

Finite-size Facility Placement in an Existing Layout Using MPI and C

Ketan Hemant Date

Class project for CSE 633 Parallel Algorithms (Fall 2012)
Instructor: Dr. Russ Miller

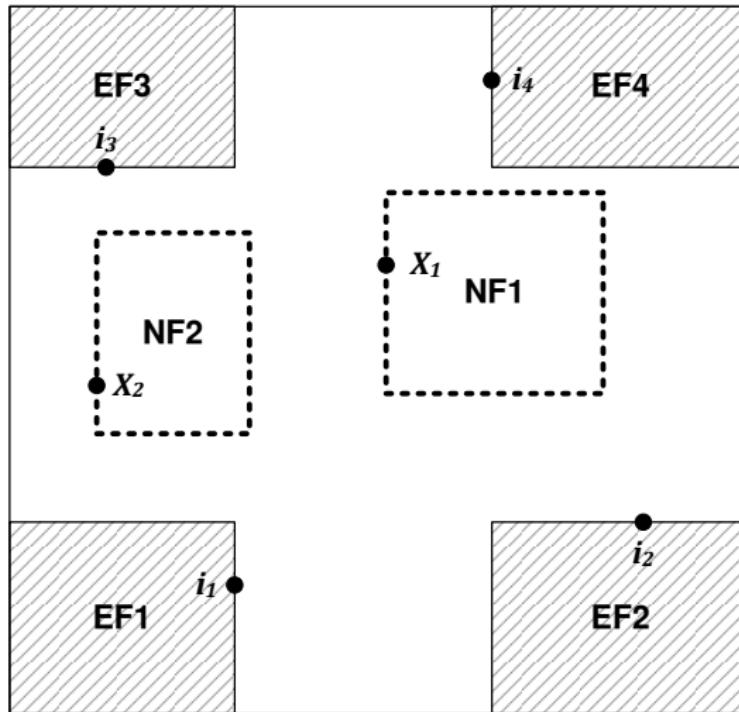
Nov 13, 2012

Outline

- ① Introduction
- ② Problem Description
- ③ Preliminaries
- ④ Solution Procedure
- ⑤ Implementation Strategy
- ⑥ Results
- ⑦ Conclusion and Future Work

Introduction

- Facility Location Problem: A very popular and widely studied problem in Industrial Engineering.
- Objective is to locate new facilities in a plane, minimizing the distance between interacting facilities.


Types of objectives

- Median (or Minisum) objective.
- Center (or Minimax) objective.

Types of distance metrics

- Rectilinear (or L_1) metric $\Rightarrow |x_1 - x_2| + |y_1 - y_2|$.
- Euclidean (or L_2) metric $\Rightarrow \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$.

Facility Placement Problem: An Example

Literature Review

Infinitesimal Facility Location (P-median Location)

The new facilities do not interact with each other.

- Location of p facilities in presence of infinitesimal facilities (Hakimi, 1964).
- Location of p facilities in presence of barriers (Larson and Sadiq, 1983).

Finite-size Facility Placement

- Placement of single arbitrarily shaped facility in presence of barriers (Savas et al., 2002).
- Placement of single rectangular GCR in presence of barriers (Sarkar et al., 2005).
- Placement of two rectangular, finite-size, **interacting** facilities in presence of barriers (Date and Nagi, 2012).
- Placement of single rectangular finite size NF with the help of dominance rules (Date et al., 2012)

Project Scope

- ① Solving single, finite-size facility placement problem on parallel processors.
- ② Solving single, finite-size facility placement problem using dominance rules on parallel processors.
- ③ Solving two, finite-size facility placement problem on parallel processors.

- For Fall 2012, focus will be on Item 1.
- Continue working on remaining problems over next semester.

Outline

- 1 Introduction
- 2 Problem Description
- 3 Preliminaries
- 4 Solution Procedure
- 5 Implementation Strategy
- 6 Results
- 7 Conclusion and Future Work

Problem Description

Assumptions

- Layout: a rectangular, closed region with finite area.
- Finite number of *Existing Facilities* (EFs) with rectangular shapes.
- Need to locate single *New Facility* (NF) in the layout.
- Each EF has a single I/O point on boundary.
- NF has a single I/O point located at its top left corner.
- Non-negative material flow between EFs and NF; and pairs of EFs.
- Flow through any facility is not permitted.

Objective

To place NF optimally, minimizing the weighted sum of rectilinear distances between various interacting facilities.

Objective Function and Problem Statement

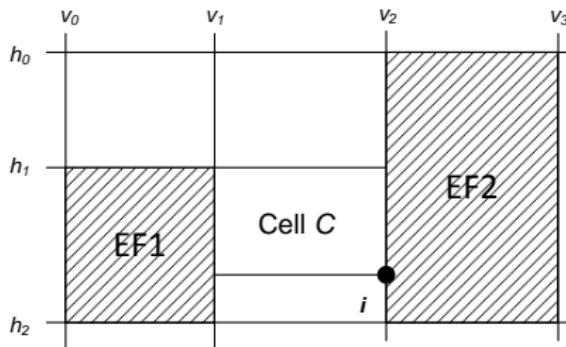
Notation

\mathbf{p}	:	Placement vector of the NF defined by coordinates of its top left corner
$u_i \geq 0$:	Interaction between EF I/O point i and NF I/O point X
$w_{ij} \geq 0$:	Interaction between EF I/O points i and j
$d_{\mathbf{p}}(i, X)$:	Length of shortest feasible path between EF I/O point i and NF I/O point X
$d_{\mathbf{p}}(i, j)$:	Length of shortest feasible path between EF I/O points i and j
$J(\mathbf{p})$:	Total weighted travel distance between EFs and NF
$K(\mathbf{p})$:	Total weighted travel distance between EFs

Objective Function

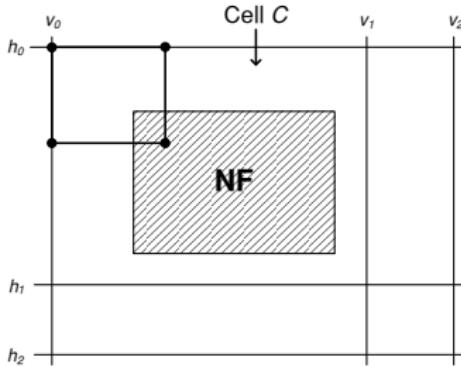
$$J(\mathbf{p}) + K(\mathbf{p}) = \sum_{i \in D} u_i d_{\mathbf{p}}(i, X) + \sum_{i \in D} \sum_{j \in D; j \neq i} w_{ij} d_{\mathbf{p}}(i, j)$$

Problem Statement

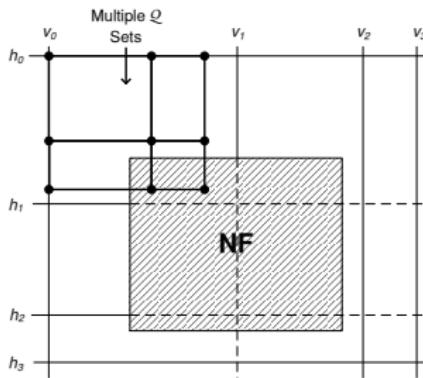

To determine optimal placement \mathbf{p}^* of the NF such that:

$$J(\mathbf{p}^*) + K(\mathbf{p}^*) \leq J(\mathbf{p}) + K(\mathbf{p}), \forall \mathbf{p} \in F$$

Outline


- ① Introduction
- ② Problem Description
- ③ Preliminaries
- ④ Solution Procedure
- ⑤ Implementation Strategy
- ⑥ Results
- ⑦ Conclusion and Future Work

Grid Construction and Cell Formation


- Introduced by Larson and Sadiq (1983)
- Gridlines are constructed by passing a horizontal and vertical line through each vertex and I/O point of EFs.
- Flow between the facilities can be assumed to take place along the gridlines (without incurring any penalty).

Feasible Placement Candidates: Case 1

- NF does not cut off any existing gridlines.
- EF-EF flow not affected by NF placement.
- Optimal placement of the NF is such that one of its corners coincides with the cell corner (Sarkar et al., 2005).
- Upper bound on the number of all such candidates is $O(N^2)$.

Feasible Placement Candidates: Case 2

- NF cuts off some existing gridlines.
- EF-EF flow affected by NF placement.
- Need to construct Q sets for finding optimal placement candidates (Savas et al., 2002).
- Upper bound on the number of all such candidates is $O(N^4)$.

Outline

- ① Introduction
- ② Problem Description
- ③ Preliminaries
- ④ Solution Procedure
- ⑤ Implementation Strategy
- ⑥ Results
- ⑦ Conclusion and Future Work

Solution Procedure

N = Number of EFs.

Step 1: Data Input and Problem Construction

- Input: Flat file containing coordinates of top left corners of EFs; dimensions of EFs; and coordinates of I/O points; facility interaction values.
- Different layouts are constructed into memory.

Step 2: Grid Construction

- Input: Coordinates of top left corners of EFs; dimensions of EFs; and coordinates of I/O points.
- Construction of horizontal and vertical gridlines passing through all EF vertices and I/O points.
- Algorithm complexity: $O(N)$.

Solution Procedure (cont.)

Step 3: Network Formation

- Input: Set of vertical and horizontal gridlines.
- Conversion of layout into network $G = (N, A)$.
- N : Set of nodes, i.e. gridline intersection points.
- A : Set of arcs, i.e. segments of horizontal or vertical gridlines.
- Algorithm complexity: $O(N^2)$.

Step 4: Cell Formation

- Input: Network $G = (N, A)$.
- Identification of various rectangular cells, which are objects bounded by four arcs.
- Algorithm complexity: $O(N^2)$.

Solution Procedure (cont.)

Step 5: Identification of Candidate Points

- Input: Network $G = (N, A)$ and set of cells \mathcal{C} .
- Identification of feasible placement candidates for the NF for different cells.
- Algorithm complexity: $O(N^4)$.

Step 6: Candidate Evaluation

- Input: Set of candidate points ($O(N^4)$); EF-EF interaction matrix; and EF-NF interaction vector.
- Evaluation of the objective function (sum of weighted distances) by placing NF at each candidate point.
- Finding the optimal placement(s) with the minimum overall objective function value.
- The network is reconstructed in $O(N \log N)$ time.
- Distances between different I/O points evaluated using Dijkstra's algorithm (in $O(N^3 \log N)$ time).
- Algorithm complexity: $O(N^7 \log N)$.

Why Parallelize?

- N is the number of EFs present in the layout.
- For single NF, $O(N^4)$ candidate points need to be evaluated. Complexity of overall procedure is $O(N^7 \log N)$.
- For two NFs, $O(N^8)$ feasible candidate pairs need to be evaluated. Complexity of overall procedure is $O(N^{11} \log N)$.
- As number of EFs goes on increasing, the sequential evaluation becomes cumbersome.
- Using parallel processing, each candidate can be evaluated separately and significant speedup can be achieved.

Outline

- ① Introduction
- ② Problem Description
- ③ Preliminaries
- ④ Solution Procedure
- ⑤ Implementation Strategy
- ⑥ Results
- ⑦ Conclusion and Future Work

Implementation using MPI and C

- Steps 1 to 4 are performed on all the MPI processes synchronously.
- In Step 1, the data is read from a flat file and layouts are constructed in the memory, as an input to the subsequent steps.
- Each process contains a local copy of the layout, grid structure, network and cell list.
- In Step 5, the cells are scattered among the processes for candidate identification (each process receives $\frac{O(N^2)}{n}$ cells).
- Individual processes identify the feasible candidate points, within the cells assigned to them.
- The partial candidate lists present at individual processes are gathered by the *root process* (rank 0) and a complete list is constructed.

Implementation using MPI and C (Cont.)

- In Step 6, the candidate list present at the *root process* is scattered among all the processes for evaluation (each process receives $\frac{O(N^4)}{n}$ candidate points).
- Individual processes calculate the objective function for all the candidate points assigned to them and identify the local minima.
- The local minimum at each process is gathered by the *root process* and the global minimum is identified, which gives the global optimal solution.

Execution Strategy

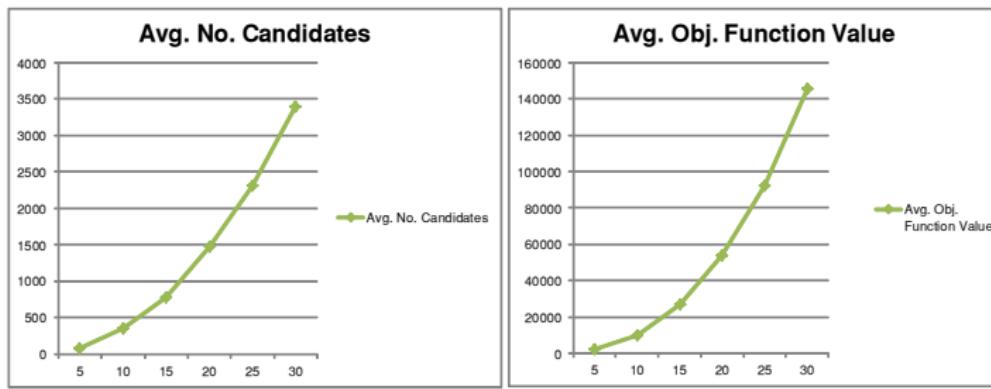
Problem Set

Computational study was conducted on randomly generated layout problems, with following specifications.

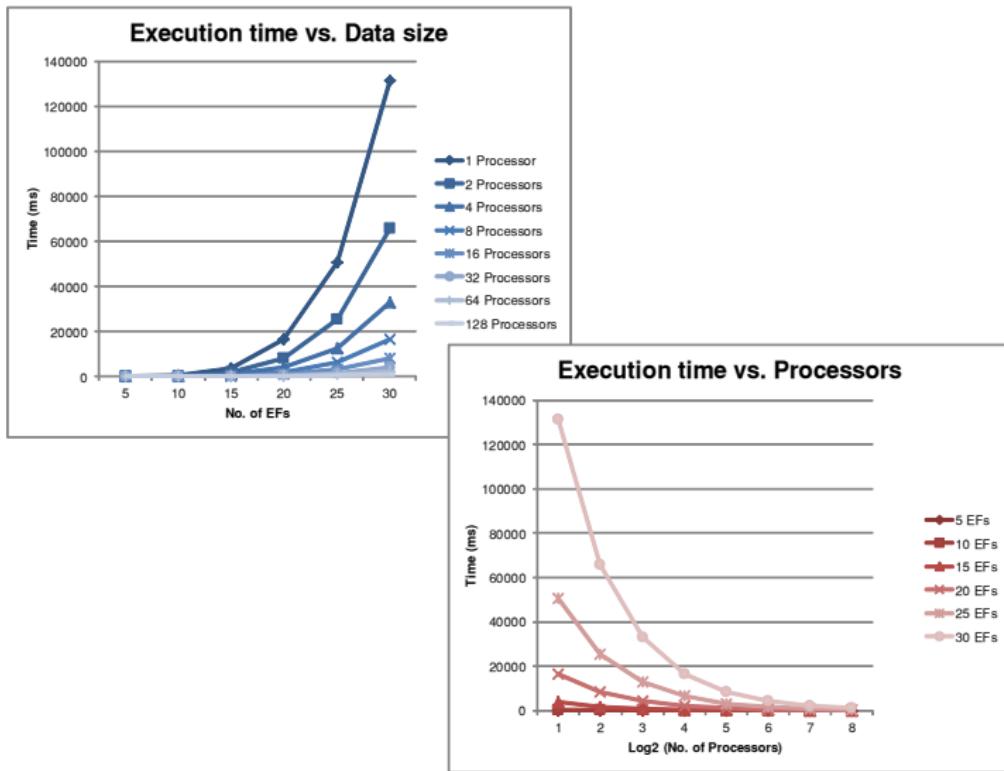
- **Data size:** 5 to 30 EFs incremented in steps of 5.
- **No. of problems per data size:** 100 (total 600 problems).
- **Layout congestion:** 30%.
- **EF area:** 10000 sq. units.
- **EF dimensions:** Randomly generated with aspect ratios $2^{U[-1,1]} = [0.5, 2]$.
- **Facility interactions:** Randomly generated from $U(0, 1)$.
- **NF dimensions:** 100×100 sq. units.
- NF I/O point located at its top-left corner.
- EF I/O point located randomly on its boundary.

Execution Strategy (Cont.)

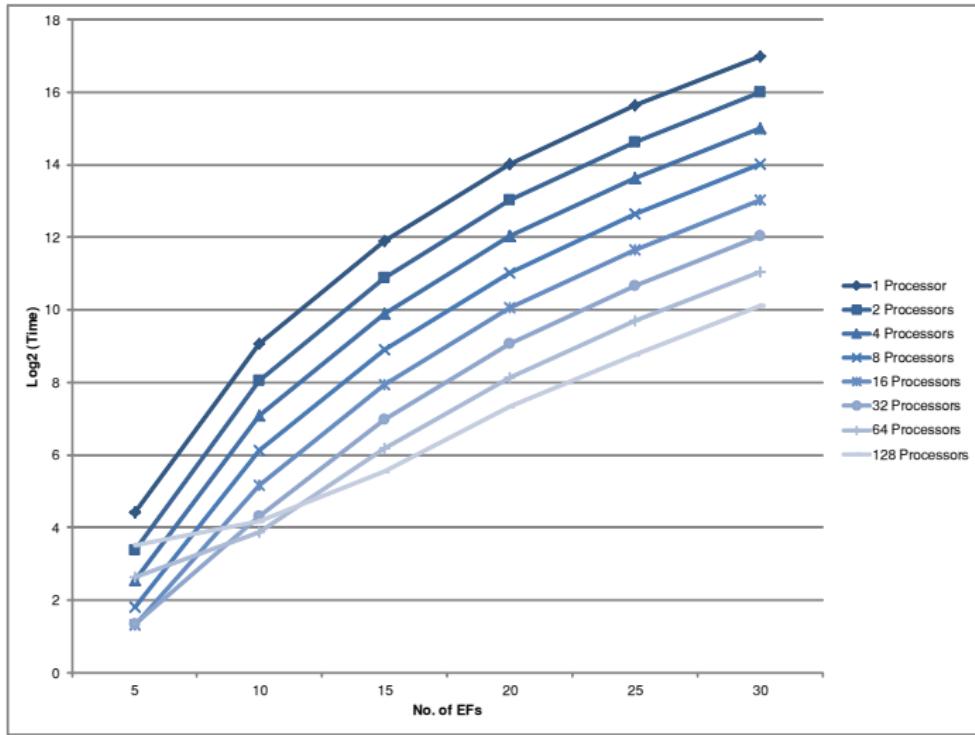
Hardware Specs.

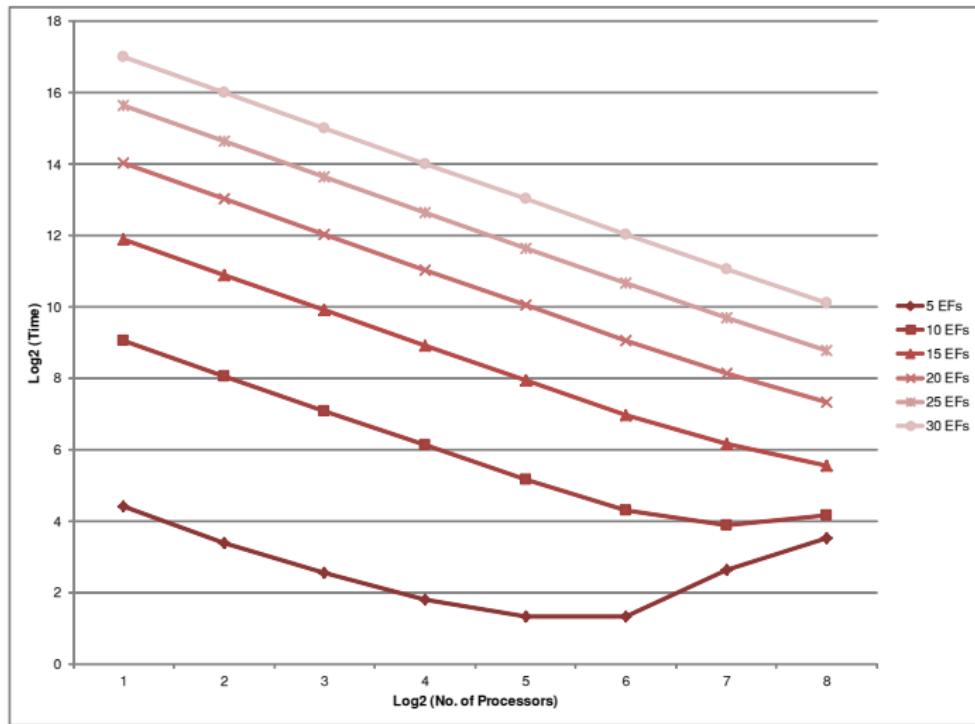

- **Number of processors:** 1 to 128, doubled at each step.
- **Type of processors:** GM Compute, 2-core nodes from CCR-U2 cluster.
- **Clock rate:** 3.00GHz.
- **Memory:** 2GB.
- **Communication network:** Myrinet.

Outline


- ① Introduction
- ② Problem Description
- ③ Preliminaries
- ④ Solution Procedure
- ⑤ Implementation Strategy
- ⑥ Results
- ⑦ Conclusion and Future Work

No. of Candidates/Obj. Function vs. Data Size


EFs	Avg. No. Candidates	Avg. Obj. Function
5	83.08	1883.70
10	346.69	9955.95
15	782.95	26798.76
20	1479.85	53637.44
25	2307.92	92519.14
30	3390.50	145949.02


Execution Time Plots

Execution Time vs. Data Size

Execution Time vs. Processors

Outline

- ① Introduction
- ② Problem Description
- ③ Preliminaries
- ④ Solution Procedure
- ⑤ Implementation Strategy
- ⑥ Results
- ⑦ Conclusion and Future Work

Conclusion and Future Work

Conclusion

- Solved single facility placement problem in an existing layout, on multiple processors using MPI and C.
- Analyzed the execution time of the algorithm for various data sizes and number of processors.
- The execution time increases in polynomial order as the data size.
- Up to a fixed number of candidates per processor, execution time decreases by half as the number of processors is doubled, after which the communication time starts to dominate.
- From the graphs, the optimal number of candidates per processor is ≈ 4 . The result is valid only for this particular implementation and hardware specifications.

Future Work

- Solving the one facility placement problem using dominance rules and comparing the results with parallel implementation.
- Solving the cumbersome two facility placement problem ($O(N^{11} \log N)$) on parallel processors.

Thank You

Date K., R. Nagi. 2012. Placement of two finite-size facilities in an existing layout with the rectilinear distance metric. *Submitted to Operations Research*.

Date K., S. Makked, R. Nagi. 2012. Dominance rules for the optimal placement of a finite-size facility in an existing layout. *Submitted to Computers & Operations Research*.

Hakimi S. L. 1964. Optimum locations of switching centers and the absolute centers and medians of graph. *Operations Research* **12** 450–459

Larson R. C., G. Sadiq. 1983. Facility locations with the Manhattan metric in the presence of barriers to travel. *Operations Research* **31**(4) 652–669.

Sarkar A., R. Batta, R. Nagi. 2005. Planar area location/layout problem in the presence of generalized congested regions with the rectilinear distance metric. *IIE Transactions* **37** 35–50.

Savas S., R. Batta, R. Nagi. 2002. Finite-size facility placement in the presence of barriers to rectilinear travel. *Operations Research* **50**(6) 1018–1031.