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● “relate a function in one domain to another function in a second 
domain”

● (Fourier) takes a function and outputs the frequencies present in the 
original function

What is a (Fourier) transform? 





Applications

● Signal processing, image processing

○ Filtering, analysis, etc.

● Fourier transform was used for thermodynamics

○ FFT (algorithm) was used to detect nuclear explosions

● Machine learning and matrix operations

● Many more :)



Discrete fourier transform

● What if we don’t have this function, but can only sample magnitudes at 

different times?

● We can! 

○ And this can be represented by a matrix



More runtime == better accuracy



Math break!

● Roots of unity



DFT matrix



Fast Fourier Transform (FFT)

● An algorithm for computing the DFT

● Based on matrix decomposition

● O(N^2) => O(Nlog(N)



Sparse product matrix
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Butterfly pattern
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Butterfly walkthrough

x(0) = 0

x(1) = 1

x(2) = 2

x(3) = 3

x(4) = 4

x(5) = 5

x(6) = 6

x(7) = 7 

Input



x(0) = 0

x(1) = 1

x(2) = 2

x(3) = 3

x(4) = 4

x(5) = 5

x(6) = 6

x(7) = 7 

Input



x(0) = 0

x(1) = 1

x(2) = 2

x(3) = 3

x(4) = 4

x(5) = 5

x(6) = 6

x(7) = 7 

Input Bit reversal

x(0) => 000

x(1) => 001

x(2) => 010

x(3) => 011

x(4) => 100 

x(5) => 101

x(6) => 110

x(7) => 111 



x(0) = 0

x(1) = 1

x(2) = 2

x(3) = 3

x(4) = 4

x(5) = 5

x(6) = 6

x(7) = 7 

Input Bit reversal

x(0) => 000 => 000

x(1) => 001 => 100

x(2) => 010 => 010

x(3) => 011 => 110

x(4) => 100 => 001

x(5) => 101 => 101

x(6) => 110 => 011

x(7) => 111 => 111



x(0) = 0

x(1) = 1

x(2) = 2

x(3) = 3

x(4) = 4

x(5) = 5

x(6) = 6

x(7) = 7 

Input Bit reversal

x(0) => 000 => 000 => 0

x(1) => 001 => 100 => 4

x(2) => 010 => 010 => 2

x(3) => 011 => 110 => 6

x(4) => 100 => 001 => 1

x(5) => 101 => 101 => 5

x(6) => 110 => 011 => 3

x(7) => 111 => 111 => 7
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x(4) = 4

x(2) = 2

x(6) = 6

x(1) = 1

x(5) = 5

x(3) = 3

x(7) = 7 

Input



x(0) = 0

x(4) = 4

x(2) = 2

x(6) = 6

x(1) = 1

x(5) = 5

x(3) = 3

x(7) = 7 

Stage 1
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Partner node should always be 2^(stage+1) away 

Extra offset calculation for if nodes hold >1 piece of data 

Root of unity (twiddle factor) 

Properly applying TF (and 
negation)

Compute local FFT, if needed  



Results!





Strong scaling

Nodes vs time

Nodes vs time

Nodes vs time

~1.7x 
speedup

~1.7x 
speedup



Weak Scaling:

Nearly 
ideal! 

32x problem size only loses a 
factor of 2!



Weak scaling:
Bad data 
locality?

Note: the dense FFT matrix for 
m=25 would have 1 quadrilion 
entries!!!

Two nodes



Future work (if i had had more time) 

● Cuda :( 
○ (i will do this someday)



Thank you


