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Reinforcement Learning

e Paradigm of machine learning algorithms with a focus on control problems.
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Distributed Reinforcement Learning

Akin to strong scaling
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Sharded Environment
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This was one of the
goals, but unfortunately,
| could not implement
this in time.
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Twin Delayed Deep Deterministic Policy Gradient (TD3)
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MPI-TD3 Critic Psuedocode - Worker

// Called at each step

function train() :
samples <- replay buffer.sample ()
next actions <- Actor (next states)

target gl, target g2 <- Critic(next states, next actions)

Actor pseudocode is omitted,
current gl, current g2 <- Critic(states, actions) but its implementation is similar

critic loss <- L1 loss(current gl, target gl) +

L1 loss(current g2, target g2)

critic loss.backward() // computes gradients

// MPI calls below are simplified; done in PyTorch
MPI gather (critic.grad)

MPI broadcast (critic.params, 0) // receive master’s parameters



tﬁ University at Buffalo The state University of New York

MPI-TD3 Critic Psuedocode - Master

// Called at each step by Rank 0

function do update() :

// MPI calls below are simplified; done in PyTorch
MPI gather(critic.grad, 0) // receive gradients from workers
for each worker:

copy gradients to critic network

update network parameters by stepping

MPI broadcast (critic.params) // broadcast master’s parameters
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Distributed TD3 — Forward Pass
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Distributed TD3 — Backward Pass
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Distributed TD3 — Model Update
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Distributed TD3 — Parameter Broadcast
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Distributed TD3 — Health Check
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Environment

Pendulum-v1 from Gymnasium
Continuous state and action space

Episode reward cutoff is -200
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Results — Time Elapsed
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Results — Steps Elapsed
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Results — Time Speedup

Speedup (w/ reference to Time)
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Cost of sending gradients and receiving
weights potentially outweighs any
benefits from distributed training.

This is likely because of the significant
overhead of encoding Python objects.

16



tﬁ University at Buffalo The state University of New York

Results — Step Speedup
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Potential Issues: Buggy Implementation

* Master agent does learn, but most workers are idle.
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Potential Issues: Bad Environment Choice

Number of Steps to Convergence
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Potential Issues: Serial Work

If the gradients here are not ‘diverse’, then
most of the work in the bottlenecked part
could be equivalent to serial work.
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Potential Future Work

* True asynchronous training without MPI_gather and MPI1_broadcast
* Decentralized version that fetches gradients with MP1_Allgather

* Environment sharding for intractable environments
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