
Fast Fourier Transform (FFT)

Dylan Zinsley

● “relate a function in one domain to another function in a second
domain”

● (Fourier) takes a function and outputs the frequencies present in the
original function

What is a (Fourier) transform?

Applications

● Signal processing, image processing

○ Filtering, analysis, etc.

● Fourier transform was used for thermodynamics

○ FFT (algorithm) was used to detect nuclear explosions

● Machine learning and matrix operations

● Many more :)

Discrete fourier transform

● What if we don’t have this function, but can only sample magnitudes at

different times?

● We can!

○ And this can be represented by a matrix

More runtime == better accuracy

Math break!

● Roots of unity

DFT matrix

Fast Fourier Transform (FFT)

● An algorithm for computing the DFT

● Based on matrix decomposition

● O(N^2) => O(Nlog(N)

Sparse product matrix

Top down

F
N

F
N/2

F
N/2

.

.

.

F
N/4

F
N/4 F

N/4
F

N/4

F
2

F
2 F

2
.

Butterfly pattern

𝝎
N

(N/2+k)=-𝝎
N

k

Butterfly walkthrough

x(0) = 0

x(1) = 1

x(2) = 2

x(3) = 3

x(4) = 4

x(5) = 5

x(6) = 6

x(7) = 7

Input

x(0) = 0

x(1) = 1

x(2) = 2

x(3) = 3

x(4) = 4

x(5) = 5

x(6) = 6

x(7) = 7

Input

x(0) = 0

x(1) = 1

x(2) = 2

x(3) = 3

x(4) = 4

x(5) = 5

x(6) = 6

x(7) = 7

Input Bit reversal

x(0) => 000

x(1) => 001

x(2) => 010

x(3) => 011

x(4) => 100

x(5) => 101

x(6) => 110

x(7) => 111

x(0) = 0

x(1) = 1

x(2) = 2

x(3) = 3

x(4) = 4

x(5) = 5

x(6) = 6

x(7) = 7

Input Bit reversal

x(0) => 000 => 000

x(1) => 001 => 100

x(2) => 010 => 010

x(3) => 011 => 110

x(4) => 100 => 001

x(5) => 101 => 101

x(6) => 110 => 011

x(7) => 111 => 111

x(0) = 0

x(1) = 1

x(2) = 2

x(3) = 3

x(4) = 4

x(5) = 5

x(6) = 6

x(7) = 7

Input Bit reversal

x(0) => 000 => 000 => 0

x(1) => 001 => 100 => 4

x(2) => 010 => 010 => 2

x(3) => 011 => 110 => 6

x(4) => 100 => 001 => 1

x(5) => 101 => 101 => 5

x(6) => 110 => 011 => 3

x(7) => 111 => 111 => 7

x(0) = 0

x(4) = 4

x(2) = 2

x(6) = 6

x(1) = 1

x(5) = 5

x(3) = 3

x(7) = 7

Input

x(0) = 0

x(4) = 4

x(2) = 2

x(6) = 6

x(1) = 1

x(5) = 5

x(3) = 3

x(7) = 7

Stage 1

Input

-1
1

-1
1

-1
1

-1
1

𝛚
2

0=0

x(0) = 0

x(4) = 4

x(2) = 2

x(6) = 6

x(1) = 1

x(5) = 5

x(3) = 3

x(7) = 7

Stage 1

Input

-1
1

-1
1

-1
1

-1
1

𝛚
2

0=0

 4

-4

 8

-4

 6

-4

10

-4

x(0) = 0

x(4) = 4

x(2) = 2

x(6) = 6

x(1) = 1

x(5) = 5

x(3) = 3

x(7) = 7

Stage 1

Input

-1
1

-1
1

-1
1

-1
1

𝛚
2

0=0 𝛚
4

0=0,
𝛚

4
1=-i

-1

-1

1

-i

-1

-1

1

-i

Stage 2

 4

-4

 8

-4

 6

-4

10

-4

x(0) = 0

x(4) = 4

x(2) = 2

x(6) = 6

x(1) = 1

x(5) = 5

x(3) = 3

x(7) = 7

Stage 1

Input

-1
1

-1
1

-1
1

-1
1

𝛚
2

0=0 𝛚
4

0=0,
𝛚

4
1=-i

-1

-1

1

-i

-1

-1

1

-i

Stage 2

 4

-4

 8

-4

 6

-4

10

-4

 12

-4+4i

 -4

-4-4i

 16

-4+4i

-4

-4-4i

x(0) = 0

x(4) = 4

x(2) = 2

x(6) = 6

x(1) = 1

x(5) = 5

x(3) = 3

x(7) = 7

Stage 1

Input

-1
1

-1
1

-1
1

-1
1

𝛚
2

0=0 𝛚
4

0=0,
𝛚

4
1=-i

-1

-1

1

-i

-1

-1

1

-i

Stage 2

 4

-4

 8

-4

 6

-4

10

-4

 12

-4+4i

 -4

-4-4i

 16

-4+4i

-4

-4-4i

𝛚
8

0=0,
𝛚

8
1=(1/sqrt(2))(1+i),

𝛚
8

02=-i,
𝛚

8
3=-(1/sqrt(2))(1+i)

-1

-1

-1

-1

1

-i

Stage 2

 28

-4+9.6i

 -4+4i

-4+1.6i

 -4

-4+1.6i

-4-4i

-4-9.6i

𝛚
8

1

𝛚
8

3

x(0) = 0

x(4) = 4

x(2) = 2

x(6) = 6

x(1) = 1

x(5) = 5

x(3) = 3

x(7) = 7

Stage 1

Input

-1
1

-1
1

-1
1

-1
1

𝛚
2

0=0 𝛚
4

0=0,
𝛚

4
1=-i

-1

-1

1

-i

-1

-1

1

-i

Stage 2

 4

-4

 8

-4

 6

-4

10

-4

 12

-4+4i

 -4

-4-4i

 16

-4+4i

-4

-4-4i

𝛚
8

0=0,
𝛚

8
1=(1/sqrt(2))(1+i),

𝛚
8

02=-i,
𝛚

8
3=-(1/sqrt(2))(1+i)

-1

-1

-1

-1

1

-i

Stage 2

 28

-4+9.6i

 -4+4i

-4+1.6i

 -4

-4+1.6i

-4-4i

-4-9.6i

𝛚
8

1

𝛚
8

3

= y(0)

= y(1)

= y(2)

= y(3)

= y(4)

= y(5)

= y(6)

= y(7)

Partner node should always be 2^(stage+1) away

Extra offset calculation for if nodes hold >1 piece of data

Root of unity (twiddle factor)

Properly applying TF (and
negation)

Compute local FFT, if needed

Results!

Strong scaling

Nodes vs time

Nodes vs time

Nodes vs time

~1.7x
speedup

~1.7x
speedup

Weak Scaling:

Nearly
ideal!

32x problem size only loses a
factor of 2!

Weak scaling:
Bad data
locality?

Note: the dense FFT matrix for
m=25 would have 1 quadrilion
entries!!!

Two nodes

Future work (if i had had more time)

● Cuda :(
○ (i will do this someday)

Thank you

