
PARALLEL
BREADTH-FIRST SEARCH
USING MPI
Author – Aditya Nongmeikapam

Course – 633 Parallel Algorithms

Instructor – Russ Miller

CONTENTS
• Introduction to BFS (Breadth-First Search)

• Applications of BFS

• Sequential BFS Algorithm

• Parallel BFS Algorithm

• Results

• Conclusion & Challenges

• Future Work

Breadth-First Search
• It is a graph traversing algorithm

• Starts with a given start node and traverse the
graph layer wise. We then move towards the
next level neighbors.

• Extra memory required, usually a queue.

• To keep track of unexplored child nodes.

3

Image Source - Wikipedia

Applications of BFS
• Used to solve many graph theory problems like shortest path between two nodes for an unweighted

graph.

• For computing the maximum flow in a flow network.

• In Social networking websites(e.g Linkedin), we can find the ith connection of a source person.

• Detect cycles in an undirected graph

4

Sequential BFS Algorithm
• Set all the vertices to not visited.

• Create a queue and add the start node or nodes.

• While the queue becomes not empty -

- Take the first node from queue and remove it

- If not visited already

- Make the node visited

- Add all the neighbors of the node into the queue.

5

• Time Complexity will be O(N2)
• Space Complexity will be O(N2)
• N is total number of vertices and my implementation is based on

adjacency matrix.

Parallel BFS Algorithm
• Similar algorithm as the sequential BFS.

• Instead of popping out one vertex at a time, pop out all the nodes in the same level. (These nodes are
known as frontier nodes)

• Level synchronous traversal. Each the processor will take a set of frontier vertices and calculate their
next frontier vertices in parallel.

• For the above step we will need to partition the adjacency matrix and the vertices and allocate them to the
processors.

6

2-D Partition of Adjacency Matrix
• The adj matrix is divided into P blocks of

size !
"

X !
"

• Vertex are partitioned into N/P size
groups.

• N – Number of Vertices

• P – Number of Processors (In my case
it is always a perfect square)

7

0 0

Steps of Parallel BFS Algorithm

• Do a transpose of the frontier vector
between the processors.

• After this all the columns processors
will have matching frontier with their
local adjacency matrix.

8

Steps of Parallel BFS Algorithm

9

Before After
• We then do a column wise all

gather for the frontier vertices.

• This will broadcast the required
frontier vertices for each column.

Steps of Parallel BFS Algorithm

• Calculation of next frontier vertices is
based on the current frontier vector
that the processor has.

• Using the local adj matrix the next
frontier vector is calculated

• Note that each processor row now
has the full information of the next
frontier vertices.

10

0 0

Before After

Source Vertex = 1

Steps of Parallel BFS Algorithm

• Now we do a all to all gather row wise
so that all the next frontier vectors are
merged. (union)

• All the processors now know if they
have any frontier element (Next
frontier now becomes current local
frontier) that they own.

• We mark the node as visited and
store its parent node.

11

Before After

Steps of Parallel BFS Algorithm

• We do a row wise all gather and then
column wise all gather to broadcast
the local frontiers globally.

• We continue the process till there is
no vertices left in the global frontier
vertices.

• Note- The communication cost here

is O(𝑃)

12

Results
• For small number of processors the

graph is linear but as the number of
processor increases the speed up
goes down.

• But due to parallel communication
overhead, we get a point (“Sweet
spot”) from where the speed up starts
decreasing with increasing
processors.

13

Results
• For large graphs (i.e size of

adjacency matrix > 108). The speed
up remains keeps increasing linearly
with increasing processors.

• As we increase the size of our
problem input size, putting more
processors makes more sense as it
leads to more speed up.

14

Execution Time Vs Processor

15

How Diameter affects
the runtime
• The runtime of the algorithm depends

on the diameter of the graph.

• As we increase the diameter of 6 to 20.
The runtime is also increased by a
factor of around 3.3x.

• This is in fact expected as the number
of rounds of the of the algorithm is also
increased by the same factor

• PRAM asymptotic time complexity for a
level-synchronous parallel BFS is O(D)
where D is the diameter of the graph.

16

How Density affects
runtime
• The runtime of the algorithm is not

depending on the density of the
graph.

• As we double the density of the graph
from 33% to 66%, there is no
significant change in the runtime.

• This is because we use a adjacency
matrix based approach and do not
take advantage of the sparseness of
the matrix or the frontier vectors.

17

Average Execution times

1 (Seq) 4 9 16 36 49 64 81 100 121 144*

800 2.55 2.2 0.96 0.55 0.3 0.24 0.18 0.17 0.13 0.15 0.38

1600 10.05 8.69 3.91 2.18 1.05 0.76 0.59 0.5 0.4 0.49 0.55

3200 39.77 35 15.66 9.11 4.14 3.03 2.31 1.9 1.49 1.3 1.15

6400 132 142 64.19 36.88 16.39 11.75 9.03 7.41 5.82 5.03 4.16

12800 545.54 547 254.53 142.17 62.02 46.46 36.47 29.1 23.3 20.07 16.54

25600 2566.99 2152.41 1006.26 584.11 258.76 189.89 142.79 119.56 92 78.87 67.29

51200 11052.59 8545.06 4080.1 2265.75 1050.67 753 572.11 453.41 379.88 311.34 256.66

18

Processors

Vertices

* - Executed in 142 nodes with 1 processor and 1 node with 2 processor

Conclusion & Challenges
• We see that for smaller input sizes after 100 processors the speedup is decreasing.

• We have access to only 143 nodes in the HPC cluster

• Was able to run with 10^5 Vertices (6 billion edges) (320 GB of memory used) but had problems running
10^6 vertices.

19

Processor Vertices Execution Time
128x2 = 256 10^5 0.16 hrs

1 –> sequential 10^5 12.3 hrs (estimated)

Benefits of using HPC

Future Work
• Optimisation of the algorithm using sparse representation of the matrix .

• Use space efficient bitmaps for storing the data/vector.

• Inter-processor collective communication optimisation.

20

References
• https://people.eecs.berkeley.edu/~aydin/sc11_bfs.pdf [Parallel Breadth-First Search on Distributed

Memory Systems]

• https://ieeexplore.ieee.org/document/1559977 [A Scalable Distributed Parallel Breadth-First Search
Algorithm on BlueGene/L]

• https://en.wikipedia.org/wiki/Parallel_breadth-first_search

• https://mpitutorial.com/tutorials/mpi-scatter-gather-and-allgather/

• https://en.wikipedia.org/wiki/Collective_operation

• https://ubccr.freshdesk.com/support/home

• https://slurm.schedmd.com/

21

https://people.eecs.berkeley.edu/~aydin/sc11_bfs.pdf
https://ieeexplore.ieee.org/document/1559977
https://en.wikipedia.org/wiki/Parallel_breadth-first_search
https://mpitutorial.com/tutorials/mpi-scatter-gather-and-allgather/
https://en.wikipedia.org/wiki/Collective_operation
https://ubccr.freshdesk.com/support/home
https://slurm.schedmd.com/

Thank You

22

