Parallel Odd-Even Transposition Sort
using MPI

CSE 633: Parallel Algorithms
Course Instructor: Dr. Russ Miller
UB Distinguished Professor

Department of Computer Science & Engineering
State University of New York at Buffalo

Prepared by: Asif Imran (UB Person number: 50249959)

Agenda

e Overview of the project

* Proposed algorithm with justification
* Architecture of the solution

* Experimentation in CCR

* Obtained results and analysis

* Challenges

* Learnings

* Conclusion and Future Work

Overview of the project

Think of bubble sort.... -

* Unrealistic to parallelize

* Inherently sequential nature of the sort algorithms

* Why Odd-Even Transposition sort?
* Bigger opportunity to parallelize
* Key idea is to decouple the compare swaps
* Consists of two different phases of sequence

* For example: During even phases, compare swaps are executed on the even
pairs and vice versa.

Goal of the project £S5

(=

* Design, implementation, and analyze parallel solution of interest on
modern large-scale multiprocessor/multi-core systems. [1]

* Acclimatization to real life high performance multiprocessor
computing environment and obtaining knowledge on how to use
them.

e Use Foster’s method [2]

* Use Amdahl’s law for calculation of speedup [2]

lan Foster’s method

Obtain large task

Output final result

Pictorial depiction of odd-even sort 25
mechanism =

* Even positions

(al0).all)).(al2).al3)).(al4).al5)).....
EH=ED @D

* Odd positions
@D @)

(a[1).al2)). (a]3).al4)). (al5).al6)).....

Architecture of Odd-Even
Transposition sort

T

Jv

WL distribution
among
— gerver with _’

—
sp(:cﬁl)ed ’
‘

Firewall
Controller node

Report results of off-even transition sort SC with
worker nodes

Experimentation E55

* Involved allocation of resources followed by execution of code to
collect run-time

* Used script file

» Specified number of servers

 Specified number of CPUs

* Specified number of tasks per process

* Obtained —exclusive access to the resources

* Calculated speedup values using Amdahl’s law

Script for running SLURM jobs

I/bin/sh

SBATCH --salloc

SBATCH --partition=general-compute --qos=general-compute
SBATCH --time=1:00:00

SBATCH --nodes=16

SBATCH --ntasks-per-node=1

SBATCH --constraint=IB

SBATCH --job-name= "0Odd_Even"

SBATCH --mail-user=asifimra@buffalo.edu

SBATCH --mail-type=ALL

SBATCH-requeue

The initial srun will trigger the SLURM prologue on the compute nodes.
|_MPI_PMI_LIBRARY=/usr/lib64/libpmi.sosrun

mpirun —np 16 ./oddeven2

echo "All Done!"

E55

10

Server Configuration [4]

Type of
Node

Compute

Approximate
of Nodes

372

Cores per
Node

12

Clock
Rate

2.40GHz

48GB

Network*

Infiniband
(QL)

SLURM
TAGS

IB CPU-
E5645

11

Key size: 100000

Processors
2
4
8
16
32
64

Time
0.02555
0.02442
0.02172
0.01381
0.01655

0.0264

Key size 100000 (One hundred thousand)

0.03

0.02555 0.0264
0,02442
0.025

0.02

0.015

Time (s)

0.01

0.005

Nodes

12

Key size: 200000

Processors
2
4
8
16
32
64
128
256

Time
1.896
1.6833
1.2287
1.1688
0.934
1.07
1.311
1.610

Key size: 200000 (Two hundred thousand)

13

Key size: 1000000 (1 million)

Processors

2
4
8
16
32
64
128

Speedup
30.609
19.447
10.799

4.649
2.873
1.329
0.901

Run time

35

30

25

20

15

10

20

Key size: 1000000 (1 million)

40

60

Nodes

80

100

120

14

140

Key size: 200000 (2
million)
Processors Speedup

2 48.905
4 17.312
8 12.688
16 8.491
32 4.142
64 1.464

128 0.996

Key size: 2000000 (two million)

15

Speedup

Key size: 100000

Processors
2
4
8
16
32
64

Speedup
4.618395303
4.832104832
5.432780847
8.544532947
7.129909366

4.46969697

SPEEDUP

Speedup

8.544532947

7.129909366

5.432780847

4.832104832
4.618395303 4.46969697

16
PROCESSOR

16

Speedup [cont]

Key size: 200000

Processors Speedup

) 3.372
4 3.798
8 5.203
16 5.47

32 6.845

Speedup

Speedup

8
Processors

16

32

17

Speedup

e Amdahl’s law

Tpanaliel = 0.9 X Terial/p + 0.1 X Teriq = 18/p + 2,

S = Tscrinl - 20
0.9 X Teeriat/p + 0.1 X Tgerit 18/p+2

SLURM Job details for CPU =2

[[asifimra@rush:~]$ scontrol show job 8751334

JobId=8751334 JobName=odd_even
UserId=asifimra(549091) Groupld=cse633s18(89288175) MCS_label=N/A
Priority=50214 Nice=8 Account=cseb33s18 Q0S=general-compute
JobState=TIMEOUT Reason=TimelLimit Dependency=(null)
Requeue=8 Restarts=0 BatchFlag=1 Reboot=8 ExitCode=08:15
RunTime=88:15:08 TimeLimit=688:15:80 TimeMin=N/A
SubmitTime=2018-84-24T22:34:55 EligibleTime=2018-84-24T22:34:55
StartTime=2018-84-24T22:41:39 EndTime=2018-04-24T22:56:47 Deadline=N/A
PreemptTime=None SuspendTime=None SecsPreSuspend=8
Partition=general-compute AllocNode:Sid=srv-kB87-14:37483
RegNodeList=(null) ExcNodeList=(null)
NodeList=cpn-d14-[12,36]
BatchHost=cpn-d14-12
NumNodes=2 NumCPUs=2 NumTasks=2 CPUs/Task=1 ReqB:S:C:T=0:0:%:%
TRES=cpu=2,mem=468086M, node=2
Socks/Node=* NtasksPerN:B:S:C=1:0:%:% CoreSpec=%
MinCPUsNode=1 MinMemoryNode=23606M MinTmpDiskNode=0
Features=IB DelayBoot=00:00:00
Gres=(null) Reservation=(null)
OverSubscribe=0K Contiguous=8 Licenses=(null) Network=(null)
Command=/user/asifimra/myscript.sh
WorkDir=/user/asifimra
StdErr=/user/asifimra/test-srun.out
StdIn=/dev/null
StdOut=/user/asifimra/test-srun.out
Power=

19

Challenges

* Long time to provision 64, 126 and 256 cores

* Unexpected service unavailability due to emergency.

20

Learning from the course %?:D

* Viewed the difference in run time as cores are increased

* Noticed how high performance computing systems and parallelization
can speed up performance compared to sequential runs.

* Knowledge on MPI, Intel MPI and Open MPI systems
* Visit and seeing CCR infrastructure

Conclusion and future goals -

e Results show that there should be an optimum number of CPU’s
which need to be allocated for the data load

* Each physical server initiated 1 process only

* Future Goal:
* Extend this code to OpenMP and compare performance in CSE 702

References a-

(=

[1] https://www.cse.buffalo.edu//faculty/miller/teaching.shtml

[2] Pacheco, PS., 1997. Parallel programming with MPI. Morgan Kaufmann.

[3] Foster, |., Zhao, Y., Raicu, I. and Lu, S., 2008, November. Cloud computing
and grid computing 360-degree compared. In Grid Computing Environments

Workshop, 2008. GCE'08(pp. 1-10). IEEE.
[4] Academic Compute Cluster (UB-HPC). Link:

https://www.buffalo.edu/ccr/support/research_facilities/general_compute.h
tml

23

Thank you

