Project Report:
Parallel AES
Implementation

Chris Norman
CSE633 Fall 2011

Algorithm

AES is a block cipher algorithm used to encrypt data using a
128-bit key

Data is divided up into 128-bit blocks and encrypted

Each block goes through 11 rounds of encryption, with 4
steps: SubBytes, ShiftRows, MixColumns, AddRoundKey

The ciphertext is produced and is recovered by performing
decryption with the same 128-bit key

In a sequential scheme, each block would be encrypted
sequentially

Overview

¥

—

Wil 4] sl Addroumd ey |
t
Ciphenicxt
) Dlcrypivn

Parallel Implementation

As mentioned before, AES is rather sequential in nature due
to the fact that each successive round depends on the output
of the prior round

So we’re not interested so much in speeding up AES
encryption itself, but rather encrypting the blocks in parallel

Being able to do this will afford us huge gains in efficiency and
speedup

Parallel Implementation

e Utilized PolarSSL’s AES library to perform AES
encryption

 Used MPI for parallelization
* Performed parallelization by:

o Assigning each PE a copy of the entire data
o Each PE is assigned a portion of the data, split into 128-bit blocks
o Each block is then encrypted by the PE’s to produce ciphertext blocks

e Each PE encrypts its blocks in parallel, but the blocks themselves
are encrypted sequentially per PE.

o Data is retrieved by root by MPI_Gather and ciphertext is written to
output

Plaintext (split into 128 bit blocks)

| | | |

PE1 PE 2 PE 3 PEN
‘

[

Ciphertext

Experimental Setup

Used the 8-core nodes with Infiniband for experimentation

Ran tests for file sizes of 2kb, 10kb, 50kb, 100kb, 500kb, 1MB,
10MB, 50MB, 100MB

Utilized 2, 4, 8, 12, 16, 24, 36, 48, and 64 PEs

Used PolarSSL's AES library to perform the
encryption/decryption itself, and MPI for parallelization

Each running time was the average of 3 runs

Times taken were from right before encryption (after data had
been distributed) to right after root had gathered data

Results

Analysis of Sequential Running Time
12

1 /

8
Running Time 6 /

(msec) /
4

1 10 100 1000 10000
Size of Data (in KB)

12
10

8

Runing Time

(msec) °

Results

Analysis of Parallel Running Time,
Fixed 10MB File

10 20 30 40 50
Number of PE's

60

70

0.06
0.05

0.04

Running Time

0.03
(msec)

0.02

0.01

Analysis of Parallel Running Time,

Results

Fixed 10KB File

30 40
Number of PE's

50

60

70

1.6
1.4
1.2

1
Running Time

0.8
(msec)

0.6
0.4
0.2

0

Results

Analysis of Parallel Running Time,

Fixed PE's (64)

100 1000
File Size (KB)

10000

100000

Results

Speedup for 8 PE's

/
A~

Speedup
Factor

e
/\/

/

O R N W »» U1 OO N 00 ©

1 10 100 1000 10000
File Size (KB)

Results

Comparison of Sequential and Parallel Running Times (64
PE's)

12

10 / ,
/ —-Sequential
g Running
Running Time / TS
(msec) © Parallel

4 Running
/ Time
2 /
O '.A I I]

0 5000 10000 15000
Data Size (KB)

12

10

Running Time
(msec)

Results

Comparisons of Running Times

/

/'

—a

2000

—x

4000

6000 8000 10000 12000
File Size (KB)

=9—Sequential RT
=i—4 PE's
=12 PE's
=>=32 PE's
==ié=64 PE's

Results

Comparison of Costs for 50KB and
10MB Files
25

i /
15
Cost /

F

10 —+—Cost for
10MB File
> Cost for
50KB File
O T e I I I |
0 20 40 60 80

Number of PE's

Conclusions

Able to clearly see benefits by parallelization

Extremely low running times for a high number of PE’s, but
with added cost

Encryption/decryption takes the same amount of time, as
expected

Considerable overhead for small files and high PE’s

Future Work

Fix program so that the ciphertext written by the PE’s is
recoverable to plaintext

Make program more space-efficient by not making n copies of
the data for each PE to use

o In addition, capture the ‘true’ running time of the
algorithm by timing entire program

References

[1] http://en.wikipedia.org/wiki/Advanced_Encryption_Standard

[2] Deguang Le; Jinyi Chang; Xingdou Gou; Ankang Zhang; Conglan
Lu; , "Parallel AES algorithm for fast Data Encryption on GPU,"
Computer Engineering and Technology (ICCET), 2010 2nd
International Conference on , vol.6, no., pp.V6-1-V6-6, 16-18 April
2010

doi: 10.1109/ICCET.2010.5486259

URL: http://ieeexplore.ieee.org.gate.lib.buffalo.edu/stamp/stamp.js
p?tp=&arnumber=5486259&isnumber=5485932

[3] http://www.codeproject.com/KB/security/SecuringData.aspx
[4]http://www.polarssl.org/

