PARALLEL
IMPLEMENTATION OF
FLOYD-WARSHALL
ALGORITHM

Guided by: Dr. Russ Miller (UB Distinguished Professor)
CSE 633: Parallel Algorithms
Presented By: Asmita Gautam

University at Buffalo
GB | Department of Computer Science

and Engineering

School of Engineering and Appl

ied Sciences

University at Buffalo
GB | Department of Computer Science

and Engineering
School of Engineering and Applied Sciences

..

OVERVIEW:

1. Problem Statement

2. Serial Execution

3. Parallelization and Communication

4. Implementation and Parallel Algorithm
5. Performance and Speedup

6. Challenges

7. References

University at Buffalo

Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

Problem Statement

Perform the parallel implementation of the Floyd-Warshall algorithm.

Floyd-Warshall Algorithm:
 Itis an all pair shortest path algorithm for a directed and weighted graph.
It basically tries to find the minimum distance between any pair of vertices in the graph.

 In this we consider every vertex as an intermediate vertex ‘k’ and find if the distance between i,j through
k is smaller than the existing distance.

i.e. dist(i,j) = min(dist(i,j) , dist(i,k) + dist(.j)) . <6 B ok 4
1 oo 0 9 o
2 7 oo 0 -3
3 [8 0 6 0

Adjacency Matrix

University at Buffalo
Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

Serial Execution

Since the distance from a vertex to itself is going to be 0, hence all the diagonals are set to 0 in the matrix.

Sequential Algorithm: 01 2 3
0 0 -2 -5 4
: 1 o 0 9 o
Input: n — number of vertices 2 17 wo 0 =3
a — adjacency matrix 3 |8 0 6 0

Output: Transformed «a that contains the shortest path lengths
Adjacency Matrix

fork<Qton—1
fori < Oton —1
forj < Qton—1
ali, j] < min(al, j], a[i, k] + alk, j])
endfor
endfor
endfor

Easy to see that the algorithm is ©(n”) 4

University at Buffalo

Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

Parallelism.. But How?

* We see that the task responsible for updating A[i, j] needs the values of A[i, k] and A[k, |]
e Fork=1

* the task responsible for A[O, 2] needs access to A[O, 1] and A[1, 2]

* the task responsible for A[1, 2] needs access to A[1, 1] and A[1, 2]

* the task responsible for A2, 2] needs access to A[2, 1] and A[1, 2]

* the task responsible for A[3, 2] needs access to A[3, 1] and A[1, 2]

* That means for a particular k, j, A[K][j] is needed by all the column elements of j.
* Similarly,

* the task responsible for A[O, O] needs access to A[O, 1] and A[1, O]

* the task responsible for A[O, 1] needs access to A[O, 1] and A[1, 1]

* the task responsible for A0, 2] needs access to A[0, 1] and A[1, 2]

* the task responsible for A[O, 3] needs access to A[O, 1] and A[1, 3];

University at Buffalo

Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

Communication:

@%

Here for K =1

15t column elements would do a
respective row broadcast

And 1strow elements would do a
respective column broadcast.

"

o
o,

O-L. L0 00

(a) Each task in row 1 broadcasts to (b) Each task in column 1 broadcasts
Ltasks in same column, Lo tasks in same row,

During iteration k of the outer loop, each element of row k of A must be broadcast to every task in the same
column as that element.

Every element of column k of A must be broadcast to every task in the same row as that element.

A broadcast is a global communication operation in which a single task sends a message to all processes in its;
communication group.

University at Buffalo

Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

Implementation:

Partitioned the matrix data using 2-D block mapping.

The entire n x n matrix data is divided into squares of the same size and each
square is assigned to a processor.

For n x n matrix and p processors each process calculates a n/\p x n/Np part of
the distance matrix.

4
n=4
n X n = 16 data elements
No of processors = 4 PO P1
n? elements are distributed amongst p
processors = n2/p = n/\p x n/\p
Critical condition for equal distribution of data: D P3

n%p =0 s '

Py

Py

Py

Ps

Py

Py

Py

Py

Pys

Py

University at Buffalo

Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

Parallel Pseudocode: e

func Fl:::yd_ﬁll_Pair*s_Par*allel(Dm}) { ! BN P
for k := 1 to n dof = T
Each process p;; that has a segment of the k-th row of pi-u -
broadcasts it to the p,; processes; 3
Each process p;; that has a segment of the k-th column of p-1 PO D"
broadcasts it to the p;, processes; 4 = I
Each process waits to receive the needed segments;

Each process computes its part of the D) matrix;

}

University at Buffalo
Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

Performance:

Data Size : 1 million (1000 x 1000) Data Size: 1 million (1000 x 1000)

Nodes Time (in secs)

N

)
©
=
0
o
@
"
=
E
=

University at Buffalo
Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

Performance:

Data Size : 4 million (2000 x 2000) Data Size: 4 million (2000 x 2000)

~J
o

()]
o

Nodes Time (in secs)

¥}
o

o~
o

(4%
Qo

»
©
c
e
O
[«
"
=
[21]
E
—

N
()

ot
o

Q

University at Buffalo
Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

Performance:

Data Size : 9 million (3000 x 3000) Data Size: 9 million (3000 x 3000)

Nodes Time (in secs)

N
Q
o

@
o
=
)
Q
(1}
¥ 150
£
[)
E
-

[y
Q
o

University at Buffalo

Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

SpeedUp:

Data Size : 1 million (1000 x 1000)

Serial Execution Time: 12 seconds

Nodes Speed-Up

SPEEDUP

4 1.821
16 7.29
25 11.162
64 21.089

100 33.99

12

University at Buffalo

Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

SpeedUp:

Data Size : 4 million (2000 x 2000)

Serial Execution Time: 139 seconds

Nodes Speed-Up

SPEEDUP

4 2.369
16 9.61
25 14.89
64 38.3

100 59.14
256 67.05

13

University at Buffalo

Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

Speed-Up:

Data Size : 9 million (3000 x 3000)

Serial Execution Time: 567 seconds

Nodes Speed-Up

=8
=2
Q
w
w
a
)

4 2.082
16 6.641
36 23.899
64 42.94

100 66.839
225 145.3

14

University at Buffalo
Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

Challenges:

 Distributing data amongst processors in a 2-D block fashion.
« Communication between respective row and column processors.

« Waiting time for running on 256 (or ~256) nodes.

15

University at Buffalo
Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

References:

* https://en.wikipedia.org/wiki/Parallel all-pairs shortest path algorithm#Parallelization

« http://parallelcomp.uw.hu/ch10levlsec4.html

 CCR Tutorials and handouts https://ubccr.freshdesk.com/support/solutions/articles/13000026245-tutorials-
workshops-and-training-documents

16

https://en.wikipedia.org/wiki/Parallel_all-pairs_shortest_path_algorithm#Parallelization
http://parallelcomp.uw.hu/ch10lev1sec4.html
https://ubccr.freshdesk.com/support/solutions/articles/13000026245-tutorials-workshops-and-training-documents

University at Buffalo

GB | Department of Computer Science

and Engineering

MPI_Bcast(“ANY QUESTIONS ???”)

17

