Generating Super Magic
Hashes

A Parallel Approach

Bhargav Vasist - 11th May 2023

Outline for this presentation

 Recap of Magic Hashes and Generation
* Progress (thus far)
 Reslults

e Discourse

Interactive shell

php > var_dump("0e229758" == "0e000000"):
bool(true)

php > //Oops.. :)

php >

Magic Hashes
(and Type Juggling)

Magic Hashes

 Specific hashes used to
exploit Type Juggling
attacks in PHP

e Can be used to detect
vulnerabilities In
authentication flows

php > $user_input = md5(240610708);

php > $test = 0;

php > if ($user_input == §$test) { echo "EQ" ;} else { echo "Not EQ" ;
EQ

In PHP two strings matching the regular expression
0+e[0-9 1+ compared with == returns true:

'00e2 '== '0el337' == "0

Indeed all these strings are equal to O in scientific
notation.

Vulnerability Detection

1. Find 2 Magic Hashes to work as passwords
for e.g. - ‘lowercasegzmgamx’ and ‘lowercasifdvgkfr’

2. Register for a website with Password 1

3. Attempt to sign in with Password 2

4. If sign-in iIs successful, the system uses the specified algorithm
and ‘=="to compare them.

5. Vulnerability detected

Generating Magic Hashes - SHA1

« SHA1 Digest - 160bits or 40 HEX characters

* Total # of Hashes - 2 * 160

 Total # of Rounds per hash - 80

« Each round generates a subset of the digest which is input to the
next round

* Ex: - 0e12149120354415335220758399492713921588

 Ex: - d4ee942416a6ed4aad41941c1a6a0f92ac097661b

Generating Magic Hashes - SHA1

 Benchmark for 10million hashes generation @ 292ns/op
 Our requirement is to get ~2.4 trillion hashes to get >50%

o test -bench . -benchmem -benchtime=5s -v
RUN TestParsing
—-—-— PASS: TestParsing (0.00s)

Oos: linux

10000000 ns/o 280 B/op

~8 days to have a 50% chance of
getting a Magic Hash

7.008 » 10" ns

700 800 seconds

194 hours 40 minutes

11680 minutes

194.667 hours

8.11111 days

Parallelising the Generation -
Progress

Goals
Idealised Algorithm

 Use 'N' processors, each generating a password.

» Pairs of processors generate code sections, divided into small and large
chunks. They exchange the generated strings for hashing.

* The exchanged strings are hashed, ideally using shared memory for the 80
rounds. OpenMP with shared memory can be used for parallelisation since
each round depends on the previous one.

» After generating the magic hash, broadcast it to all processors to conclude
the algorithm.

Goals
Idealised Algorithm

 Use 'N' processors, each generating a password.

|]] |]
AlIAYTA A AYAra a Ala A AMAVaAaYa [
W AW A1 V I\J W

A A A A ATA ArVa
L/ \J/ L W y W L/ L W L/ W
[[] AVa a [AVTAFrATE EATATNAFATAYA AYAa AVA A [[] AVA
W L/ \J/ W @ A\ \J/ \J @ W
o AVa a [AVTAFFAYA AVA a [AVFAYA A rya AVAa [AYAa AATATAATA A AVAa !.
@ W A\ W @ @ , W @ w \J/ @ W \J \J WAW
\J \/ \o/ A\’ NJ L/ \/ W L/ W o/ \o/ W A\ (/ L/ L/ W
a [AlNIATA N AFATIAYTAIATA Al a AYa A a A AlAYaAa
L/ WA W \/ W \o/ W w \J ./ \S

» After generating the magic hash, broadcast it to all processors to conclude
the algorithm.

Proposal for Parallelisation

How do we make it faster?

 |Level 1 - Run code on a single processor with "N’ cores.
* Level 2 - Split Generation and Hashing across 'N’ processors

* Level 3 - Split Generation between pairs of processors - Little/Big Endian

style

| evel 4 - All the above across N’ processors with each subprocess

multithreaded/multicored

e |evel 5 - All of the above but now on N nhodes/machines

Proposal for Parallelisation
How do we make it faster?

e Level 1 - Run code on a single processor with ’N’ cores. ¥

e Level 5 - All of the above but now on N nodes/machines ¥

» Level 6 - Micro-optimise sections of code instead of parallelising ¥

Progress (?)

Randomness Hurdle

The problem with random generation

SHA1, Password Len = 16

14

« Randomly generated strings

—

O

On
|

generate random results

 Random results = no distinction
between Dependent v/s Control

variables

e No distinction = no scientific
conclusion

Running Time (in hours)
~
|

e Also, running time in hours

constrains number of 0
experiments 1 0 4 16 64

Number of PEs

Randomness Hurdle
The Solution

 Use a known Magic Hash

 Generate Upper bounds from this
hash

e Uniform comparisons across each
=

e Runtime can be reduced to seconds
or minutes based on architecture and
hardware capabilities. (We control
this)

Recursive Doubling Example
with 4 PEs and 1000 max ops

Start

Generate passwords
starting from 1000 to 1250

4)
PE #1
. Y,
Data
per processor
-1000/4

PE #4

PE #2 PE #3
J L J
)

Generate next Base
Base Password - Password
from "1000" - "1250"

J
Calculated
Max Ops

- 1000

Generate passwords Generate passwords
starting from 1000 to 1250 starting from 1250 to 1500

-

Generate passwords Generate passwords Generate passwords Generate passwords
starting from 1000 to 1250 starting from 1250 to 1500 starting from 1500 to 1750 starting from 1750 to 2000

Generate passwords Generate passwords Generate passwords Generate passwords
starting from 1000 to 1250 starting from 1250 to 1500 starting from 1500 to 1750 starting from 1750 to 2000

Is a
Magic Hash?

Is a
Magic Hash?

Is a
Magic Hash?

Is a
Magic Hash?

Yes Yes Yes Yes

Generate passwords Generate passwords Generate passwords Generate passwords
starting from 1000 to 1250 starting from 1250 to 1500 starting from 1500 to 1750 starting from 1750 to 2000
4) 4) 4 R 4)
Start PE #1 PE #2 PE #3 PE #4
| > | / |) < >

Broadcast to all PEs
Magic Hash is found

/MPI comms [

Send/Recv End
\ Channel

Overview of Algorithm

1. Initialise MPI Processors
Generate Random String

Split String and broadcast/recv
Generate SHA1 Hash

Check for magic hash

o o &~ W DB

Continue, within bounds, until
found

int main(int argc, char xargv[])

{

// To ensure consistent results — 1 billion ops
const unsigned long int MAX_OPS = 1 _00_000_000;
int total_proc = init MPI_comm();

int curr_proc = init_my_MPI();

// For each processor, only done once

const int UPPER_LIMIT_BOUND = MAX_OPS / total_proc;
std::string pwd = generate_random_password();

pwd = split_pwd(curr_proc, UPPER_LIMIT_BOUND, pwd);

// Loop until upper limit 1s reached
while (true)

{
if (is_magic_hash(pwd))
{
notify_all_processors();
return 1;
\
else if (within_upper_bound(pwd, UPPER_LIMIT_BOUND))
{
increment_char();
s
else
{
// Current processor has hit 1its upper limit
break
by
s
return 0;

Overview of Algorithm
Password Splitting itd==strin9 split_pwd(int curr_proc, int UPPER_LIMIT_BOUND, std::string pwd)

// If processor 1s power of 2, 1t generates the next set of base pwd

if ((curr_proc > @) && ((curr_proc & (curr_proc - 1)) == 0))
{
O E y I g p " // Recursively double the generated password
Ver O n roceSSOr In // Send the generated password to all processors with ranks below

MPI_COM M_WORLD generates int bounding_processor = curr_proc x 2 - 1;
the next base password or (50t = cureproe + ;5 < boungin_procesors o

MPI_Send(splitPwd, split_pwd.size(), MPI_BYTE, i, @, MPI_COMM_WORLD)

O Broadcast to next logn

int number_of_places_away = curr_proc *x UPPER_LIMIT_BOUND;

prOcessorS SO they Can Start : std::string splitPwd = incrementStringFor(pwd, number_of_places_away);
generating and hashing clse
{
@) Every Other prOCeSSOr In I\S:I:Ij_Rtsect:;?EEtIeE;EZ:iv_ﬂ;EIN_Eﬁé)I:’IPI_BYTE, nearestPowerOfTwo(curr_proc), 0, MPI_COMM_WORLD,
[logn + 1, 2logn] receives base .

password to compute

Overview of Algorithm

Character ‘Incrementer’

O Increment each character until
the boundary of alphanumeric
characters and reset.

o [wo For Loops means potential
for shared memory optimisation

}

std::string incrementStringFor(std::string value, int count)

{

std::string newStr = value;
for int i = 0; i < count; i++)

{ |

}

int carry = 1;
std::string res = ""
for int j = value.length() - 1; j >= 0; j—-)

{

by
if
{(

by

char ¢ = valueljl;

int charCode = static_cast<int>(c);
charCode += carry;

if charCode > 127)

{ (
charCode = 0;
carry = 1;

}

else

{
carry = 0;

by

res = static cast<char>(charCode) + res;
if !carry)
{ (
res = value.substr(0, j) + res;
break;

s
carry)

res = '\0' + res;

newStr = res;
value = newStr;

return newStr;

Overview of Algorithm
Magic Hash Checker

O (Generates and checks hash

o Magic Hashes only need to start
with any amount of Os and one
count of ‘e’

o Fastest way to match string
patterns Is regex

bool is_magic_hash(std::string pwd)

{

std:
std:
std:
if

{ (
li
else

{

}

:string hash = generate_hash(pwd);

:regex const regExp{"~"0+e\\d*$~"};

:smatch matched arr;

std::regex_match(hash, matched _arr, regExp))

return true

return false

Where are my cycles?

* The 3 Big Functions for our flow e

Bl cpu_time: 14.939477038499989

3 times slower than PasswordGeneration

'1] P a S SWO rd G e n e r ato r 1.3 times slower than SHA1Generation

2. SHA1 Hash Generator

3. Increment Character -

« Password Generation happens T
Only Once per nOde/PE Lower is faster

Micro-Optimisation #1

Password Generation

 Use array of bytes instead of
strings for passwords

 Requires less allocations if not
using a heavy class like
std::string

e | ess allocations = less wasted
cycles = faster runtimes

PasswordGeneration

IncrementCharacter

Bl cpu_time: 10.98627982657418

2.2 times slower than PasswordGeneration
1.2 times faster than SHA1Generation

SHA1Generation

ratio (CPU time / Noop time)
Lower is faster

IncrementCharacter

Micro-Optimisation # 2
SHA1 Hash Generation

e Use Intel’'s SHA function that is ——

Bl cpu_time: 10.98706249787069

already baked into most modern i |
CPUs 1 e e G

 Uses CPU Instructions to
compute hashes efficiently

* (Don’t reinvent the wheel)

ratio (CPU time / Noop time)
Lower is faster

e Doesn’t work for SHA224
(Couldn't find one)

Micro-Optimisation # 3
String <-> Byte conversion
* Replace string comparisons

everywhere with byte
comparisons

IncrementCharacter
Bl cpu_time: 4.943574615003963

* N O m O re St ri n g C O n Ve rS i O n S O r 1.6 times slower than PasswordGeneration
m a n i p u I a-t i O n S m e a n S C P U 2.6 times faster than SHA1Generation
registers are better utilised

o H . ' tio (CPU ti /N time)
uQe gal ns. A Lowel:ni: fas?ec:'p e

std::string incrementStringFor(std::string value, int count)

Micro-Optimisation #4 «

for (int i = @; i < count; i++)

{
int carry = 1;

OpenMP Shared Memory

#pragma omp parallel for reduction(+ : res)
for (int j = value.length() - 1; j >= 0; j—)

J
L

e Use OpenMP for Password char ¢ = valuelj];

. int charCode = static_cast<int>(c);
Generathn charCode += carry;
if (charCode > 127)
{

charCode = 0;

 Pragma OMP Reduction clause carry = 13

}

works very well with FOR loops i

{
carry = 0;

}

res = static_cast<char>(charCode) + res;
if (!carry)

{
res = value.substr(0, j) + res;
break;
¥
if (carry)
res = '\@' + res;

newStr = res;
value = newStr;

}

return newStr;

Micro-Optimisation # 4
OpenMP Shared Memory

e Use OpenMP for Password
Generation

 Pragma OMP Reduction clause
works very well with FOR loops

* Tiny gains but gains nonetheless

PasswordGeneration
| |cpu_time: 3.169662299473864

4.2 times faster than SHA1Generation
1.6 times faster than IncrementCharacter

ratio (CPU time / Noop time)
Lower is faster

Results

Timeline

Previous progress

 Run a sequential version of the final algorithm on device
~11 hours

 Run the sequential version on cluster (without any optimisation)
~13 hours

o Split the string generation and hash verifier pieces of code (no other forms of
communication between processors)
~9 hours

o Split the string generation into chunks (communication between pairs of

ProCcessors)
~16 hours

Timeline

Current Results

 Run a sequential version of the final algorithm on device
|30 - 300] seconds

» "
. f— A AVTA AvYAa ' \ F V-

~13-hours
~0-hours

 Run the final algorithm on clusters
[10 - 150] seconds

Results - Running Time

PEs Time (secs)
L 30.7
2 18.8
4 14.7
16 10.9
32 0.7
64 11.2
128 10.4

Time (in seconds)

Running

40

0
o

N
o

—
o

SHA1, Password Length - 12

2 4 16 32

Number of Processors

64

128

Results - Running Time

PEs Time (secs)
1 33.4
2 19.5
4 15.2
16 9.9
32 8.9
64 10.5
128 10.2

Time (in seconds)

Running

40

0
o

N
o

—
o

SHA1, Password Length - 40

2 4 16 32

Number of Processors

64

128

Results - Running Time

PEs Time (secs)
1 312.9
2 257.3
4 266.5
16 187.2
32 161.1
64 157.2
128 178.7

Running Time (in seconds)

320

N
~
(@)

—
o)
o

Q0
o

SHA224, Password Length - 40

2 4

16 32
Number of PEs

64

128

Results - Speedup

Amdahl’s Law

PEs Speedup
1
2 1
4 1.32
16 1.72
32 1.93
64 1.67
128 1.81

Speedup

2.5

1.5

SHA1, Password Length - 12

2 4 16 32

Number of Processors

64

128

Results - Speedup

Amdahl’s Law

PEs Speedup
1
2 1
4 1.28
16 1.96
32 2.19
64 1.86
128 1.92

SHA1, Password Length - 40

2.25

1.5

Speedup

0.75

1 2 4 16 32 64 128

Number of Processors

Results - Speedup

Amdahl’s Law

PEs Speedup
1
2 1
4 1.33
16 1.49
32 1.59
64 1.69
128 1.68

SHA224, Password Length - 40

2.25

1.5

Speedup

0.75

1 2 4 16 32 64 128

Number of Processors

Discourse

Takeaway #1

Parallelisation is not always a silver bullet

5 initi i | THE #1 PROGRAMMER EXCUSE
The |n|t|_al a_Igorlthm S approach FOR LEGITIMATELY SLACKING OFF:
of splitting into chunks and v CODE oL NG
exchanging communication Ty CODE'S COMPILING.
resulted Iin wasted operations HEY! GET BACK
and idle cycles. T0 WORK:

* Even with batching results, idle
time was high

* |.ong compile times meant not
enough time to run diverse
experiments

Source: xkcd

Takeaway #2

Overengineering = Spaghetti Code

* [he attempt to cleverly avoid idle time WASTS FIRE JOU LRI (s
ended up introducing additional idle et T
time in unintended ways. THE Dnoe(msrc&:m&g u':m

. | L TRED T AX THE PROBLEMS

* Over-complicating a straightforward T CREATED LHEN...

algorithm inevitably leads to the) Y,
development of convoluted and
tangled spaghetti code.

o K.I.LS.S prevalls.

Source: xkcd

Takeaway #3

More Cores, Same Problems

* A subpar speedup was observed
when utilising a maximum of 128

: _ ' GOON: |

cores, despite minimal = (S
: : et s use
communication between the STUATION: || multithreading. STUATION:
Processors.
There is a ‘ YEAH! rheTe
. . \
 The introduction of threads problem. O / ey

resulted in the emergence of prms.oble
synchronisation issues.

 Gated by SHA1 hash generation Source: xked
not being ‘parallelisable’.

Extension #1

GPUs
Benchmark (CPU i7 9700K vs GPU Nvidia 1080 Ti)
e GPUs exhibit hash rates that are siatcru [ZE0
20 times greater than CPUs SHAZS4 CPU

when it comes to generating
hashes.

SHAS12 CPU W 87

SHAL1 GPU

 CUDA Cores further simplify and SHAZDO O
optimise the hashing process, SHAS12 GPU
out of the box (OOTB).

5000 7500 10000

MH/s (Millions of Hashes per second)

Source: Hashcat

Extension #2
OpenMP

 Pragma OMP Reduction only
optimises one variable and only
supports few basic ops Master Thread

Parallel Task | Parallel Task Il Parallel Task Il

* By virtualising both password aster Thread
generation and password
hashing, the occurrence of idle
or no-op cycles is further
minimised or even eliminated.

Source: ResearchGate

Quesyons?

References

* Super Magic Hashes

 Chick3nMan and Spaze FOrze - Twitter

« PHP Magic Hashes

« SHA1 - Auth.0

e SHA-1 Collision

e SHA-1 CPU Extensions - Intel

 CCR Batching and Open MPI reference

e CCR Batch Jobs and Clusters

 ResearchGate - OpenMP

https://offsec.almond.consulting/super-magic-hash.html
https://twitter.com/Chick3nman512/status/1157748868823621638
https://github.com/maximmasiutin/PHP-magic-hashes-Open-MPI
https://en.wikipedia.org/wiki/SHA-1#Examples_and_pseudocode
https://shattered.io/static/shattered.pdf
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sha-extensions.html
https://docs.ccr.buffalo.edu/en/latest/hpc/jobs/
https://docs.ccr.buffalo.edu/en/latest/hpc/clusters/
https://www.researchgate.net/figure/OpenMP-multithreading-concept-1_fig2_233739760

