Fast Fourier Transform (FFT)

Dylan Zinsley

What is a (Fourier) transform?

- "relate a function in one domain to another function in a second domain"
- (Fourier) takes a function and outputs the frequencies present in the original function

E a contra da ser a frances

$$\widehat{f}(\xi) = \int_{-\infty}^{\infty} f(x) \ e^{-i2\pi\xi x} \ dx, \quad \forall \xi \in \mathbb{R}.$$
 (Eq.1)

Applications

- Signal processing, image processing
 - Filtering, analysis, etc.
- Fourier transform was used for thermodynamics
 - FFT (algorithm) was used to detect nuclear explosions
- Machine learning and matrix operations
- Many more :)

Discrete fourier transform

- What if we don't have this function, but can only sample magnitudes at different times?
- We can!
 - And this can be represented by a matrix

More runtime == better accuracy

$$w_{2n}^2 = w_n$$

DFT matrix

$$\mathbf{F} = \begin{bmatrix} \omega_N^{0\cdot0} & \omega_N^{0\cdot1} & \cdots & \omega_N^{0\cdot(N-1)} \\ \omega_N^{1\cdot0} & \omega_N^{1\cdot1} & \cdots & \omega_N^{1\cdot(N-1)} \\ \vdots & \vdots & \ddots & \vdots \\ \omega_N^{(N-1)\cdot0} & \omega_N^{(N-1)\cdot1} & \cdots & \omega_N^{(N-1)\cdot(N-1)} \end{bmatrix}$$

Fast Fourier Transform (FFT)

- An algorithm for computing the DFT
- Based on matrix decomposition
- O(N^2) => O(Nlog(N)

Butterfly pattern

Butterfly walkthrough Input x(0) = 0x(1) = 1x(2) = 2x(3) = 3x(4) = 4x(5) = 5x(6) = 6x(7) = 7

h	Input			
Х	x(0) = 0			
Х	x(1) = 1			
Х	x(2) = 2			
Х	x(3) = 3			
Х	x(4) = 4			
Х	x(5) = 5			
Х	x(6) = 6			
	y(7) - 7			

x(7) = 7

Input		Bit reversal
×(0) = 0	x(0) => 000	
x(1) = 1	x(1) => 001	
x(2) = 2	x(2) => 010	
x(3) = 3	x(3) => 011	
x(4) = 4	x(4) => 100	
x(5) = 5	x(5) => 101	
x(6) = 6	x(6) => 110	
×(7) = 7	x(7) => 111	

Input	
×(0) = 0	x(0) => 000 => 000
x(1) = 1	x(1) => 001 => 100
x(2) = 2	x(2) => 010 => 010
x(3) = 3	x(3) => 011 => 110
x(4) = 4	x(4) => 100 => 001
x(5) = 5	x(5) => 101 => 101
x(6) = 6	x(6) => 110 => 011
x(7) = 7	x(7) => 111 => 111

Bit reversal

Input		Bit reversal
x(0) = 0	x(0) => 000 => 000 => 0	
x(1) = 1	x(1) => 001 => 100 => 4	
x(2) = 2	x(2) => 010 => 010 => 2	
x(3) = 3	x(3) => 011 => 110 => 6	
x(4) = 4	x(4) => 100 => 001 => 1	
x(5) = 5	x(5) => 101 => 101 => 5	
x(6) = 6	x(6) => 110 => 011 => 3	
x(7) = 7	x(7) => 111 => 111 => 7	

Input
×(0) = 0
x(4) = 4
x(2) = 2
x(6) = 6
x(1) = 1
x(5) = 5
x(3) = 3
x(7) - 7

x(7) = 7

Stage 1

Stage 1

all_results = comm.gather(local_data, root=0)

Results!

Weak scaling:

Note: the dense FFT matrix for m=25 would have 1 quadrilion entries!!!

Future work (if i had had more time)

- Cuda :(
 - (i will do this someday)

Thank you