Fast Fourier Transform (FFT)

Dylan Zinsley

What is a (Fourier) transform?

e ‘“relate a function in one domain to another function in a second
domain”

e (Fourier) takes a function and outputs the frequencies present in the
original function

Fourier transform

7o) = / F(@) e dz, VEER. (Eqa)

e =coszx +isinz,

Applications

e Signal processing, image processing
o Filtering, analysis, etc.
e Fourier transform was used for thermodynamics
o FFT (algorithm) was used to detect nuclear explosions
e Machine learning and matrix operations
e Many more:)

Discrete fourier transform

e What if we don't have this function, but can only sample magnitudes at
different times?
e Wecan!
o And this can be represented by a matrix

More runtime == better accuracy

FFT Magnitude Spectrum (Parallel) m = 5 size = 4 FFT Magnitude Spectrum (Parallel) m = 15 size = 4

Magnitude

144

12

10 4

0.0

0.1

0.2

Frequency

03

0.4

0.5

Magnitude

10000 A

8000 4

6000 -

4000

2000 A

0.0

0.1

0.2

Frequency

0.3

0.4

0.5

Math break! T

DFT matrix
W0
F = N
(N.—l)-O

W

0-1
Wi

i
Wiy

(N—1)-1

W

Fast Fourier Transform (FFT)

e Analgorithm for computing the DFT
e Based on matrix decomposition
e O(N”"2)=>0O(Nlog(N)

Sparse product matrix

"F 0

0 F,

N
Top down ~ T~
I:N/2 FN/2
FN/4 FN/4 FN/4 FN/4

Butterfly pattern

&)

z[0] o——

x[2] o——

N/2-point
DFT
z[4] o——
a:[l] o—>—
N/2-point
DFT

z[7] o——

e Butterfly walkthrough

Input Bit reversal

x(0) =0 x(0) => 000
x(1) = 1 x(1) => 001
x(2) = 2 x(2) => 010
x(3) =3 x(3) => 011
x(4) = 4 x(4) => 100
x(5) = 5 x(5) => 101
x(6) = 6 x(6) => 110

x(7)=7 x(7)=>111

x(0) => 000 => 000
x(1) =>001=> 100
x(2)=>010=>010
x(3)=>011=>110
x(4) => 100 => 001
x(5)=>101=>101
x(6)=>110=>011

x(7)=>111=>111

Bit reversal

x(0) =>000=>000=>0
x(1) =>001=>100=>4
X(2)=>010=>010=> 2
X(3)=>011=>110=>6
x(4)=>100=>001=>1
x(5)=>101=>101=>5
x(6)=>110=>011=>3

x(7)=>111=>111=>7

Bit reversal

Stage 1

0-
0, 0

Input

Stage 1

0-
0, 0

Input

28

-4+9.6i

-4+4i

-4+1.6i

Stage 2

SO:O’
o,"=(1/s5qrt(2))(1+i),
0y %=-i,
og>=-(1/sqrt(2))(1+i)

‘ 28
\ / -4+9.6i

WA
WL

AN
o, -4+1.6i

-‘u /%\ -4-4i
\

0y -4-9.6i

def parallel_fft(x, comm):
rank = comm.Get_rank()
size = comm.Get_size()

= len(x) * size

Compute local FFT, if needed

if not (size & (size - 1) == 0):
raise ValueError("Number of processes must be power of 2")

local_data = bit_reverse_list(x)

Partner node should always be 2”(stage+1) aWays local_data = local_fft(local_data)

for stage in range(int(math.log2(size))):
Extra offset calculation for if nodes hold >1 piece of data pArENEE: = rANKAS (1 == stacel
send_data = local_data.copy()
received_data = comm.sendrecv(send_data, dest=partner, source=partner)

stage_size = len(local_data)
for k in range(stage_size):
tn = 2xk(stage+l)*stage_size

Root of Unity (tW|dd|e factor) tk = (rankxstage_size+k) % (tn/2)

’ tf

cmath.exp(-2j * cmath.pi * tk / tn)

if rank & (1 << stage) ==
Properlyapplying TF (and local_data[k] = send_datalk] + tf * received_datal[k]

t. else:
nega Ion) local_datalk] = received_datalk] - tf * send_datalk]

all_results = comm.gather(local_data, root=0)

Results!

Single processor solve
60

40

20

time to solve

0=

16 18 20

Size of problem n=2**m

22

Time (s)

Strong scaling

Nodes vs time
Scaling for m=15
04
03
02
o1
100 10t -

Number of processors

Nodes vs time

m=23

125
~1.7x
100
speedup
75
H
F s
25
0
1 2 4 6 8
Number of nodes
~1.7%
Nodes vs time
speedup
9
10
8
2
K 6
=
5
S 4
[S
2
2
0
2 4 6 8
time

Weak Scaling: '

32x problem size only loses a
factor of 2!

Scaling with 4 nodes

(XX]

8
6
)) /
£ / Nearly
ideal!
2
0
19 20 21 22 23

Problem size (n=2**m)

24

Weak scaling:

Note: the dense FFT matrix for
m=25 would have 1 quadrilion
entries!!!

Two nodes
60 Bad data
locality?
40
(]
£
=
©
©
20
0
21 22 23 24

Problem size (n=2**m) [log scale]

25

Future work (if i had had more time)

e Cuda:

o (iwill do this someday)

Thank you

