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What is a (Fourier) transform?

e ‘“relate a function in one domain to another function in a second
domain”

e (Fourier) takes a function and outputs the frequencies present in the
original function

Fourier transform

7o) = / F(@) e dz, VEER. (Eqa)

e =coszx +isinz,







Applications

e Signal processing, image processing
o Filtering, analysis, etc.
e Fourier transform was used for thermodynamics
o FFT (algorithm) was used to detect nuclear explosions
e Machine learning and matrix operations
e Many more:)



Discrete fourier transform

e What if we don't have this function, but can only sample magnitudes at
different times?
e Wecan!
o And this can be represented by a matrix



More runtime == better accuracy

FFT Magnitude Spectrum (Parallel) m = 5 size = 4 FFT Magnitude Spectrum (Parallel) m = 15 size = 4
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Math break! T
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Fast Fourier Transform (FFT)

e Analgorithm for computing the DFT
e Based on matrix decomposition
e O(N”"2)=>0O(Nlog(N)



Sparse product matrix
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Butterfly pattern
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e Butterfly walkthrough







Input Bit reversal

x(0) =0 x(0) => 000
x(1) = 1 x(1) => 001
x(2) = 2 x(2) => 010
x(3) =3 x(3) => 011
x(4) = 4 x(4) => 100
x(5) = 5 x(5) => 101
x(6) = 6 x(6) => 110

x(7)=7 x(7)=>111



x(0) => 000 => 000
x(1) =>001=> 100
x(2)=>010=>010
x(3)=>011=>110
x(4) => 100 => 001
x(5)=>101=>101
x(6)=>110=>011

x(7)=>111=>111

Bit reversal



x(0) =>000=>000=>0
x(1) =>001=>100=>4
X(2)=>010=>010=> 2
X(3)=>011=>110=>6
x(4)=>100=>001=>1
x(5)=>101=>101=>5
x(6)=>110=>011=>3

x(7)=>111=>111=>7

Bit reversal
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Stage 2
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def parallel_fft(x, comm):
rank = comm.Get_rank()
size = comm.Get_size()

= len(x) * size

Compute local FFT, if needed

if not (size & (size - 1) == 0):
raise ValueError("Number of processes must be power of 2")

local_data = bit_reverse_list(x)

Partner node should always be 2”(stage+1) aWays local_data = local_fft(local_data)

for stage in range(int(math.log2(size))):
Extra offset calculation for if nodes hold >1 piece of data pArENEE: = rANKAS (1 == stacel
send_data = local_data.copy()
received_data = comm.sendrecv(send_data, dest=partner, source=partner)

stage_size = len(local_data)
for k in range(stage_size):
tn = 2xk(stage+l)*stage_size

Root of Unity (tW|dd|e factor) tk = (rankxstage_size+k) % (tn/2)

’ tf

cmath.exp(-2j * cmath.pi * tk / tn)

if rank & (1 << stage) ==
Properlyapplying TF (and local_data[k] = send_datalk] + tf * received_datal[k]

t. else:
nega Ion) local_datalk] = received_datalk] - tf * send_datalk]

all_results = comm.gather(local_data, root=0)




Results!



Single processor solve
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Strong scaling

Nodes vs time
Scaling for m=15
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Weak Scaling: '

32x problem size only loses a
factor of 2!

Scaling with 4 nodes
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Weak scaling:

Note: the dense FFT matrix for
m=25 would have 1 quadrilion
entries!!!

Two nodes
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Future work (if i had had more time)

e Cuda:

o  (iwill do this someday)



Thank you



