
Bhargav Vasist - 11th May 2023

Generating Super Magic
Hashes

A Parallel Approach

Outline for this presentation

• Recap of Magic Hashes and Generation

• Progress (thus far)

• Results

• Discourse

Magic Hashes
(and Type Juggling)

Magic Hashes

• Specific hashes used to
exploit Type Juggling
attacks in PHP

• Can be used to detect
vulnerabilities in
authentication flows

Vulnerability Detection

1. Find 2 Magic Hashes to work as passwords  
for e.g. - ‘lowercasegzmgqmx’ and ‘lowercasifdvqkfr’

2. Register for a website with Password 1
3. Attempt to sign in with Password 2
4. If sign-in is successful, the system uses the specified algorithm

and ‘==’ to compare them.
5. Vulnerability detected

Generating Magic Hashes - SHA1
• SHA1 Digest - 160bits or 40 HEX characters

• Total # of Hashes - 2 ^ 160

• Total # of Rounds per hash - 80

• Each round generates a subset of the digest which is input to the

next round

• Ex: - 0e12149120354415335220758399492713921588

• Ex: - d4ee942416a6e4aad41941c1a6a0f92ac097661b

Generating Magic Hashes - SHA1
• Benchmark for 10million hashes generation @ 292ns/op
• Our requirement is to get ~2.4 trillion hashes to get >50%

~8 days to have a 50% chance of
getting a Magic Hash

Parallelising the Generation -

Progress

Goals
Idealised Algorithm

• Use 'N' processors, each generating a password.

• Pairs of processors generate code sections, divided into small and large
chunks. They exchange the generated strings for hashing.

• The exchanged strings are hashed, ideally using shared memory for the 80
rounds. OpenMP with shared memory can be used for parallelisation since
each round depends on the previous one.

• After generating the magic hash, broadcast it to all processors to conclude
the algorithm.

Goals
Idealised Algorithm

• Use 'N' processors, each generating a password.

• Pairs of processors generate code sections, divided into small and large
chunks. They exchange the generated strings for hashing. 
EXTREMELY INEFFICIENT

• The exchanged strings are hashed, ideally using shared memory for the 80
rounds. OpenMP with shared memory can be used for parallelization since
each round depends on the previous one.  
IMPOSSIBLE FOR SHA1 ALGORITHM

• After generating the magic hash, broadcast it to all processors to conclude
the algorithm.

Proposal for Parallelisation
How do we make it faster?
• Level 1 - Run code on a single processor with ’N’ cores.

• Level 2 - Split Generation and Hashing across ’N’ processors

• Level 3 - Split Generation between pairs of processors - Little/Big Endian
style

• Level 4 - All the above across ’N’ processors with each subprocess
multithreaded/multicored

• Level 5 - All of the above but now on N nodes/machines

Proposal for Parallelisation
How do we make it faster?
• Level 1 - Run code on a single processor with ’N’ cores. ✅

• Level 2 - Split Generation and Hashing among ’N’ processors ❌

• Level 3 - Split Generation between pairs of processors - Little/Big Endian style ❌

• Level 4 - All the above amongst ’N’ processors with each subprocess multithreaded/

multicored ❌

• Level 5 - All of the above but now on N nodes/machines ✅

• Level 6 - Micro-optimise sections of code instead of parallelising ✅

Progress (?)

Randomness Hurdle
The problem with random generation

• Randomly generated strings
generate random results

• Random results = no distinction
between Dependent v/s Control
variables

• No distinction = no scientific
conclusion

• Also, running time in hours
constrains number of
experiments

SHA1, Password Len = 16

Ru
nn

in
g

Ti
m

e
(i

n
ho

ur
s

)
0

3.5

7

10.5

14

Number of PEs
1 2 4 16 64

Randomness Hurdle
The Solution

• Use a known Magic Hash

• Generate Upper bounds from this
hash

• Uniform comparisons across each
PE

• Runtime can be reduced to seconds
or minutes based on architecture and
hardware capabilities. (We control
this)

1500

Overview of Algorithm

1. Initialise MPI Processors

2. Generate Random String

3. Split String and broadcast/recv

4. Generate SHA1 Hash

5. Check for magic hash

6. Continue, within bounds, until
found

Overview of Algorithm

Every logn processor in
MPI_COMM_WORLD generates
the next base password

Broadcast to next logn
processors so they can start
generating and hashing

Every other processor in  
[logn + 1, 2logn] receives base
password to compute

Password Splitting

Overview of Algorithm

Increment each character until
the boundary of alphanumeric
characters and reset.

Two For Loops means potential
for shared memory optimisation

Character ‘Incrementer’

Overview of Algorithm

Generates and checks hash

Magic Hashes only need to start
with any amount of 0s and one
count of ‘e’

Fastest way to match string
patterns is regex

Magic Hash Checker

Where are my cycles?

• The 3 Big Functions for our flow

1. Password Generator

2. SHA1 Hash Generator

3. Increment Character

• Password Generation happens
only once per node/PE

Micro-Optimisation #1

• Use array of bytes instead of
strings for passwords

• Requires less allocations if not
using a heavy class like
std::string

• Less allocations = less wasted
cycles = faster runtimes

Password Generation

Micro-Optimisation # 2

• Use Intel’s SHA function that is
already baked into most modern
CPUs

• Uses CPU Instructions to
compute hashes efficiently

• (Don’t reinvent the wheel)

• Doesn’t work for SHA224
(Couldn't find one)

SHA1 Hash Generation

Micro-Optimisation # 3

• Replace string comparisons
everywhere with byte
comparisons

• No more string conversions or
manipulations means CPU
registers are better utilised

• Huge gains!

String <-> Byte conversion

Micro-Optimisation # 4

• Use OpenMP for Password
Generation

• Pragma OMP Reduction clause
works very well with FOR loops

OpenMP Shared Memory

• Use OpenMP for Password
Generation

• Pragma OMP Reduction clause
works very well with FOR loops

• Tiny gains but gains nonetheless

Micro-Optimisation # 4
OpenMP Shared Memory

Results

Timeline
Previous progress

• Run a sequential version of the final algorithm on device  
~11 hours

• Run the sequential version on cluster (without any optimisation) 
~13 hours

• Split the string generation and hash verifier pieces of code (no other forms of
communication between processors) 
~9 hours

• Split the string generation into chunks (communication between pairs of
processors) 
~16 hours

Timeline
Current Results
• Run a sequential version of the final algorithm on device  

[30 - 300] seconds

• Run the sequential version on cluster (without any optimisation) 
~13 hours

• Split the string generation and hash verifier pieces of code (no other forms of
communication between processors) 
~9 hours

• Split the string generation into chunks (communication between pairs of processors) 
~16 hours

• Run the final algorithm on clusters 
[10 - 150] seconds

Results - Running Time
SHA1, Password Length - 12

Ru
nn

in
g

Ti
m

e
(in

 s
ec

on
ds

)
0

10

20

30

40

Number of Processors
1 2 4 16 32 64 128

PEs Time (secs)

1 30.7

2 18.8

4 14.7

16 10.9

32 9.7

64 11.2

128 10.4

Results - Running Time
SHA1, Password Length - 40

Ru
nn

in
g

Ti
m

e
(in

 s
ec

on
ds

)
0

10

20

30

40

Number of Processors
1 2 4 16 32 64 128

PEs Time (secs)

1 33.4

2 19.5

4 15.2

16 9.9

32 8.9

64 10.5

128 10.2

Results - Running Time
SHA224, Password Length - 40

Ru
nn

in
g

Ti
m

e
(in

 s
ec

on
ds

)
0

80

160

240

320

Number of PEs
1 2 4 16 32 64 128

PEs Time (secs)

1 312.9

2 257.3

4 266.5

16 187.2

32 161.1

64 157.2

128 178.7

Results - Speedup
SHA1, Password Length - 12

Sp
ee

du
p

1

1.5

2

2.5

3

Number of Processors
1 2 4 16 32 64 128

PEs Speedup

1 -

2 1

4 1.32

16 1.72

32 1.93

64 1.67

128 1.81

Amdahl’s Law

Results - Speedup
SHA1, Password Length - 40

Sp
ee

du
p

0

0.75

1.5

2.25

3

Number of Processors
1 2 4 16 32 64 128

PEs Speedup

1 -

2 1

4 1.28

16 1.96

32 2.19

64 1.86

128 1.92

Amdahl’s Law

Results - Speedup
SHA224, Password Length - 40

Sp
ee

du
p

0

0.75

1.5

2.25

3

Number of Processors
1 2 4 16 32 64 128

PEs Speedup

1 -

2 1

4 1.33

16 1.49

32 1.59

64 1.69

128 1.68

Amdahl’s Law

Discourse

Takeaway #1
Parallelisation is not always a silver bullet

• The initial algorithm's approach
of splitting into chunks and
exchanging communication
resulted in wasted operations
and idle cycles.

• Even with batching results, idle
time was high

• Long compile times meant not
enough time to run diverse
experiments

Source: xkcd

Takeaway #2
Overengineering = Spaghetti Code

• The attempt to cleverly avoid idle time
ended up introducing additional idle
time in unintended ways.

• Over-complicating a straightforward
algorithm inevitably leads to the
development of convoluted and
tangled spaghetti code.

• K.I.S.S prevails.

Source: xkcd

Takeaway #3
More Cores, Same Problems

• A subpar speedup was observed
when utilising a maximum of 128
cores, despite minimal
communication between the
processors.

• The introduction of threads
resulted in the emergence of
synchronisation issues.

• Gated by SHA1 hash generation
not being ‘parallelisable’.

Source: xkcd

Extension #1
GPUs

• GPUs exhibit hash rates that are
20 times greater than CPUs
when it comes to generating
hashes.

• CUDA Cores further simplify and
optimise the hashing process,
out of the box (OOTB).

Source: Hashcat

Extension #2
OpenMP

• Pragma OMP Reduction only
optimises one variable and only
supports few basic ops

• By virtualising both password
generation and password
hashing, the occurrence of idle
or no-op cycles is further
minimised or even eliminated. Source: ResearchGate

and Thank You

Questions?

References
• Super Magic Hashes

• Chick3nMan and Spaze F0rze - Twitter

• PHP Magic Hashes

• SHA1 - Auth.0

• SHA-1 Collision

• SHA-1 CPU Extensions - Intel

• CCR Batching and Open MPI reference

• CCR Batch Jobs and Clusters

• ResearchGate - OpenMP

https://offsec.almond.consulting/super-magic-hash.html
https://twitter.com/Chick3nman512/status/1157748868823621638
https://github.com/maximmasiutin/PHP-magic-hashes-Open-MPI
https://en.wikipedia.org/wiki/SHA-1#Examples_and_pseudocode
https://shattered.io/static/shattered.pdf
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sha-extensions.html
https://docs.ccr.buffalo.edu/en/latest/hpc/jobs/
https://docs.ccr.buffalo.edu/en/latest/hpc/clusters/
https://www.researchgate.net/figure/OpenMP-multithreading-concept-1_fig2_233739760

