(k) is false.

Define a set

S = {n 0 n is a positive integer and P(n) = false}.

For the integer k of statement 3, k ∈ S, so S ≠ �. It follows from the Greatest
Lower Bound Axiom that S has a greatest lower bound k0 ∈ S. It is easy to see that
k0 must be a positive integer. That is, k0 is the first value of n such that P(n) is
false. From statement 1, P(1) = true, so k0 > 1. Therefore, k0 − 1 is a positive inte-
ger. Notice that by choice of k0, we must have P(k0 − 1) = true. It follows from
statement 2 that P(k0) = P((k0 − 1) + 1) = true, contrary to the fact that k0 ∈ S.
Since the contradiction results from the assumption that the Principle is false, the
proof is established.

C8208_app1.indd 376C8208_app1.indd 376 11/20/12 6:49 PM11/20/12 6:49 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C8208_app1.indd 377C8208_app1.indd 377 11/20/12 6:49 PM11/20/12 6:49 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Appendix 2

Proof of the Master
Theorem

Background Photo Credit © Spectral-Design / Shutterstock

C8208_app2.indd 378C8208_app2.indd 378 11/20/12 6:50 PM11/20/12 6:50 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In this appendix, we give a proof of the Master Theorem, which was stated in Chapter 3.
Recall this theorem is concerned with the resolution of recurrence relations.

Master Theorem: Let a ≥ 1 and b > 1 be constants. Let f (n) be a positive func-
tion defined on the positive integers. Let T(n) be defined on the positive integers by

 T(n) = aT an
b
b + f (n), (3.1)

where we can interpret n/b as meaning either ⎣n/b⎦por ⎡n/b⎤ . Then the following
hold.

 1. If f (n) = O(nlogb a−ε) for some constant ε > 0, then T(n) = Θ(nlogb a).

 2. If f (n) = Θ(nlogb a), then T(n) = Θ(nlogb a log n).

 3. If f (n) = Ω(nlogb a+ε) for some constant ε > 0, and there are constants c and N,
0 < c < 1 and N > 0, such that n/b > N ⇒ af (n/b) ≤ cf (n), then T(n) = Θ(f (n)).

C8208_app2.indd 379C8208_app2.indd 379 11/20/12 6:50 PM11/20/12 6:50 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

380 Appendix 2 Proof of the Master Theorem

Proof of the Master Theorem

We start under the simplifying assumption that the values of n are nonnegative
integral powers of b. The advantage of this assumption lies in the fact that at
every level of recursion, n/b is an integer. Later, we show how to handle the gen-
eral case.

Lemma 1

Let a ≥ 1 and b > 1 be constants, and let f (n) be a nonnegative function defined on
integral powers of b. Let T(n) be defined on integral powers of b by the
recurrence

T(n) = eΘ(1) if n = 1;

aT(n/b) + f (n) if n = bi for some positive integer i.
Then

T(n) = Θ1nlogb a2 + a
logb n−1

k=0

ak f an

bk
b .

Remarks
We create a hypothesis of the pattern by simplifying an iterated expansion of the
recurrence, as follows.

T(n) = f (n) + aT an
b
b = f (n) + af an

b
b + a2T an

b2
b = . . . =

f (n) + af an
b
b + a2 f a n

b2
b + . . . + alogb n−1 f a n

blogb n−1
b + alogb nT(1).

Since alogb n = nlogb a and T(1) = Θ(1), the last term in the expanded recurrence is
Θ(nlogb a), while the initial terms yield

a
logb n−1

k=0

ak f (n/bk),

as asserted above. We provide a proof of our hypothesis by mathematical
induction.

Proof of Lemma 1
We establish our claim by showing that

T(n) = nlogb aT(1) + a
logb n−1

k=0

ak f an

bk
b ,

C8208_app2.indd 380C8208_app2.indd 380 11/20/12 6:51 PM11/20/12 6:51 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Proof of the Master Theorem 381

where we consider n = bi for nonnegative integers i. Therefore, the base case is
i = 0, which is equivalent to n = 1. In this case, the

a
logb n−1

k=0

ak f (n/bk)

term of the assertion is an empty sum, which by convention has value 0. Therefore,
the assertion is true since the right side of the asserted equation is

1logb aT(1) + a
logb n−1

k=0

ak f (n/bk) = T(1) + 0 = T(1).

Thus, the base case of the induction is established.
Suppose the assertion is true for integer powers i of b, where 0 ≤ i ≤ p. In par-

ticular, suppose the assertion is true for n = bp. Then, we have

T(bp) = bp logb aT(1) + a
p−1

k=0

ak f a n

bk
b = apT(1) + a

p−1

k=0

ak f (bp−k).

Now, consider n = bp+1. By the hypothesized recurrence, we have

T(bp+1) = aT(bp) + f (bp+1) =

(using the inductive hypothesis)

a capT(1) + a
p−1

k=0

ak f 1bp−k2d + f 1bp+12 =

ap+1T(1) + caa
p−1

k=0

ak f 1bp−k2 d + f 1bp+12 =

(since blogb a = a)

b(p+1)logb aT(1) + a
p

k=0

ak f (bp+1−k) = nlogb aT(1) + a
p

k=0

ak f a n

bk
b ,

which is the desired result, since p = logb n − 1. This completes the induction proof.
Next, we give asymptotic bounds for the summation term that appears in the

conclusion of the statement of Lemma 1.

Lemma 2

Let a ≥ 1 and b > 1 be constants, and let f (n) be a nonnegative function defined
on nonnegative integral powers of b. Let g(n) be a function defined on integral
powers of b by

 g(n) = a
logb n−1

k=0

ak f a n

bk
b . (3.2)

C8208_app2.indd 381C8208_app2.indd 381 11/20/12 6:51 PM11/20/12 6:51 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

382 Appendix 2 Proof of the Master Theorem

 1. If f (n) = O(nlogb a−ε) for some constant ε > 0, then g(n) = O(nlogb a).

 2. If f (n) = Θ(nlogb a), then g(n) = Θ(nlogb a log n).

 3. If there are positive constants c < 1 and N > 0 such that n/b > N ⇒ af (n/b) ≤
cf (n), then g(n) = Θ(f (n)).

Proof
For case 1, substituting the hypothesis of the case into the definition of the func-
tion g(n) yields

g(n) = O c a
logb n−1

k=0

aka n

bk
b logb a−ε d = O cnlogb a−ε

a
logb n−1

k=0

a abε

blogb a
b k d =

O cnlogb a−ε
a

logb n−1

k=0

(bε)k d =

(using the formula for the sum of a geometric series)

O cnlogb a−εa bε logbn − 1

bε − 1
b d = O cnlogb a−εa nε − 1

bε − 1
b d =

(since b and ε are constants) O(nlogb a), as claimed.
For case 2, it follows from the hypothesis of the case that f (n/bk) =

Θ[(n/bk)logb a]. When we substitute the latter into (3.2), we have

g(n) = Θ c a
logb n−1

k=0

aka n

bk
b logb a d = Θ cnlogb a a

logb n−1

k=0

a a

blogb a
b k d =

Θanlogb a a
logb n−1

k=0

1b = Θ(nlogb a log n),

as claimed.
For case 3, observe that all terms of the sum in (3.2) are nonnegative, and

the term corresponding to k = 0 is f (n). Therefore, g(n) = Ω(f (n)). The hypoth-
esis of the case, that there are constants 0 < c < 1 and N > 0 such that
n/b > N ⇒ af (n/b) ≤ cf (n), implies by a straightforward induction argument that
n/bk > N ⇒ ak f (n/bk) ≤ ck f (n). When we substitute the latter into (3.2), we get

g(n) = a
logb n−1

k=0

ak f a n

bk
b =

a
0≤k≤logb n−1,

ak f an

bk
b + a

0≤k≤logb n−1,

ak f a n

bk
b .

 n/bk≤N n/bk >N

C8208_app2.indd 382C8208_app2.indd 382 11/20/12 6:51 PM11/20/12 6:51 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Proof of the Master Theorem 383

The first summation in the latter expression has a fixed number of terms, so this

summation satisfies a
0≤k≤logb n−1,

ak f a n

bk
b = Θ(1). Therefore, our asymptotic evaluation

 n/bk≤N

of g(n) depends on the second summation,

g(n) = Θ£ a
0≤k≤logb n−1,

ak f a n

bk
b§ .

 n/bk>N

The summation on the right side satisfies

a
0≤k≤logb n−1,

ak f a n

bk
b ≤ a

0≤k≤logb n−1,

ck f (n) = f (n) a
0≤k≤logb n−1,

ck .

 n/bk>N n/bk>N n/bk>N

Since the latter summation is a geometric series with decreasing terms, it follows
that

g(n) = Oa f (n)a 1

1 − c
bb = O(f (n)).

Since we previously showed that g(n) = Ω(f (n)), it follows that g(n) = Θ(f (n)), as
claimed.

Now we prove a version of the Master Method for the case in which n is a non-
negative integral power of b.

Lemma 3

Let a ≥ 1 and b > 1 be constants, and let f (n) be a nonnegative function defined on
integral powers of b. Let T(n) be defined on integral powers of b by the
recurrence

T(n) = •
Θ(1) if n = 1;

aT an

b
b + f (n) if n = bi for some positive integer i.

Then we have the following.

 1. If f (n) = O(nlogb a−ε) for some constant ε > 0, then T(n) = Θ(nlogb a).

 2. If f (n) = Θ(nlogb a), then T(n) = Θ(nlogb a log n).

 3. If f (n) = Ω(nlogb a+ε) for some constant ε > 0, and if n/b > N ⇒ a f (n/b) ≤ cf (n)
for some positive constants c < 1 and N, then T(n) = Θ(f (n)).

C8208_app2.indd 383C8208_app2.indd 383 11/20/12 6:51 PM11/20/12 6:51 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

384 Appendix 2 Proof of the Master Theorem

Proof
First, we observe by Lemma 1 that T(n) = Θ(nlogb a) + g(n), where

g(n) = a
logb n−1

k=0

ak f an

bk
b .

In case 1, it follows from case 1 of Lemma 2 that

T(n) = Θ(nlogb a) + g(n) = Θ(nlogb a + nlogb a) = Θ(nlogb a)

In case 2, it follows from case 2 of Lemma 2 that

T(n) = f (n) + g(n) = Θ(nlogb a + nlogb a log n) = Θ(nlogb a log n).

In case 3, it follows from case 3 of Lemma 2 that g(n) = Θ(f (n)), and (by Lemma 1)

T(n) = Θ1nlogb a2 + g(n) = Θ1nlogb a + f (n)2.
Since f (n) = Ω(nlogb a+ε), it follows that T(n) = Θ(f (n)).

The General Case

Lemma 3 states the Master Method for the case that n is a nonnegative integral
power of b. Recall that the importance of this case is to guarantee that at every
level of recursion the expression n/b is an integer. For general n, however,
the expression n/b need not be an integer. We can therefore substitute ⎡n/b⎤ or
⎣n/b⎦pfor n/b in the recurrence (3.1) and attempt to obtain similar results. Since

n

b
− 1 < j n

b
 k ≤ l n

b
m <

n

b
+ 1,

this will enable us to demonstrate that a small discrepancy in the value of the inde-
pendent variable often makes no difference in asymptotic evaluation. In the fol-
lowing, we develop a version of the Master Method using the expression ⎡n/b⎤ for
n/b in the recurrence (3.1). A similar argument can be given if, instead, we use
⎣n/b⎦pfor n/b in (3.1).

Consider the sequences defined by the recursive equations

mi = •
n if i = 0;

jmi−1

b
k if i > 0,

and

ni = •
n if i = 0;

l ni−1

b
m if i > 0.

C8208_app2.indd 384C8208_app2.indd 384 11/20/12 6:51 PM11/20/12 6:51 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Proof of the Master Theorem 385

Since b > 1, these are nonincreasing sequences of integers. We have

m0 = n0 = n,

n

b
− 1 < m1 ≤ n1 <

n

b
+ 1,

n

b2
−

1

b
− 1 < m2 ≤ n2 <

n

b2
+

1

b
+ 1,

and more generally, based on simple inductive arguments for the lower bound for
mi and the upper bound for ni,

n

bi
−

b

b − 1
=

n

bi
− a

∞

k=0

1

bk
<

n

bi
− a

i−1

k=0

1

bk
< mi ≤ ni <

n

bi
+ a

i−1

k=0

1

bk
<

n

bi
+ a

∞

k=0

1

bk
=

n

bi
+

b

b − 1
.

Thus,

i ≥ ⎡logb n⎤ ⇒ bi ≥ n ⇒ ni < 1 +
b

b − 1
.

Since ni is integer-valued, we have

i ≥ ⎡logb n⎤ ⇒ mi ≤ ni ≤ j1 +
b

b − 1
k = Θ(1).

Suppose, then, that we use the recurrence

 T(n) = aTan
b
b + f (n) (3.3)

and expand this recurrence iteratively in order to obtain

T(n) = f (n0) + aT(n1) = f (n0) + af (n1) + a2T(n2) = . . .

The reader can prove by induction that for 0 ≤ i ≤ ⎡logb n⎤ − 1,

T(n) = ca
i

k=0
 ak f (nk) d + ai+1T(ni+1).

In particular, for i = ⎡logb n⎤ − 1,

T(n) = a⎡logb n⎤T1n⎡logb n⎤2 + a
⎡logb n⎤−1

k=0

ak f (nk).

C8208_app2.indd 385C8208_app2.indd 385 11/20/12 6:51 PM11/20/12 6:51 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

386 Appendix 2 Proof of the Master Theorem

Now,

alogb n ≤ a⎡logb n⎤ < aalogb n ⇒ a⎡logb n⎤ = Θ1alogb n2 = Θ1nlogb a2.
Since n⎡logb n⎤ = Θ(1), we have T1n⎡logb n⎤2 = Θ(1). Substituting these last two results
into the last equation for T(n), we have

T(n) = Θ(nlogb a) + a
⎡logb n⎤−1

k=0

ak f (nk).

This is an equation much like that of the conclusion of Lemma 1.
Similarly, if we modify (3.3) to obtain the recurrence

 T '(n) = aT 'a j n
b
k b + f (n), (3.4)

then we similarly obtain

T '(n) = Θ(nlogb a) + a
⎡logb n⎤−1

k=0

ak f (mk).

Let

g(n) = a
⎡logb n⎤−1

k=0

ak f (nk),

g'(n) = a
⎡logb n⎤−1

k=0

ak f (mk).

We wish to evaluate g(n) and g'(n) asymptotically.
In case 1, we have the hypothesis that f (n) = O(nlogb a−ε) for some constant

ε > 0. Without loss of generality, we have logb a − ε ≥ 0. There is a constant c > 0
such that for sufficiently large nk > N ,

f (nk) ≤ cnk
logb a−ε ≤ ca n

bk
+

b

b − 1
b logb a−ε

= c c a n

bk
b a1 +

bk

n
×

b

b − 1
b d logb a−ε

= ca nlogb a−ε

akb−kε b c1 + a bk

n
×

b

b − 1
b d logb a−ε

≤ ca nlogb a−ε

ak
b a1 +

b

b − 1
b logb a−ε

=
dnlogb abkε

ak
,

where

d = ca1 +
b

b + 1
b logb a−ε

is a constant.

C8208_app2.indd 386C8208_app2.indd 386 11/20/12 6:51 PM11/20/12 6:51 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Proof of the Master Theorem 387

For such k, ak f (nk) ≤ dnlogb abkε. It follows that

g(n) = a
k∈{0, . . . ,⎡logb n⎤−1},

ak f (nk) + a
k∈{0, . . . ,⎡logb n⎤−1},

ak f (nk)

 nk≤N nk>N

≤ Θ(1) a
k∈{0, . . . ,⎡logb n⎤−1},

ak + dnlogb a−ε a
k∈{0, . . . ,⎡logb n⎤−1},

bε k .

 nk≤N nk>N
The former summation, a geometric series, is O(alogb n) = O(nlogb a). In the latter

summation, there are Θ(1) terms, as nk > N corresponds to small values of k. It
follows that

g(n) ≤ O1nlogb a2 + dnlogb a−εΘ(1) = O1nlogb a2.
Hence, T(n) = Θ(nlogb a) + g(n) = Θ(nlogb a), as desired. A similar argument shows
T '(n) = Θ(nlogb a).

In case 2, the hypothesis that f (n) = Θ(nlogb a) implies there are positive con-
stants c and C such that for sufficiently large mk and nk, say, mk, nk > N ,

f (nk) ≤ cnk
logb a ≤ ca n

bk
+

b

b − 1
b logb a

= ca nlogb a

ak
b c1 + a bk

n
×

b

b − 1
b d logb a

≤ ca nlogb a

ak
b a1 +

b

b − 1
b logb a

=
dnlogb a

ak
,

where d = ca1 +
b

b − 1
b logb a

 is a constant, and similarly, there is a constant D > 0

such that

f (mk) ≥
Dnlogb a

ak
.

Therefore, for such k, ak f (nk) ≤ dnlogb a and ak f (mk) > Dnlogb a. So,

g(n) = a
k∈{0, . . . ,⎡logb n⎤−1},

ak f (nk) + a
k∈{0, . . . ,⎡logb n⎤−1},

ak f (nk).

 nk≤N nk>N

In the first summation, the values of f (nk) are bounded, since nk ≤ N . Thus, the
summation is bounded asymptotically by the geometric series

a
⎡logb n⎤−1

k=0

ak = O1alogb n2 = O1nlogb a2.

C8208_app2.indd 387C8208_app2.indd 387 11/20/12 6:51 PM11/20/12 6:51 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

388 Appendix 2 Proof of the Master Theorem

The second summation in the expansion of g(n) is simplified as

a
k∈{0, . . . ,⎡logb n⎤−1},

ak f (nk) ≤ a
⎡logb n⎤−1

k=0

dnlogb a = O1nlogb a log n2.
 nk>N

Substituting these into the previous equation for g(n), we obtain

g(n) = O(nlogb a) + O(nlogb a log n) = O(nlogb a log n).

Hence, T(n) = O(nlogb a log n). Similarly,

g'(n) = a
k∈{0, . . . ,⎡logb n⎤−1},

ak f (mk) + a
k∈{0, . . . ,⎡logb n⎤−1},

ak f (mk)

 nk≤N nk>N

= Ω(1) + Ω1nlogb a log n2 = Ω1nlogb a log n2.
Notice that

5(mk ≤ nk) and 3 f (n) = Θ1nlogb a246⇒

a
k∈{0, . . . ,⎡logb n⎤−1},

ak f (mk) = O° a
k∈{0, . . . ,⎡logb n⎤−1},

ak f (nk)¢.

 mk>N nk>N

Therefore,

g'(n) = a
k∈{0, . . . ,⎡logb n⎤−1},

ak f (mk) + a
k∈{0, . . . ,⎡logb n⎤−1},

ak f (mk)

 nk≤N nk>N

= Oa a
⎡logb n⎤−1

k=0

akb + O° a
k∈{0,1, . . . ⎡logb n⎤−1},

ak f (nk)¢ = O(g(n)).

 nk>N

It follows that g(n) = Θ(nlogb a log n) and g'(n) = Θ(nlogb a log n). Therefore,

T(n) = Θ(nlogb a log n) and T '(n) = Θ(nlogb a log n).

In case 3, an analysis similar to that given for case 3 of Lemma 2 shows
g(n) = Θ(f (n)), as follows. Recall the hypotheses of this case: f (n) = Ω(nlogb a+ε)
for some constant ε > 0, and there are constants 0 < c < 1 and N > 0 such that
n/b > N ⇒ af (n/b) ≤ cf (n). As above, it follows by a simple induction argument
that for

n

bk
 > N, or, equivalently, k < jlogbanNb k ,

C8208_app2.indd 388C8208_app2.indd 388 11/20/12 6:51 PM11/20/12 6:51 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Proof of the Master Theorem 389

we have

ak f a n

bk
b ≤ ck f (n).

Therefore,

g(n) = a
⎣logb (n/N)⎦

k=0

ak f a n

bk
b + a

⎡logb n⎤−1

k=⎣logb (n/N)⎦+1

ak f an

bk
b ≤

f (n) a
⎣logb(n/N)⎦

k=0

ck + a⎡logb n⎤−1(logb N) max
k≥⎣logb (n/N)⎦+1

f a n

bk
b <

f (n)
1

1 − c
 + Θ1alogb n2 = O1 f (n) + alogb n2.

Since f (n) = Ω(nlogb a+ε) and alogb n = nlogb a, we have g(n) = O(f (n)), and therefore
T(n) = Θ(nlogb a + g(n)) = O(f (n)).

Since equation (3.3) implies T(n) = Ω(f (n)), it follows that T(n) = Θ(f (n)), as
desired. A similar argument shows T '(n) = Θ(f (n)).

Thus, in all cases, whether we use ⎡n/b⎤ or ⎣n/b⎦pas our interpretation of n/b
in (3.1), we have obtained the results asserted in the statement of the Master
Theorem. Therefore, the proof of the Master Theorem is complete.

C8208_app2.indd 389C8208_app2.indd 389 11/20/12 6:51 PM11/20/12 6:51 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Appendix 3

Efficient Gather
and Scatter
Operations

Background Photo Credit © Spectral-Design / Shutterstock

Building a Tree of Processors

Gather and Scatter Algorithms

Appendix Notes

C8208_app3.indd 390C8208_app3.indd 390 11/20/12 6:52 PM11/20/12 6:52 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In this appendix, we present algorithms to implement gather and scatter operations
efficiently on coarse-grained parallel computers. These operations were discussed in

Chapter 4. Typically, a gather operation collects data that is distributed across a group
of processors. The data is typically moved to one of the processors of the group where
it is reassembled. A scatter operation is typically used to partition data in one proces-
sor of a group and send one partition to each of the remaining processors in the group.
Think of the gather as a group-based read by a distinguished processor in the group
and a scatter as a group-based write from a distinguished processor in the group.

For example, we showed in Chapter 4 that using gather and scatter operations, an
efficient algorithm to perform a semigroup operation over a set X of values on a
CGM (n, q) can be performed as follows.

 1. In parallel, every processor Pj computes a partial result mj by sequentially comput-
ing a semigroup operation on the processor’s portion of X.

 2. Gather the set of partial results S = 5mj6j=0

q−1
 to processor P0.

 3. Processor P0 performs a sequential version of the semigroup operation on S.

 4. Processor P0 writes the result of the semigroup calculation into a record associated
with each of the q members of S.

 5. Scatter the q members of S, so the result of the semigroup operation is sent to
their original processors.

C8208_app3.indd 391C8208_app3.indd 391 11/20/12 6:52 PM11/20/12 6:52 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

392 Appendix 3 Efficient Gather and Scatter Operations

Building a Tree of Processors

Efficient gather and scatter operations can be implemented by making use of a
logical tree rooted at processor P0 in the graph of processors of a parallel com-
puter. Often, such a tree is known or easily determined. For example, in a mesh, we
might use all the row edges and, among the column edges, only those of the col-
umn containing P0. If it is necessary to determine such a tree, we can do so using
the algorithm described below. This algorithm can be used for a parallel computer
of arbitrarily many processors. However, we have in mind its use on a CGM(n, q),
where q represents the number of processors. Thus, the problem can be stated as
follows. Given a parallel computer C, regarded as a connected graph of processors,
and a particular processor R, determine the edges representing a tree T rooted at R
by identifying, for each processor in C, its parent and its children in T.

The algorithm we give may be regarded as a parallel breadth-first search (see
Chapter 12).

Algorithm for determining the edges of a tree T rooted at R containing
all processors as vertices
Input: Each processor knows its neighboring processors.
Output: Each processor knows its parent and its children in a tree rooted at R.

Action:

1. In parallel, each processor creates an ID record
with the following.
a. A field for the processor’s ID.
b. A field for the ID of the parent processor that

is initially null.
c. An initially empty list of children processors.
This step runs in Θ(1) time.

2. R sends its ID record to all its neighbors. In the
worst case, this requires R to send messages
 sequentially to individual neighbors. Thus, the
time for this step is O(q).

3. In parallel, each processor P does the following.
a. If P ≠ R, then perform the following.

 i. Receive a neighbor’s ID record. This requires
some time to wait for the first neighbor’s
message to arrive, as well as Θ(1) time to
read the first neighbor’s message. The wait
time will be discussed below.

 ii. Set the processor’s parent component equal
to the processor ID contained in the first

C8208_app3.indd 392C8208_app3.indd 392 11/20/12 6:52 PM11/20/12 6:52 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Building a Tree of Processors 393

message received from a neighbor. This step
runs in Θ(1) time.

End If
b. Send the processor’s own ID record to each

neighboring processor. This step runs in O(q)
time. Note that except for R, no processor sends
its ID record until it has marked its own
 parent.

c. From every neighboring processor Q such that Q
is not the parent of P, receive the ID record of
Q. If Q’s parent has been marked as P then P
adds Q to its list of children. As in step a.i.
above, there is some wait time, in addition to
the O(q) time to read the neighbors’ messages.

End of algorithm

If we can show that the wait time mentioned above is O(q), it will follow that
the algorithm’s running time is O(q). Note that this analysis is somewhat difficult,
and perhaps should be skimmed or skipped by readers who do not have a deep
mathematical background.

A processor other than R waits for a message from its parent, i.e., the first
neighbor from which a message is received, and all processors wait for messages
from their non-parental neighbors. First, let’s analyze the time that a processor
waits until it receives its parent’s record. Note that if P and Q are neighboring
 processors, then their distances from R in the graph C, dP and dQ, respectively,
satisfy

 0 dP − dQ 0 ≤ 1. (1)

Let

dmax = max{dP 0P ∈ V(C)},

where V(C) is the vertex set, i.e., the set of processors, of C. For
i ∈ {−2, −1, 0, 1, . . . ,dmax + 1}, let

Ai = {P ∈ V(C) 0 dP = i}.

Notice A−2 = A−1 = Admax+1 = � and

 a
dmax+1

i=−2

0Ai 0 = q. (2)

C8208_app3.indd 393C8208_app3.indd 393 11/20/12 6:52 PM11/20/12 6:52 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

394 Appendix 3 Efficient Gather and Scatter Operations

Let’s call the time required for a processor to send its ID record to a neighbor a unit
time step. For i > 0, let ni be the maximum number of unit time steps until a mem-
ber of Ai receives its parent’s ID record, and let n0 = 0. We will show that for
i ∈ {0, 1, . . . , dmax},

 ni ≤ 3aa
i−2

j= −2

0Aj 0b + 2 0Ai−1 0 + 0Ai 0 . (3)

Inequality (3) is trivial for i = 0. Suppose, for some integer k such that 0 ≤ k < dmax,
inequality (3) is true for i ≤ k. Let P ∈ Ak+1. There exists Q ∈ Ak such that P and Q
are neighbors in C. Then the number of unit time steps until P receives its message
from its parent is less than or equal to the number of unit time steps until P receives
its message from Q. From inequality (1), all neighbors of Q belong to
Ak−1 ∪ Ak ∪ Ak+1. In the worst case, P is the last neighbor of Q to receive a mes-
sage from Q. It follows that

nk+1 ≤ nk + 0Ak−1 0 + 0Ak 0 + 0Ak+1 0 ≤
(by the inductive hypothesis)

3aa
k−1

j= −2

0Ai 0 b + 2 0Ak 0 + 0Ak+1 0 ,
as desired. This completes the induction.

From equation (2) and inequality (3), ni ≤ 3q. Thus, the waiting time for all
processors to receive their parents’ ID records is O(q).

We determine the time spent by a processor P waiting for messages from non-
parental neighbors as follows. Suppose Q is a neighbor of P. After P receives its
parent’s ID record, P sends its own ID record to all its neighbors. In the worst case,
Q is the last of the neighbors of P to receive the ID record from P. Therefore, Q
will wait for O(q) time steps. Similarly, in the worst case, P is then the last neigh-
bor of Q to receive the ID record from Q, waiting another O(q) unit time steps.
Thus, in O(q) unit time steps, P and Q exchange their ID records. Taking the maxi-
mum over all neighbors Q of P, we conclude that P waits O(q) unit time steps
between receiving the first and the last of its neighbors’ ID records.

Therefore, we can conclude that the algorithm performs in O(q) time.
In order to obtain a lower bound for the running time of our algorithm, con-

sider a linear array implementation of a CGM(n, q), for which it is easily seen that
the running time is Ω(q). Therefore, our time estimate of O(q) yields optimal Θ(q)
running time in the worst case.

Gather and Scatter Algorithms

We can now derive efficient gather and scatter algorithms for a set S of data
items distributed among the processors of a CGM(n, q), as follows. Note we
limit S to size N = O(n/q) since we must be able to fit S into a single processor.

C8208_app3.indd 394C8208_app3.indd 394 11/20/12 6:52 PM11/20/12 6:52 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Gather and Scatter Algorithms 395

Assume the processors are numbered 0, . . . ,q − 1. We use, in each processor, an
array from[0, . . . ,q − 1] in order to route data efficiently in a scatter. In every pro-
cessor Pi, the entries of this array will be defined by

from[j] = k if data originating in Pj reached Pi from the latter’s neighbor Pk.

By keeping track of which neighbor a data item came from, we can execute a
scatter by reversing the flow of data used by a gather.

Algorithms for Gather and Scatter
Input: A set S of N data items distributed among the processors of a
CGM(n, q) G, where N = Ω(q) and N = O(n/q), and each processor knowing
whether it is the processor R to which S is gathered.

Gather Algorithm
Output: A copy of each member of S in processor R.

Action:

1. In parallel, each processor Pi sets its from[i] = i.
This step runs in Θ(1) time.

2. In parallel, each processor Pi tags each of its
 members s of S by s.processorOrigin = i. This step
runs in O(N) time.

3. If a spanning tree for G with R as the root isn’t
 already known, use the algorithm above to determine
a spanning tree T of G so that R is the root
 processor and every processor P knows its parent
 processor parent(P) and its child processors in T.
This step runs in O(q) time.

4. In parallel, each processor P sends members of S to
parent(P) and receives members of S from its child
processors until there are no members of S for P to
send. As P receives s ∈ S from a neighbor Pk, P
makes the assignment

from[s.processorOrigin] = k.

 Each processor handles O(N) data with O(N + q)
 waiting time, so this step runs in O(N + q) = O(N)
time.

End gather

Clearly, this algorithm runs in O(N) time.

C8208_app3.indd 395C8208_app3.indd 395 11/20/12 6:52 PM11/20/12 6:52 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

396 Appendix 3 Efficient Gather and Scatter Operations

Scatter algorithm

Action:

1. The root processor R does the following. For each
s ∈ S, if s.processorOrigin is not R then send s to
the neighboring processor Pfrom[s.processorO rigin]. This
step runs in O(N) time.

2. All other processors Pi in parallel do the following.
For at most N members s of S, receive s from
parent(Pi). If s.processorOrigin ≠ i then send s to
Pfrom[s.processorOrigin]. Since waiting for data to arrive
from the parent processor requires a total of
O(N + q) = O(N) time, this step runs in O(N) time.

End scatter

Clearly, our scatter algorithm runs in O(N) time.
Note we presented our scatter algorithm above with the assumption that the

appropriate values of each processor’s from array are known. Thus, our presenta-
tion assumes that the scatter operation has been preceded by a gather operation.
Sometimes, however, it is necessary to perform a scatter operation that has not
been preceded by a gather operation. When this is the case, we can precede the
first step listed in the scatter algorithm above by a gather of dummy records, one
from each processor, to the root processor R, in order to establish the entries of
each processor’s from array. We know that such a gather operation runs in
Θ(q) = O(N) time, so this additional step does not change the asymptotic analysis
of our scatter algorithm.

In the worst case, our gather and scatter algorithms run in Ω(N) time. This is
because in the worst case, the root processor must sequentially receive, for a gather,
or send, for a scatter, N data items. Therefore, our algorithms run in worst case
optimal Θ(N) time.

Appendix Notes

Gather and scatter operations have been presented in Parallel Algorithms for
Regular Architectures: Meshes and Pyramids by R. Miller and Q.F. Stout (The
MIT Press, Cambridge, Mass., 1996), and in “Coarse Grained Gather and Scatter
Operations with Applications,” by L. Boxer and R. Miller, Journal of Parallel and
Distributed Computing, 64 (2004), 1297–1320. These presentations are not
entirely consistent; we have followed the latter presentation. The algorithms

C8208_app3.indd 396C8208_app3.indd 396 11/20/12 6:52 PM11/20/12 6:52 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Appendix Notes 397

presented here are taken from the Boxer and Miller paper. (There is an error in this
paper that is corrected in “Efficient Coarse Grained Data Distributions and String
Pattern Matching,” by L. Boxer and R. Miller, International Journal of Information
and Systems Sciences 6 (4) (2010), 424–434; the error does not affect the material
presented here.)

C8208_app3.indd 397C8208_app3.indd 397 11/20/12 6:52 PM11/20/12 6:52 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Appendix 4

Expected-Case
Running Time of
Quicksort

Background Photo Credit © Spectral-Design / Shutterstock

C8208_app4.indd 398C8208_app4.indd 398 11/20/12 7:49 PM11/20/12 7:49 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In this appendix, we consider the expected-case running time of Quicksort. The anal-
ysis is intricate and is suitable only for a reader who has a solid mathematical back-

ground. We will make a variety of assumptions, most of which serve only to simplify
the analysis. Our first major assumption is that we consider Quicksort on an array that
consists of n distinct keys, randomly distributed. In terms of fundamental notation,
we let k(i) be the expected number of key comparisons required to sort i items.
Quicksort is a comparison-based sort, and our analysis will focus on determining the
number of times Quicksort compares two elements during the sorting procedure. The
reader should note that k(0) = 0, k(1) = 0, and k(2) = 3.5. That is, an array with no
more than one element is already sorted and does not require any keys to be compared.
An array of size 2 requires 3.5 comparisons, on average, to be sorted by the array ver-
sion of Quicksort that we have presented. The reader can verify this by considering the
code as applied to two options for an array of size 2. Recall that the keys are distinct.
Therefore, the options for an array of size two are a smaller key followed by a larger
key and a larger key followed by a smaller key.

We now consider some assumptions that apply to the partition routine. Assume
that we are required to sort A[1 . . . n].

• According to the partition routine, we will use A[1] as the partition element.

• Since we assume distinct keys, if this partition element represents the i th largest of
the n elements in A[1 . . . n] and i > 1, then at the end of the partition routine, the
smallest i − 1 elements will be stored in A[1 . . . i − 1]. We will assume that a simple
modification is made to the code so that at the end of the partition routine, the
splitter is placed in position i, and partitionIndex is set to i. Notice that this modi-
fication to the partition routine increases the running time of the routine by Θ(1).

• Therefore, notice that it suffices to have the recursive calls performed on
A[1 . . . i − 1] and A[i + 1 . . . n].

Consider the number of comparisons that are made in the partition routine.

• Notice that it takes Θ(n) comparisons to partition the n elements.

• Based on our notation and the recursive nature of Quicksort, we note that, on aver-
age, it takes at most k(i − 1) and k(n − i) comparisons to sort A[1 . . . i − 1] and
A[i + 1 . . . n], respectively.

We should point out that since we assume unique input elements and that all
arrangements of the input data are equally likely, then it is equally likely that the parti-
tionIndex returned is any of the elements of {1, . . . ,n}. That is, the partitionIndex will
wind up with any value in the range of [1 . . . n] with probability 1/n. Finally, we present
details for determining the expected-case running time of Quicksort.

C8208_app4.indd 399C8208_app4.indd 399 11/20/12 7:49 PM11/20/12 7:49 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

400 Appendix 4 Expected-Case Running Time of Quicksort

Notice that the definition provides that

k(n) = (n + 1) +
1
n

 a
n

i=1

[k(i − 1) + k(n − i)], where

• k(n) is the expected number of key comparisons,

• (n + 1) is the number of comparisons required to partition n data items, assum-
ing that Partition is modified in such a way to prevent i and j from crossing,

• 1/n is the probability of the input A[j] being the i-th largest entry of A,
j ∈ {1, . . . n},

• k(i − 1) is the expected number of key comparisons to sort A[1 . . . i − 1], and

• k(n − i) is the expected number of key comparisons to sort A[i + 1 . . . n].

So, k(n) = (n + 1) +
1
n

 a
n

i=1

[k(i − 1) + k (n − i)]

= n + 1 +
1
n

 D k(0) + k(n − 1)

+ k (1) + k(n − 2)

+ . . .

+ k(n − 1) + k(0)

T
= n + 1 +

2
n

 a
n−1

i=1

k(i).

(Note that we used the fact that k(0) = 0.)
Therefore, we now have

k(n) = n + 1 +
2
n

 [k (n − 1) + k (n − 2) + k(n − 3) + . . . + k(1)].

This gives us

k(n − 1) = n +
2

n − 1
 [k(n − 2) + k(n − 3) + . . . + k(1)].

In order to simplify the equation for k(n), let’s define

S = [k(n − 2) + k(n − 3) + . . . + k(1)].

By substituting into the previous equations for k(n) and k(n − 1), we obtain

k(n) = n + 1 +
2
n

 [k(n − 1) + S] and

k(n − 1) = n +
2

n − 1
 S.

C8208_app4.indd 400C8208_app4.indd 400 11/20/12 7:49 PM11/20/12 7:49 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Appendix 4 Expected-Case Running Time of Quicksort 401

Therefore, S =
n − 1

2
 [k(n − 1) − n].

So,

k(n) = n + 1 +
2
n
c k(n − 1) +

n − 1

2
 (k(n − 1) − n) d

=
n + 1

n
 k(n − 1) + 2.

Hence,
k(n)

n + 1
=

2

n + 1
+

k(n − 1)
n

.

In order to simplify, let’s define

X(n) =
k(n)

n + 1
.

Therefore,

k(n − 1)
n

= X(n − 1).

So,

X(n) =
2

n + 1
+ X(n − 1) =

2

n + 1
+

2
n

+ X(n − 2) =
2

n + 1
+

2
n

+
2

n − 1
+ X(n − 3) =

An induction argument can be used to show that

X(n) =
2

n + 1
+

2
n

+
2

n − 1
+ . . . +

2

4
+ X(2) = 2a 1

4
+

1

5
+ . . . +

1

n + 1
b + C

awhere C = X(2) (a constant) =
k(2)

3
=

3.5

3
=

7

6
b

= C + 2a
n+1

i=4

1

i
= Θ(log n).

So, k(n) = (n + 1)X(n) = Θ(n log n) expected-case number of comparisons.
It is easily seen that the expected-case number of data moves, i.e., swaps, is

O(n log n), as the number of data moves is no more than the number of compari-
sons. Therefore, the expected-case running time of the array version of Quicksort
is Θ(n log n). The argument given above requires little modification to show that
our queue-based implementation of Quicksort also has an expected-case running
time of Θ(n log n).

C8208_app4.indd 401C8208_app4.indd 401 11/20/12 7:49 PM11/20/12 7:49 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Bibliography

Background Photo Credit © Spectral-Design / Shutterstock

C8208_bibliography.indd 402C8208_bibliography.indd 402 11/20/12 6:54 PM11/20/12 6:54 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

 1. A.V. Aho, J.E. Hopcroft, and J.D. Ullman, The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, Massachusetts, 1974.

 2. S.G. Akl and K.A. Lyons, Parallel Computational Geometry, Prentice Hall, New
Jersey, 1993.

 3. G.S. Almasi and A. Gottlieb, Highly Parallel Computing, The Benjamin/Cummings
Publishing Company, New York, 1994.

 4. G. Amdahl, “Validity of the single processor approach to achieving large scale
computing capabilities,” AFIPS Conference Proceedings, vol. 30, Thompson
Books, 1967, 483–485.

 5. T.M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, New
York, 2001.

 6. N.S. Asaithambi, Numerical Analysis: Theory and Practice, Saunders College
Publishing, Fort Worth, TX, 1995.

 7. M.J. Atallah, ed., Algorithms and Theory of Computation Handbook, CRC Press,
Boca Raton, FL, 1999.

 8. M.J. Atallah and D.Z. Chen, “An optimal parallel algorithm for the minimum
 circle-cover problem,” Information Processing Letters 32, 1989, 159–165.

 9. M. Atallah and M. Goodrich, “Efficient parallel solutions to some geometric
 problems,” Journal of Parallel and Distributed Computing 3, 1986, 492–507.

 10. S. Baase, “Introduction to parallel connectivity, list ranking, and Euler tour
 techniques,” in Synthesis of Parallel Algorithms, J.H. Reif, ed., Morgan Kaufmann
Publishers, San Mateo, CA, 1993, 61–114.

 11. K.E. Batcher, “Sorting networks and their applications,” Proc. AFIPS Spring Joint
Computer Conference 32, 1968, 307–314.

 12. J.L. Bentley, D. Haken, and J.B. Saxe, “A general method for solving divide-and-
conquer recurrences,” SIGACT News 12, 1980, 36–44.

 13. A.A. Bertossi, “Parallel circle-cover algorithms,” Information Processing Letters 27,
1988, 133–139.

 14. G.E. Blelloch, Vector Models for Data-Parallel Computing, The MIT Press,
 Cambridge, Massachusetts, 1990.

 15. G. Brassard and P. Bratley, Algorithmics: Theory and Practice, Prentice Hall, New
Jersey, 1988.

 16. L. Boxer, “Efficient Coarse Grained Permutation Exchanges and Matrix
 Multiplication,” Parallel Processing Letters 19, 2009, 477–484.

 17. L. Boxer and R. Miller, “A parallel circle-cover minimization algorithm,” Information
Processing Letters 32, 1989, 57–60.

C8208_bibliography.indd 403C8208_bibliography.indd 403 11/20/12 6:54 PM11/20/12 6:54 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

404 Bibliography

 18. L. Boxer and R. Miller, “Parallel algorithms for all maximal equally-spaced
collinear sets and all maximal regular coplanar lattices,” Pattern Recognition
Letters 14, 1993, 17–22.

 19. L. Boxer and R. Miller, “A parallel algorithm for approximate regularity,”
Information Processing Letters 80, 2001, 311–316.

 20. L. Boxer and R. Miller, “Coarse grained gather and scatter operations with
applications,” Journal of Parallel and Distributed Computing 64, 2004,
1297–1320.

 21. L. Boxer and R. Miller, “Efficient Coarse Grained Data Distributions and
String Pattern Matching,” International Journal of Information and Systems
Sciences 6, 2010, 424–434.

 22. L. Boxer, R. Miller, and A. Rau-Chaplin, “Scalable Parallel Algorithms for
Geometric Pattern Recognition,” Journal of Parallel and Distributed
 Computing 58, 1999, 466–486.

 23. R.L. Burden and J.D. Faires, Numerical Analysis, PWS-Kent Publishing
 Company, Boston, Massachusetts, 1993.

 24. R. Butt, Introduction to Numerical Analysis Using MATLAB, Infinity Science
Press, Hingham, Massachusetts, 2008.

 25. R.J. Cole, “An optimally efficient selection algorithm,” Information Processing
Letters 26, 1987/88, 295–299.

 26. Condor High Throughput Computing, http://research.cs.wisc.edu/condor/,
accessed August 24, 2012.

 27. T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, Introduction to
 Algorithms, 3rd ed., The MIT Press, Cambridge, Massachusetts, 2009.

 28. M. DeBerg, O. Cheong, M. van Kreveld, and M. Overmars, Computational
Geometry: Algorithms and Applications, Springer, Berlin, 2010.

 29. F. Dehne, ed., special edition of Algorithmica 24, no. 3–4, 1999.

 30. F. Dehne, A. Fabri, and A. Rau-Chaplin, “Scalable parallel geometric
 algorithms for multicomputers,” Proceedings 9th ACM Symposium on Compu-
tational Geometry, 1993, 298–307.

 31. S. Even, Graph Algorithms, Computer Science Press, New York, 1979.

 32. M.J. Flynn, “Very high-speed computing systems,” Proceedings of the IEEE
54, 1966, 1901–1909.

 33. M.J. Flynn, “Some computer organizations and their effectiveness,” IEEE
Transactions on Computers 21, 1972, 948–960.

 34. M.T. Goodrich and R. Tamassia, Data Structures and Algorithms in JAVA,
John Wiley & Sons, Inc., New York, 1998.

 35. R.L. Graham, “An efficient algorithm for determining the convex hull of a
finite planar set,” Information Processing Letters 1, 1972, 132–133.

C8208_bibliography.indd 404C8208_bibliography.indd 404 11/20/12 6:54 PM11/20/12 6:54 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Bibliography 405

 36. R.L. Graham, D.E. Knuth, and O. Patashnik, Concrete Mathematics, Addison-
Wesley, Reading, Massachusetts, 1989.

 37. C.A.R. Hoare, “Quicksort,” Computer Journal 5, 1962, 10–15.

 38. J.E. Hopcroft and R.E. Tarjan, “Efficient algorithms for graph manipulation,”
Communications of the ACM 16, 1973, 372–378.

 39. E. Horowitz, S. Sahni, and S. Rajasekaran, Computer Algorithms in C++,
Computer Science Press, New York, 1997.

 40. The IEEE/ACM International Symposium on Cluster, Cloud and Grid
 Computing (CCGrid), http://www.cloudbus.org/, accessed August 24, 2012.

 41. IEEE Cloud: International Conference on Cloud Computing, http://www
.thecloudcomputing.org/, accessed August 24, 2012.

 42. IEEE Cluster, http://www.ieeecluster.org/, accessed August 24, 2012.

 43. IEEE Cluster Computing: TCSC Annual Conference, http://www.clustercomp
.org/, accessed August 24, 2012.

 44. J. Já Já, An Introduction to Parallel Algorithms, Addison-Wesley, Reading,
Massachusetts, 1992.

 45. R.A. Jarvis, “On the identification of the convex hull of a finite set of points in
the plane,” Information Processing Letters 2, 1973, 18–21.

 46. A.B. Kahng and G. Robins, “Optimal algorithms for extracting spatial regularity
in images,” Pattern Recognition Letters 12, 1991, 757–764.

 47. R.M. Karp and V. Ramachandran, “A survey of parallel algorithms for shared
memory machines,” in Handbook of Theoretical Computer Science:
 Algorithms and Complexity, A.J. van Leeuwen, ed., The MIT Press, Cambridge,
 Massachusetts, 1990, 869–941.

 48. P. Kacsuk, T. Fahringer and Z. Nemeth, eds., Distributed and Parallel Systems:
From Cluster to Grid Computing, Springer Science+Business Media, New
York, 2007.

 49. S. Khuller and B. Raghavachari, “Basic graph algorithms,” in Algorithms and
Theory of Computation Handbook, M.J. Atallah, ed., CRC Press, Boca Raton,
FL, 1999.

 50. D. B. Kirk and W.-m. W. Hwu, Programming Massively Parallel Processors: A
Hands-on Approach (Applications of GPU Computing Series), Morgan-
Kaufmann Publishers, Burlington, Massachusetts, 2010.

 51. D.E. Knuth, Fundamental Algorithms, Volume 1 of The Art of Computer
 Programming, Third Edition, Addison-Wesley, Reading, Massachusetts, 1997.

 52. D.E. Knuth, Seminumerical Algorithms, Volume 2 of The Art of Computer
Programming, Third Edition, Addison-Wesley, Reading, Massachusetts, 1997.

 53. D.E. Knuth, Sorting and Searching, Volume 3 of The Art of Computer
 Programming, Third Edition, Addison-Wesley, Reading, Massachusetts, 1998.

C8208_bibliography.indd 405C8208_bibliography.indd 405 11/20/12 6:54 PM11/20/12 6:54 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

406 Bibliography

 54. D.E. Knuth, Combinatorial Algorithms, Part 1, Addison-Wesley, Upper Saddle
River, New Jersey, 2011.

 55. D.E. Knuth, “Big omicron and big omega and big theta,” ACM SIGACT News
8 (2), 1976, 18–23.

 56. J. Kurzak, D.A. Bader, and J. Dongarra, Scientific Computing with Multicore
and Accelerators, CRC Press, Boca Raton, FL, 2010.

 57. C.C. Lee and D.T. Lee, “On a cover-circle minimization problem,” Information
Processing Letters 18, 1984, 180–185.

 58. F.T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays,
Trees, Hypercubes, Morgan Kaufmann Publishers, San Mateo, CA, 1992.

 59. F. Magoules, J. Pan, K.-A. Tan and A. Kumar, Introduction to Grid Computing,
CRC Press, London, England, 2009.

 60. S.B. Maurer and A. Ralston, Discrete Algorithmic Mathematics, Addison-
Wesley, Reading, Massachusetts, 1991.

 61. R. Miller and Q.F. Stout, “Efficient parallel convex hull algorithms,” IEEE
Transactions on Computers 37, 1988, 1605–1619.

 62. R. Miller and Q.F. Stout, Parallel Algorithms for Regular Architectures:
Meshes and Pyramids, The MIT Press, Cambridge, Massachusetts, 1996.

 63. R. Miller and Q.F. Stout, “Algorithmic techniques for networks of processors,”
in Algorithms and Theory of Computation Handbook, M. Atallah, ed., CRC
Press, Boca Raton, FL, 1999.

 64. S.B. Nadler, Jr., Hyperspaces of Sets, Marcel Dekker, New York, 1978.

 65. W. Narkiewicz, The Development of Prime Number Theory, Springer-Verlag,
Berlin, 2000.

 66. J. O’Rourke, Art Gallery Theorems and Algorithms, Oxford University Press,
New York, 1987. http://maven.smith.edu/~orourke/books/ArtGalleryTheorems/
Art_Gallery_Full_Book.pdf, accessed August 24, 2012.

 67. M.H. Overmars and J. van Leeuwen, “Maintenance of configurations in the
plane,” Journal of Computer and Systems Sciences 23, 1981, 166–204.

 68. F.P. Preparata and M.I. Shamos, Computational Geometry, Springer-Verlag,
New York, 1985.

 69. M.J. Quinn, Parallel Computing Theory and Practice, McGraw-Hill, Inc.,
New York, 1994.

 70. T. Rauber and G. Rünger, Parallel Programming for Multicore and Cluster
 Systems, Springer-Verlag Berlin Heidelberg, New York, 2010.

 71. S. Ranka and S. Sahni, Hypercube Algorithms for Image Processing and
 Pattern Recognition, Springer-Verlag, New York, 1990.

 72. G. Reese, Cloud Application Architectures: Building Applications and
 Infrastructure in the Cloud, O’Reilly Media, Sebastopol, CA, 2009.

C8208_bibliography.indd 406C8208_bibliography.indd 406 11/20/12 6:54 PM11/20/12 6:54 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Bibliography 407

 73. G. Robins, B.L. Robinson, and B.S. Sethi, “On detecting spatial regularity in
noisy images,” Information Processing Letters 69, 1999, 189–195.

 74. K.H. Rosen, Elementary Number Theory and its Applications, Addison- Wesley,
Reading, Massachusetts, 1993.

 75. A. Rosenfeld, “‘Continuous’ functions on digital pictures,” Pattern Recognition
Letters 4, 1986, 177–184.

 76. J. Sanders and E. Kandrot, CUDA by Example: An Introduction to General-
Purpose GPU Programming, Addison-Wesley, Reading, Massachusetts, 2011.

 77. D. Sarkar and I. Stojmenovic, “An optimal parallel circle-cover algorithm,”
Information Processing Letters 32, 1989, 3–6.

 78. B. Sosinsky, Cloud Computing Bible, Wiley Publishing, Inc., Indianapolis, IN,
2011.

 79. G.W. Stout, High Performance Computing, Addison-Wesley, Reading,
 Massachusetts, 1995.

 80. V. Strassen, “Gaussian elimination is not optimal,” Numerische Mathematik
14 (3), 1969, 354–356.

 81. R.E. Tarjan, “Depth-first search and linear graph algorithms,” SIAM Journal
on Computing 1, 1972, 146–160.

 82. R.E. Tarjan, Data Structures and Network Algorithms, Society for Industrial
and Applied Mathematics, 1983.

 83. F.L. Van Scoy, “The parallel recognition of classes of graphs,” IEEE
 Transactions on Computers 29, 1980, 563–570.

 84. B. Wagar, “Hyperquicksort: a fast sorting algorithm for hypercubes,” in
 Hypercube Multiprocessors 1987, M.T. Heath, ed., SIAM, 1987, 292–299.

 85. S. Warshall, “A theorem on Boolean matrices,” Journal of the ACM 9, 1962,
11–12.

 86. B. Wilkinson, Grid Computing: Techniques and Applications, Chapman &
Hall/CRC, Boca Raton, FL, 2010.

 87. S. Yakowitz and Ferenc Szidarovszky, An Introduction to Numerical
 Computations, Prentice Hall, New Jersey, 1990.

C8208_bibliography.indd 407C8208_bibliography.indd 407 11/20/12 6:54 PM11/20/12 6:54 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Index

Background Photo Credit © Spectral-Design / Shutterstock

C8208_index.indd 408C8208_index.indd 408 11/20/12 6:55 PM11/20/12 6:55 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Index 409

Special Characters
= (equal sign), variable

assignment, 10
ω (little omega), definition, 9

⎣x⎦ , floor of x, 10

⎡x⎤ , ceiling of x, 10
← left arrow, variable

assignment, 10
ln, 10, xxv
lg, 10, xxv
log, 10, xxv
o (little oh), definition, 8
O (big oh), definition, 7
Ω (big omega), definition, 8
Θ (theta), definition, 7
Ω (Omega) notation, 8, 9

A
acyclic graphs, 309
adjacency list representations of

graphs, 312–313
adjacency matrix representations

of graphs, 313–314
transitive closure of, 321–323

algorithms. See also specific
 algorithms and types of
algorithms
compute phase of, 69, 71
definition of, 5
parallel, 5
principles of analysis for, 6
recursive. See recursion
sequential, 5

all-nearest neighbor between
labeled sets problem, 299–300

all-nearest neighbor problem,
271–273

all-pairs shortest-path
problem, 345

Amdahl’s Law, 128
approximate solution of equations,

367–368
approximation by Taylor series,

360–364
arbitrary CW model of

PRAM, 73
arithmetic operations, running time

of, 21
array(s)

linear. See linear arrays
PRAM algorithms to perform

fundamental operations on,
76–84

Quicksort algorithm and,
226–230, 398–401

static, partitioning element of,
226

array packing, 186–188
on CREW PRAM, 187–188
on network models, 188
on RAM, 186–187

articulation points, 311
associative operations, 329

binary, 77
associative read/write, 243–245
asymptotic analysis, 2–31

asymptotic relationships and,
12–20, 29

common terminology and,
29–30

limitations of, 28–29
notation and terminology

for, 5–11
rules for, 21–27

asymptotic notation, 7–10, 9
asymptotic relationships, 12–20, 29

asymptotic analysis and limits
and, 12–15

summations and integrals and,
15–20

B
back substitution phase of Gaussian

elimination, 164, 165
base case

for MergeSort algorithm, 53–55
n! and, 42

Batcher, Ken, 135, 146–147
BFS (breadth-first-search)

 algorithm, 314–318, 320–321
bidirectional communication

links, 88
big oh (O) notation, 7, 8, 9
big omega (Ω), 8
binary associative operations, 77,

174, 204, 350
binary associative operator, 174
binary matrices, transitive closure

of, 288–290
binary search(es), 46–48, 55
BinarySearch algorithm, 46–48

recurrence equation for, 55
BinSort routine, 25–27
bisection width

of hypercubes, 113
of interconnection networks, 87
of linear arrays, 89
of meshes, 100
of meshes-of-trees, 108
of pyramids, 106
of rings, 97–98
of trees, 104

Bitonic Merge algorithm, 140–143
Merge Sort compared with, 141
Quicksort compared with, 141

bitonic merge networks, 138–140
Bitonic Merge Unit, 136
bitonic sequences, 137

sorting into monotonic
order, 138

Bitonic Sort algorithm, 113,
143–146
on cluster/cloud/NOW, 242–243
on medium-grained hypercube,

236–237
on mesh computer, 237–241
on parallel computers, 146–147

bitwise operations, running time
of, 21

blackboard, PRAM algorithm
memory treatment as, 70–71

Boolean matrix, transitive closure
of, 288–290

bounding summations, 15–17,
18–19

branch operations, running time
of, 21

breadth-first-search (BFS)
 algorithm, 314–318, 320–321

bridge edge, 310

C
capital omega (Ω), 8
ceiling functions, 10
CGM (Coarse-Grained

Multicomputer), 117–118
CGM(n2, q), matrix

 multiplication on, 157–161
parallel prefix on, 183

cloud, 124–125
Bitonic Sort algorithm on,

242–243
clusters, 120–122

Bitonic Sort algorithm on,
242–243

computational geometry
on, 279

divide-and-conquer method with
Merge Sort algorithm on,
213–214

elements of, 120–121
image processing on, 302
NOWs compared with, 122
parallel prefix on, 196
reasons for emergence of,

121–122
coarse-grained machines,

126, 127
Coarse-Grained Multicomputer

(CGM), 117–118
CGM(n2, q), matrix

 multiplication on, 157–161
parallel prefix on, 183

C8208_index.indd 409C8208_index.indd 409 11/20/12 6:55 PM11/20/12 6:55 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

410 Index

coarse-grained multiprocessors,
116–118
algorithm development strategy

for, 116–117
gather and scatter operations

and, 117–118
coarse-grained parallel

computers, 116
combinational circuits, 134–148

Bitonic Merge algorithm and,
140–143

Bitonic Sort algorithm and, 135,
143–147

definition of, 136
sorting networks and, 136–139

combine routine in convex hull
algorithm on PRAM, 266–268

combining CW model of PRAM, 73
commodity-off-the-shelf systems

(COTSs), 121
common CW model of PRAM, 73
communication diameter

of hypercubes, 112–113
of interconnection networks,

86–87
as limiting factor in running

time, 88
of linear arrays, 89, 91
of meshes, 99
of meshes-of-trees, 107–108
of pyramids, 106
of rings, 87
of trees, 103

commutative operations, 101
comparison elements, of sorting

networks, 137
comparison operators, running time

of, 21
comparison-exchange

operations, 146
comparitors, of Bitonic Sort

 algorithm, 144–145
complete graphs, 309
component label, 291
component labeling problem,

290–295
on mesh, 291–295
on RAM, 290–291

computation, models of. See models
of computation

computational geometry, 190,
250–282
all-nearest neighbor problem and,

271–273
convex hull and. See convex hull

problem
line intersection problems and,

273–278

on NOW, clusters, and grids, 279
smallest enclosing box and,

268–271
computational science and

 engineering (CS&E), 151, 353
compute clusters, 120–122

elements of, 120–121
reasons for emergence of,

121–122
compute phase of algorithms

PRAM and, 71
RAM and, 69

computer architecture taxonomy of
Flynn, 125–126

concatenation step in Quicksort
algorithm, 227

concurrent read, concurrent write
(CRCW) PRAM, 74
algorithm to search an ordered

array on, 74
concurrent read, exclusive write

(CREW) PRAM, 74
array packing on, 187–188
maximum sum subsequence on,

184–186
overlapping line segments on,

194–195
parallel prefix on, 175–178
point domination query

on, 192
concurrent read (CR)

PRAM, 72
Gaussian elimination on, 166
matrix multiplication on,

153–154
concurrent read/write, 175, 295,

298, 300, 339, 340, 341
divide-and-conquer method and,

243–245
on mesh, 245
on PRAM, 243–245

conditional instructions, 86
conditional operations, running

time of, 21
Condor system, 120
connected component labeling

on meshes, 329
on PRAM, 324–329
on RAM, 323–324

connected components of
graphs, 310
labeling, 323–329

connectivity matrix, 289
constant time, 30
convex, definition of, 252
convex hull, extreme points of,

252, 253
marking, 295–298

convex hull problem, 252–268
definitions relevant to, 252–253
divide-and-conquer solutions to,

260–268
Graham’s Scan procedure and,

254–259
Jarvis’ March algorithm

and, 259
sorting and, 253–254

cost(s)
of Counting Sort algorithm, 109
of CRCW PRAM algorithm to

search an ordered array,
83–84

of linked lists on PRAM, 204
of matrix multiplication on mesh,

156–157
of maximum sum subsequence

on CREW PRAM, 185
of maximum sum subsequence

on mesh computer, 186
of overlapping line segment

computation on mesh, 195
of parallel prefix algorithm, 176
of parallel prefix on hypercube,

181, 183
of parallel prefix on mesh,

179–180
of parallel prefix problem, 205
of PRAM Minimum algorithm,

80, 82
of security, minimizing, 275
of summation of dot product

terms, 153–154
cost/work, 127
COTS (commodity-off-the-shelf

system), 121
Counting Sort algorithm, 108–110

array packing and, 187
on network models, 188

coverage query problem, 275
CR (concurrent read) PRAM, 72

Gaussian elimination on, 166
matrix multiplication on,

153–154
CRCW (concurrent read, concurrent

write) PRAM, 74
algorithm to search an ordered

array on, 82–84
CREW (concurrent read, exclusive

write) PRAM, 74
array packing on, 187–188
maximum sum subsequence on,

184–186
overlapping line segments on,

194–195
parallel prefix on, 175–178
point domination query on, 192

C8208_index.indd 410C8208_index.indd 410 11/20/12 6:55 PM11/20/12 6:55 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Index 411

CS&E (computational science and
engineering), 151, 353

CW (concurrent write) PRAM, 73
cycles in graphs, 309

D
data access conflicts with PRAM, 72
data streams, 125, 126
data structures, modifying

 algorithms to accommodate, 25
degrees

of graphs, 311
of hypercubes, 112
of interconnection networks, 86
of meshes-of-trees, 106–107
of vertices, 311

dense graphs, 309
depth-first-search (DFS) algorithm,

318–321
diameter of graphs, 311
digital images, 288

all-nearest neighbor between
labeled sets, 209–300

component labeling, 290–295
convex hull, 295
Hausdorff metric for, 298,

300–302
image processing on a

cluster, 302
transitive closure of a binary

matrix, 288–290
Dijkstra’s algorithm, 342–345
directed graphs, 308
distance problems, 298–302
distributed-memory machines, 85

interconnection networks and,
85–87

network models and. See network
models

divide-and-conquer algorithm for
matrix multiplication, 153

divide-and-conquer method,
208–268
Bitonic Sort algorithm and,

236–243
concurrent read/write and,

243–245
divide-and-conquer solutions to

convex hull problem, 260–268
Merge Sort algorithm and,

210–214
Quicksort algorithm and,

220–235
Quicksort modification for

parallel models and, 235–236
selection problem and, 214–220

dot product, 152
summation of terms of, 153

E
easy split, hard join algorithms, 226
edge(s)

bridge edge, 310
definition of, 252
of hulls, 252
incident, 309
k-dimensional, of hypercubes, 113

edge-weighted graphs, 311
efficiency of algorithms, 30, 128
eight-connected meshes, 98
elementary functions, running time

for evaluation of, 21
elementary row operations, 161–162
equal sign (=), variable assignment

and, 10
equations, approximate solution of,

367–368
ER (exclusive read) PRAM, 72

Gaussian elimination on, 166
EREW (exclusive read, exclusive

write) PRAM, 74
error

roundoff, in approximation by
Taylor series, 361

roundoff, with Gaussian
 elimination, 168

truncation, in approximation by
Taylor series, 361

error term in approximation by
Taylor series, 360

error tolerance in approximation by
Taylor series, 361

Euclidean algorithm, 356
EW (exclusive write) PRAM, 73

Gaussian elimination on, 166
exclusive read, exclusive write

(EREW) PRAM, 74
exclusive read (ER) PRAM, 72

Gaussian elimination on, 166
exclusive write (EW) PRAM, 73

Gaussian elimination on, 166
execution

of PRAM, 71–72
of RAM, 69

extreme points of convex hull
definition of, 252, 253
marking, 295–298

F
 f (n)

expressed as sum of simpler
functions, 15–16

relationship between g(n) and,
12–15

using logarithms, example of,
14–15

factorial function, 42–43

recursive algorithm for
 computing, 43

fan-in and fan-out, combinational
circuits and, 136

fine-grained machines, 127
floor functions, 10
Flynn, M. J., taxonomy defined by,

125–126
four-connected meshes, 98–103
function(s)

ceiling, 10
floor, 10
growth rate of, in asymptotic

 analysis, 6–7
relationships among, 12
set-valued, 9

Function Evaluate algorithm, 360
Function power algorithm, 357–359
fundamental operations

comparing time required to
 perform, 87

PRAM algorithms to perform on
arrays, 76–84

running time of, 21

G
gather operations, 390–397

algorithms for, 394–396
building trees of processors and,

392–394
coarse-grained multiprocessors

and, 117–118
definition of, 391

Gaussian elimination, 161–168
augmented matrix and, 162, 164
back substitution phase of,

164, 165
Gaussian elimination phase of,

163–165
on mesh of size n2, 167–168
on parallel models, 166
on PRAM of n2 processors,

166–167
on RAM, 166

General Purpose Graphic
Processing Units (GPGPUs),
116, 122, 242–243, 302

geometric progression, 63–64
geometry, computational. See

computational geometry; convex
hull problem

GPGPUs (General Purpose Graphic
Processing Units), 116, 122,
242–243, 302

Graham, Ron, 254
Graham’s Scan procedure, 254–259

parallel implementations of, 259
on RAM, 258–259

C8208_index.indd 411C8208_index.indd 411 11/20/12 6:55 PM11/20/12 6:55 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

412 Index

granularity, 126–127
graph(s)

acyclic, 309
adjacency list representations of,

312–313
adjacency matrix representations

of, 313–314
adjacent vertices of, 309
complete, 309
connected components of, 310
degrees of, 311
dense, 309
diameter of, 311
directed, 308
edge-weighted, 311
incident edges of, 309
sparse, 309
strongly connected, 310
undirected, 308
weighted, 309

graph algorithms, 306–347
breadth-first search algorithm,

314–318, 320–321
connected component labeling

and, 323–329
depth-first search algorithm,

318–321
minimum-cost spanning trees

and, 329–341
shortest-path problems and,

341–345
terminology relevant to, 308–312
transitive closure of adjacency

matrix and, 321–323
graph traversal, 314
greatest common divisor problem,

355–357
Lamé’s Theorem and, 356–357

Greatest Lower Bound Axiom, 376
greedy algorithms, 275–276,

330–336
grids, 122–124

applications of, 123
cloud as, 125
computational geometry on, 279
parallel prefix on, 196
schematic representation of,

122, 123
growth rate, in asymptotic analysis,

6–7, 9

H
hard split, easy join algorithms, 226
hardware platforms, 5–6
Hausdorff metric, 298, 300–302
head nodes of computer

clusters, 120
hexagonal meshes, 98

high-order constants, hiding of,
28–29

Hoare, C. A. R., 220
Horner’s Rule, 360
hull edges, definition of, 252
hypercubes, 111–116

bisection width of, 113
Bitonic Sort algorithm and, 147
communication diameter of,

112–113
degree of, 112
dimension of, 112
k-dimensional edge of, 113
medium-grained, Bitonic Sort

algorithm on, 236–237
parallel prefix on, 180–183

Hyperquicksort algorithm, 235–236

I
identity matrices, 161
illegal instructions, 72
image processing, 286–303

on clusters, 302
component labeling and,

290–295
convex hull problem and,

295–298
distance problems and, 298–302
transitive closure of binary

matrix and, 288–290
in-degree of vertices, 311
induction, 37, 38–41

examples of, 38–41
principle of, 38, 374–376
recursion compared with, 42

Inductive Hypothesis, 38
input operations, running time

of, 21
input-based linear arrays, 92–94
input/output (I/O) bandwidth, of

interconnection networks, 87
Insertion Sort algorithm, 22–25

efficient implementation of, 24
recurrence equation for, 55

instruction streams, 125–126
integral bounding principles, 16–17,

18–19
integral powers, 357–359
integration, determining asymptotic

analysis of summation by, 16–20
interconnection networks, 85–87

bisection width of, 87
communication diameter of,

86–87
of computer clusters, 121
degree of, 86
I/O bandwidth of, 87
running time of, 87

Internet as cloud, 125
intersection query, 273–274
intersection reporting, 273–274, 275
interval broadcasting, 189–190
inverse of a matrix, 161
invertible matrices, 161
I/O (input/output) bandwidth, of

interconnection networks, 87

J
Jarvis, R. A., 259
Jarvis’ March algorithm, 259

K
k-dimensional edge of hypercubes,

113
Kruskal, J. B., 330
Kruskal’s algorithm, 330
Kruskal’s MST algorithm, 330–334

L
labeling of connected components

of graphs, 323–329
on meshes, 329
on PRAM, 324–329
on RAM, 323–324

laboratory science, 151
Lamé’s Theorem, 356–357
left arrow (←), variable assignment

and, 10
limits of quotient, determining

asymptotic relationships based on
taking, 13–15

line intersection problems,
273–278
intersection query, 273–274
intersection reporting, 273–274,

275
overlapping line segments,

275–278
line segments, overlapping,

192–196
on CREW PRAM, 194–195
maximal overlapping point

and, 195
on mesh computer, 195
on RAM, 193–194

Linear Algebra, fundamentals for
Gaussian elimination from,
161–162

linear arrays, 88–97
divide-and-conquer method with

Merge Sort algorithm on,
210–213

input-based, 92–94
linear speedup, 127
linear time, 30, 288

C8208_index.indd 412C8208_index.indd 412 11/20/12 6:55 PM11/20/12 6:55 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Index 413

linked lists. See also pointer
jumping
Quicksort on, 221–222

lists
linked. See linked lists; pointer

jumping
list ranking and, 202–204
merging, 49–52
ordered, searches and, 48
unordered, searches and, 48

little oh (o) notation, 8, 9
little omega (ω) notation, 9
Livny, Myron, 120
logarithm(s), functions using,

example of, 14–15
logarithmic notation, 14
logarithmic time, 30
logical operators, running time

of, 21
loops, time required to execute, 21
lower bounds

Counting Sort algorithm on
network models and, 188

of linear arrays, 89–90
parallel prefix and, 174, 183

low-order terms, hiding of, 28–29

M
Master Method, 60–65

Master Theorem summarizing,
63–65, 378–389

master record, 243, 244
Master Theorem, 63–65

general case of, 384–389
Lemma 1 of, 380–381
Lemma 2 of, 381–383
Lemma 3 of, 383–384
proof of, 378–389

mathematical induction, 37,
38–41
examples of, 38–41
principle of, 38, 374–376
recursion compared with, 42

matrix(ces), 150–169
augmented, 162, 164
binary, transitive closure of,

288–290
connectivity, 289
elementary row operations and,

161–162
finding inverse of, 161–168
Gaussian elimination and,

161–168
identity, 161
invertible, 161
matrix multiplication and. See

matrix multiplication
roundoff error and, 168

matrix multiplication, 152–161
on CGM(n2, q), 157–161
on CR PRAM, 153–154
divide-and-conquer algorithm

for, 153
on mesh computers, 155–157
on RAM, 153
in Θ(prq) time, 152–153

maximal overlapping point, 195
maximal overlapping point

problem, 275
maximum sum subsequence,

183–186
on CREW PRAM, 184–186
on mesh computer, 186
on RAM, 183–184

medium-grained machines, 127
memory

of PRAM, 70
of RAM, 68

memory access of PRAM, 72
memory access unit

of PRAM, 70
of RAM, 69

Merge algorithm, 51–52
Merge Sort algorithm, 53–55, 234

Bitonic Merge algorithm
 compared with, 141

divide-and-conquer method and,
210–214

Quicksort algorithm versus,
225–226

recurrence equation for, 55
recursion tree for, 62

merging. See also Merge Sort
algorithm
Bitonic Merge algorithm and,

140–143
of ordered lists, 49–52

Mesh Broadcast algorithm,
102–103

mesh computers, 98–103
Bitonic Sort algorithm on,

237–241
broadcasting data on, 102–103
component labeling problem on,

291–295
concurrent read/write on, 245
connected component labeling

on, 329
divide-and-conquer convex hull

algorithm on, 264–265
eight-connected, 98
four-connected, 98–103
fundamental operations of,

100–101
Gaussian elimination on,

167–168
hexagonal, 98

matrix multiplication on,
155–157

maximum sum subsequence
on, 186

minimum-cost spanning trees
on, 338–341

overlapping line segments on,
195

parallel prefix on, 178–180
smallest enclosing box on,

270–271
Mesh Semigroup algorithm,

101–102
meshes-of-trees, 106–110
Message Passing Interface (MPI),

121–122
Miller, R., 121
MIMD (multiple instruction stream,

multiple data stream)
machines, 126

minimal-weight path, 311
Minimum algorithm, on PRAM,

77–82
minimum element on linear arrays,

determining, 90–91
minimum-cost spanning trees,

329–341
on meshes, 338–341
on PRAM, 336–338
on RAM, 330–336

MISD (multiple instruction
stream, single data stream)
machines, 126

modeling. See also models of
computation; network models
in computational science and

engineering, 151
Gaussian elimination on parallel

models and, 166
prominence in modern science

and engineering, 4
models of computation, 66–130

Amdahl’s Law and, 128
coarse-grained multiprocessors.

See coarse-grained
multiprocessors

cost/work and, 127
distributed-memory vs.

 shared-memory machines,
84–85

efficiency and, 128
Flynn’s taxonomy and, 125–126
granularity and, 126–127
interconnection networks,

85–87
network models. See network

models
PRAM. See PRAM (parallel

random-access machine)

C8208_index.indd 413C8208_index.indd 413 11/20/12 6:55 PM11/20/12 6:55 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

414 Index

RAM. See RAM (random access
machine)

scalability and, 128
speedup and, 127–128
throughput and, 127

molecular structure, Shake-and-
Bake algorithm for determining,
119–120

monotonic sequences, 138
MPI (Message Passing Interface),

121–122
multiple instruction stream,

 multiple data stream (MIMD)
machines, 126

multiple instruction stream, single
data stream (MISD)
machines, 126

multiplication, matrix. See matrix
multiplication

multiprocessor machines, 84

N
n!, 42–43
n positive integer

to denote data set size, 5
floor and ceiling functions

and, 10
neighbors, 88, 309
network(s), interconnection,

85–87
bisection width of, 87
communication diameter of,

86–87
of computer clusters, 121
degree of, 86
I/O bandwidth of, 87

network models, 67, 88–116
array packing on, 188
characteristics of, 88
hypercubes, 111–116
linear arrays, 88–97
meshes, 98–103
meshes-of-trees, 106–110
point domination query

on, 192
pyramids, 104–106
rings, 97–98
terminology related to, 88
trees, 103–104

network of workstations (NOW),
118–120
Bitonic Sort algorithm on,

242–243
computational geometry on, 279
compute clusters compared

with, 122
parallel prefix on, 196

next field, merging lists and, 50
NOW (network of workstations),

118–120
Bitonic Sort algorithm on,

242–243
computational geometry on, 279
compute clusters compared

with, 122
parallel prefix on, 196

Number Theory, 354
numerical problems, 352–370

approximate solution of
 equations, 367–368

approximation by Taylor series,
360–364

evaluating polynomials,
359–360

greatest common divisor,
355–357

integral powers, 357–359
primality, 354–355
Trapezoidal Integration,

364–367

O
O (big oh) notation, 7, 8, 9
o (little oh) notation, 8, 9
Odd-Even Merge Sort

algorithm, 135
omega (Ω) notation, 8, 9
operations

arithmetic, running time of, 21
associative, binary, 77
bitwise, running time of, 21
branch, running time of, 21
commutative, 101
comparison-exchange, 146
conditional, running time of, 21
elementary row, 161–162
fundamental. See fundamental

operations
gather. See gather operations
input, running time of, 21
output, running time of, 21
parallel postfix, 191
permutation exchange, 157–161
scan, 174
scatter. See scatter operations
semigroup. See semigroup

operations
sweep, 174

operators
binary associative, 174
comparison, running time of, 21
logical, running time of, 21

optimal time, 30
optimality, 30

ordered arrays, searching on
PRAMs, 82–84

out-degree of vertices, 311
output operations, running time

of, 21
output-sensitive running time, 275
overlapping line segments, 192–

196, 275–278
on CREW PRAM, 194–195
maximal overlapping point

and, 195
on mesh computer, 195
on RAM, 193–194

P
package wrapping technique, 259
parallel algorithms, 174

definition of, 5
parallel models, Gaussian

 elimination on, 166
parallel postfix maximum, 185
parallel postfix operation, 191
parallel prefix problem, 172–197,

204–205
array packing and, 186–188
on cluster, 196
on coarse-grained multicomputer,

183
on CREW PRAM, 175–178
definition of, 174
on grid, 196
on hypercube computer,

180–183
interval broadcasting and,

189–190
maximum sum subsequence

application of, 183–186
on mesh computer, 178–180
on NOW, 196
overlapping line segments and,

192–196
parallel algorithms and, 174
point domination query and,

190–192
parallel random-access machine.

See PRAM (parallel
 random-access machine)

partition routine in Quicksort
 algorithm, 227–230

partition sort. See Quicksort
algorithm

Partition subprogram, 228–229
partitioning in convex hull

 algorithm on PRAM, 265
paths

in graphs, 309
minimal-weight, 311

C8208_index.indd 414C8208_index.indd 414 11/20/12 6:55 PM11/20/12 6:55 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Index 415

permutation exchange operations,
157–161

PEs (processing elements), 86
pivot row, 167
pivoting, 167
pixels, 288

labeled set of, 295
processors and, 290

plane sweep operation, 274
point domination query, 190–192

on CREW PRAM, 192
on network models, 192
on RAM, 192

pointer jumping, 200–206
list ranking and, 202–204
parallel prefix problem and,

204–205
polylogarithmic time, 30
polynomial(s)

evaluating, 359–360
Taylor, 360

polynomial time, 30
positive integers to denote data set

size, 5
PRAM (parallel random-access

machine), 67, 70–84
all-pairs shortest-path problem

on, 345
Bitonic Sort algorithm and, 147
characteristics of, 70
concurrent read/write and,

243–245
connected component labeling

on, 324–329
CR. See CR PRAM
CRCW, 74
CREW. See CREW PRAM
CW, 73
divide-and-conquer convex hull

algorithm on, 265–268
divide-and-conquer method

with selection problem on,
219–220

ER, 72, 166
EREW, 74
EW, 73
linked lists on, 201
list ranking on, 202–204
matrix multiplication on,

153–154
Minimum algorithm on, 77–81
minimum-cost spanning trees on,

336–338
of n2 processors, Gaussian

 elimination on, 166–167
parallel prefix problem on,

204–205
read conflicts and, 72

searching ordered arrays on,
82–84

smallest enclosing box on, 270
write conflicts and, 73

PRAM Broadcast algorithm, 77
PRAM Matrix Product algorithm

using Θ(n3/ log n) processors, 154
PRAM Minimum algorithm, 77–82
Primality algorithm, 354–355
primality problem, 354–355
Prim’s MST algorithm, 335–336
Principle of Mathematical

Induction, 38
proof of, 374–376
priority CW model of PRAM, 73
processing elements (PEs), 86
processors, 86. See also

 coarse-grained multiprocessors
multiprocessor machines and, 84
pixels and, 290
of PRAM, 70
PRAM Matrix Product algorithm

using Θ(n3/ log n), 154
of RAM, 68–69
trees of, building, 392–394

pyramids, 104–106

Q
quadratic time, 30
Quicksort algorithm

array implementation of,
226–230

array packing and, 187
Bitonic Merge algorithm

 compared with, 141
divide-and-conquer method and,

220–235
expected-case running time of,

398–401
improving, 233–235
Merge Sort algorithm versus,

225–226
modification for parallel models,

235–236
space used by array version of,

231–233
time required to run, 231

quotients, determining asymptotic
relationships based on taking
limits of, 13–15

R
rack units, 120
RAM (random access machine), 67,

68–70
array packing on, 186–187

characteristics of, 68–70
component labeling problem on,

290–291
connected component labeling

on, 323–324
divide-and-conquer convex hull

algorithm on, 263–264
divide-and-conquer method with

Merge Sort algorithm on, 210
divide-and-conquer method with

selection problem on, 215–219
Gaussian elimination on, 166
Graham’s Scan on, 258–259
linked lists on, 201
matrix multiplication on, 153
maximum sum subsequence on,

183–184
minimum-cost spanning trees on,

330–336
overlapping line segments on,

193–194
point domination query on, 192
single-source shortest-path

RAM algorithm on, 341–345
smallest enclosing box on, 270
uniform analysis variant of, 70

read conflicts, PRAM and, 72
read phase of algorithms

PRAM and, 71
RAM and, 69

recurrence equations, 55
recursion, 37, 41–44

binary searches and, 46–48
depth-first-search algorithm and,

318
induction compared with, 42
infinite, avoiding, 42
Master Method and, 60–65
mathematical proof and, 44
merging and merge sort and,

49–55
properties defining recursive

behavior and, 41
recursion trees, 62, 210, 211
recursive doubling procedure, 76,

213
recursive relations, 43
Remote Procedure Call (RPC), 119
request record, 243, 244
rings, 97–98
rotation of meshes, 100–101
roundoff error

in approximation by Taylor
series, 361

with Gaussian elimination, 168
row-major data distribution, 101
row-major ordering, 178, 242
RPC (Remote Procedure Call), 119

C8208_index.indd 415C8208_index.indd 415 11/20/12 6:55 PM11/20/12 6:55 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

416 Index

running times. See also specific
times
constant, 30
of fundamental operations, 21
importance of, 4
for InsertionSort routine, 22–25
of interconnection networks, 87
linear, 30
logarithmic, 30
lower bound on. See lower

bounds
for MergeSort algorithm, 54–55
optimal, 30
polylogarithmic, 30
polynomial, 30
of PRAM, 72
quadratic, 30
of RAM, 69–70
of recursive sort, 49
sublinear, 30
sublogarithmic, 30

S
scalability, 128
scan operations, 174
scatter operations, 390–397

algorithms for, 394–396
building trees of processors and,

392–394
coarse-grained multiprocessors

and, 117–118
definition of, 391

searches
binary, 46–48, 55
breadth first search (BFS),

314–318, 320–321
depth first search (DFS),

318–321
sequential, 44–46, 48

selection problem, divide-and-
conquer method and, 214–220

semigroup operations, 77
meshes and, 101–102
meshes-of-trees and, 108
on pyramids, 106
on trees, 104

sequences. See also maximum sum
subsequence
bitonic, 137, 138
monotonic, 138
of operations, 21

sequential algorithms, definition
of, 5

sequential searches, 44–46, 48
SequentialSearch algorithm, 45–46

recurrence equation for, 55

Shake-and-Bake algorithm,
119–120

shared-memory machines, 84–85
shortest-path problems, 341–345
all-pairs shortest-path parallel

algorithm and, 345
single-source shortest-path RAM

algorithm and, 341–345
SIMD (single instruction stream,

multiple data stream)
machines, 126

simple paths in graphs, 309
Simpson’s Method, 367
simulation

in computational science and
engineering, 151

prominence in modern science
and engineering, 4

single instruction stream, multiple
data stream (SIMD)
machines, 126

single instruction stream, single
data stream (SISD)
machines, 126

single-program multiple-data
(SPMD) programming style, 126

single-source shortest-path problem,
321, 341–345

SISD (single instruction
stream, single data stream)
machines, 126

smallest enclosing box, 268–271
on mesh, 270–271
on PRAM, 270
on RAM, 270

snake-like indexing, 296
software as a service, 124–125
software platforms, 5–6
Sollin’s algorithm, 336
sorting, convex hull problem and,

253–254
sorting algorithms. See also

Bitonic Sort algorithm;
Counting Sort algorithm;
Merge Sort algorithm; Quicksort
algorithm
Bitonic Sort algorithm and,

143–146
comparison-based, 25
Hyperquicksort algorithm,

235–236
Insertion Sort algorithm and,

22–25
for linear arrays, 95–97
Odd-Even Merge Sort

algorithm, 135
running times for, 25–26

sorting networks, 136–139
comparison element of, 137

sortkey field, merging lists and,
50, 51

spanning trees, 330. See also
 minimum-cost spanning trees

sparse graphs, 309
speedup, 127–128
Split algorithm, 52–53
splitList subprogram, 224
SPMD (single-program

 multiple-data) programming
style, 126

Stitch step
in component labeling problem,

293–294
in divide-and-conquer method,

209, 210, 211
in Quicksort algorithm, 221,

226, 227
storage system of computer

clusters, 121
Strassen, V., 153
strongly connected graphs, 310
sublinear time, 30
sublogarithmic time, 30
successors, 276, 277
summation

bounding, 15–17, 18–19
determining asymptotic analysis

by integration, 16–20
Sun workstations, 119
supervertex(ices), 325
sweep operations, 174

T
Taylor polynomials, 360
Taylor series, 360–364
theoretical science, 151
Θ notation, 7, 9, 44
throughput, 127
tractor-tread algorithms, 94–95
transitive closure

of adjacency matrix
 representations, 321–323

of binary matrix, 288–290
Trapezoidal Integration,

364–367
Tree Traversal algorithm,

 recurrence equation for, 55
trees of processors, 103–104, 309

building, 392–394
truncation error in approximation

by Taylor series, 361
T(n) See also running times

definition of, 5

C8208_index.indd 416C8208_index.indd 416 11/20/12 6:55 PM11/20/12 6:55 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Index 417

U
undirected graphs, 308
uniform access model for PRAM

memory access, 72
uniform analysis variant of RAM, 70
Unix workstations, 118–119
unordered edge input, 314
update records, 244

V
values, assignment to variables, 10
Van Scoy, F. L., 290, 295, 323
variables, assignment of values

to, 10

vertex(ices)
adjacent, of graphs, 309
degree of, 311

vertex label in component labeling
problem, 291

virtualization, required by cloud,
125

Voronoi Diagram, 271

W
Wagar, Bruce, 235, 236
Warshall’s algorithm, 289–290,

322–323, 339, 345
weakly connected graphs, 310

weighted graphs, 309
worker nodes of computer

clusters, 120
workstations, network of (NOW),

118–120
Bitonic Sort algorithm on,

242–243
computational geometry on, 279
compute clusters compared

with, 122
parallel prefix on, 196

write conflicts, PRAM and, 73
write phase of algorithms

PRAM and, 71–72
RAM and, 69

C8208_index.indd 417C8208_index.indd 417 11/20/12 6:55 PM11/20/12 6:55 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C8208_index.indd 418C8208_index.indd 418 11/20/12 6:55 PM11/20/12 6:55 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

	Contents���������������
	Preface
	Reference Guide
	Ch 1: Asymptotic Analysis��������������������������������
	Notation and Terminology�������������������������������
	Asymptotic Relationships�������������������������������
	Rules for Analysis of Algorithms���������������������������������������
	Limitations of Asymptotic Analysis���
	Asymptotic Relationships and Common Terminology��
	Summary��������������
	Chapter Notes��������������������
	Exercises����������������

	Ch 2: Induction and Recursion������������������������������������
	Mathematical Induction�����������������������������
	Induction Examples�������������������������
	Recursion����������������
	Sequential Search������������������������
	Binary Search��������������������
	Additional Notes on Sequential and Binary Searches���
	Merging and Merge Sort�����������������������������
	Common Recurrence Equations����������������������������������
	Summary��������������
	Chapter Notes��������������������
	Exercises����������������

	Ch 3: The Master Method������������������������������
	Master Theorem���������������������
	Examples���������������
	Summary��������������
	Chapter Notes��������������������
	Exercises����������������

	Ch 4: Models of Computation����������������������������������
	RAM (Random Access Machine)����������������������������������
	PRAM (Parallel Random Access Machine)��
	Distributed-Memory vs. Shared-Memory Machines��
	Interconnection Networks�������������������������������
	Processor Organizations������������������������������
	Coarse-Grained Multiprocessors�������������������������������������
	Additional Terminology�����������������������������
	Summary��������������
	Chapter Notes��������������������
	Exercises����������������

	Ch 5: Combinational Circuits�����������������������������������
	Combinational Circuits and Sorting Networks��
	Bitonic Merge��������������������
	Bitonic Sort�������������������
	Bitonic Sort on Parallel Computers���
	Summary��������������
	Chapter Notes��������������������
	Exercises����������������

	Ch 6: Matrix Operations������������������������������
	Matrix Multiplication����������������������������
	Gaussian Elimination���������������������������
	Roundoff Error���������������������
	Summary��������������
	Chapter Notes��������������������
	Exercises����������������

	Ch 7: Parallel Prefix����������������������������
	Parallel Prefix����������������������
	Maximum Sum Subsequence������������������������������
	Array Packing��������������������
	Interval Broadcasting����������������������������
	Point Domination Query�����������������������������
	Computing Overlapping Line Segments��
	Parallel Prefix on a NOW, Cluster, or Grid���
	Summary��������������
	Chapter Notes��������������������
	Exercises����������������

	Ch 8: Pointer Jumping����������������������������
	List Ranking�������������������
	Linked List Parallel Prefix����������������������������������
	Summary��������������
	Chapter Notes��������������������
	Exercises����������������

	Ch 9: Divide-and-Conquer�������������������������������
	Merge Sort (Revisited)�����������������������������
	Selection����������������
	Quicksort (Partition Sort)���������������������������������
	Modifications of Quicksort for Parallel Models���
	Bitonic Sort (Revisited)�������������������������������
	Concurrent Read/Write����������������������������
	Summary��������������
	Chapter Notes��������������������
	Exercises����������������

	Ch 10: Computational Geometry������������������������������������
	Convex Hull������������������
	Smallest Enclosing Box�����������������������������
	All-Nearest Neighbor Problem�����������������������������������
	Line Intersection Problems���������������������������������
	Computational Geometry on NOW, Clusters, and Grids���
	Summary��������������
	Chapter Notes��������������������
	Exercises����������������

	Ch 11: Image Processing������������������������������
	Preliminaries��������������������
	Transitive Closure of a Binary Matrix��
	Component Labeling�������������������������
	Convex Hull������������������
	Distance Problems������������������������
	Image Processing on a Cluster������������������������������������
	Summary��������������
	Chapter Notes��������������������
	Exercises����������������

	Ch 12: Graph Algorithms������������������������������
	Terminology������������������
	Representations����������������������
	Fundamental Algorithms�����������������������������
	Computing the Transitive Closure of an Adjacency Matrix��
	Connected Component Labeling�����������������������������������
	Minimum-Cost Spanning Trees����������������������������������
	Shortest-Path Problems�����������������������������
	Summary��������������
	Chapter Notes��������������������
	Exercises����������������

	Ch 13: Numerical Problems��������������������������������
	Primality����������������
	Greatest Common Divisor������������������������������
	Integral Powers����������������������
	Evaluating a Polynomial������������������������������
	Approximation by Taylor Series�������������������������������������
	Trapezoidal Integration������������������������������
	Approximate Solution of an Equation��
	Summary��������������
	Chapter Notes��������������������
	Exercises����������������

	Appendix 1: Proof of the Principle of Mathematical Induction
	Appendix 2: Proof of the Master Theorem
	Proof of the Master Theorem

	Appendix 3: Efficient Gather and Scatter Operations
	Building a Tree of Processors������������������������������������
	Gather and Scatter Algorithms������������������������������������
	Appendix Notes���������������������

	Appendix 4: Expected-Case Running Time of Quicksort
	Bibliography
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 595
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Use these settings to create press-ready Adobe PDF documents for Cengage Learning books using Distiller 8.0.x. The resulting PDF will be compatible with Acrobat 8 \(PDF 1.7\) per CL File Preparation and Certification Task Force)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 18
 18
 18
 18
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 18
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 595
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Use these settings to create press-ready Adobe PDF documents for Cengage Learning books using Distiller 8.0.x. The resulting PDF will be compatible with Acrobat 8 \(PDF 1.7\) per CL File Preparation and Certification Task Force)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 18
 18
 18
 18
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 18
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 595
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Use these settings to create press-ready Adobe PDF documents for Cengage Learning books using Distiller 8.0.x. The resulting PDF will be compatible with Acrobat 8 \(PDF 1.7\) per CL File Preparation and Certification Task Force)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 18
 18
 18
 18
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 18
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 595
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Use these settings to create press-ready Adobe PDF documents for Cengage Learning books using Distiller 8.0.x. The resulting PDF will be compatible with Acrobat 8 \(PDF 1.7\) per CL File Preparation and Certification Task Force)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 18
 18
 18
 18
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 18
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 595
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Use these settings to create press-ready Adobe PDF documents for Cengage Learning books using Distiller 8.0.x. The resulting PDF will be compatible with Acrobat 8 \(PDF 1.7\) per CL File Preparation and Certification Task Force)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 18
 18
 18
 18
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 18
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 595
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Use these settings to create press-ready Adobe PDF documents for Cengage Learning books using Distiller 8.0.x. The resulting PDF will be compatible with Acrobat 8 \(PDF 1.7\) per CL File Preparation and Certification Task Force)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 18
 18
 18
 18
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 18
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 595
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Use these settings to create press-ready Adobe PDF documents for Cengage Learning books using Distiller 8.0.x. The resulting PDF will be compatible with Acrobat 8 \(PDF 1.7\) per CL File Preparation and Certification Task Force)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 18
 18
 18
 18
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 18
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 595
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Use these settings to create press-ready Adobe PDF documents for Cengage Learning books using Distiller 8.0.x. The resulting PDF will be compatible with Acrobat 8 \(PDF 1.7\) per CL File Preparation and Certification Task Force)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 18
 18
 18
 18
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 18
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 595
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Use these settings to create press-ready Adobe PDF documents for Cengage Learning books using Distiller 8.0.x. The resulting PDF will be compatible with Acrobat 8 \(PDF 1.7\) per CL File Preparation and Certification Task Force)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 18
 18
 18
 18
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 18
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 595
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Use these settings to create press-ready Adobe PDF documents for Cengage Learning books using Distiller 8.0.x. The resulting PDF will be compatible with Acrobat 8 \(PDF 1.7\) per CL File Preparation and Certification Task Force)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 18
 18
 18
 18
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 18
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 595
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Use these settings to create press-ready Adobe PDF documents for Cengage Learning books using Distiller 8.0.x. The resulting PDF will be compatible with Acrobat 8 \(PDF 1.7\) per CL File Preparation and Certification Task Force)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 18
 18
 18
 18
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 18
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 595
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Use these settings to create press-ready Adobe PDF documents for Cengage Learning books using Distiller 8.0.x. The resulting PDF will be compatible with Acrobat 8 \(PDF 1.7\) per CL File Preparation and Certification Task Force)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 18
 18
 18
 18
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 18
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 595
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Use these settings to create press-ready Adobe PDF documents for Cengage Learning books using Distiller 8.0.x. The resulting PDF will be compatible with Acrobat 8 \(PDF 1.7\) per CL File Preparation and Certification Task Force)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 18
 18
 18
 18
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 18
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 595
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Use these settings to create press-ready Adobe PDF documents for Cengage Learning books using Distiller 8.0.x. The resulting PDF will be compatible with Acrobat 8 \(PDF 1.7\) per CL File Preparation and Certification Task Force)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 18
 18
 18
 18
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 18
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 595
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Use these settings to create press-ready Adobe PDF documents for Cengage Learning books using Distiller 8.0.x. The resulting PDF will be compatible with Acrobat 8 \(PDF 1.7\) per CL File Preparation and Certification Task Force)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 18
 18
 18
 18
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 18
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 595
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Use these settings to create press-ready Adobe PDF documents for Cengage Learning books using Distiller 8.0.x. The resulting PDF will be compatible with Acrobat 8 \(PDF 1.7\) per CL File Preparation and Certification Task Force)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 18
 18
 18
 18
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 18
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 595
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Use these settings to create press-ready Adobe PDF documents for Cengage Learning books using Distiller 8.0.x. The resulting PDF will be compatible with Acrobat 8 \(PDF 1.7\) per CL File Preparation and Certification Task Force)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 18
 18
 18
 18
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 18
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 595
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Use these settings to create press-ready Adobe PDF documents for Cengage Learning books using Distiller 8.0.x. The resulting PDF will be compatible with Acrobat 8 \(PDF 1.7\) per CL File Preparation and Certification Task Force)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 18
 18
 18
 18
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 18
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 595
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Use these settings to create press-ready Adobe PDF documents for Cengage Learning books using Distiller 8.0.x. The resulting PDF will be compatible with Acrobat 8 \(PDF 1.7\) per CL File Preparation and Certification Task Force)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 18
 18
 18
 18
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 18
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 595
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Use these settings to create press-ready Adobe PDF documents for Cengage Learning books using Distiller 8.0.x. The resulting PDF will be compatible with Acrobat 8 \(PDF 1.7\) per CL File Preparation and Certification Task Force)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 18
 18
 18
 18
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 18
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

