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Reinforcement Learning

• Paradigm of machine learning algorithms with a focus on control problems.
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Distributed Reinforcement Learning
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Akin to strong scaling



Sharded Environment
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Akin to weak scaling

This was one of the 

goals, but unfortunately, 

I could not implement 

this in time.



Twin Delayed Deep Deterministic Policy Gradient (TD3)
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MPI-TD3 Critic Psuedocode - Worker
// Called at each step

function train():

 samples <- replay_buffer.sample()

 next_actions <- Actor(next_states)

 target_q1, target_q2 <- Critic(next_states, next_actions)

 current_q1, current_q2 <- Critic(states, actions)

 critic_loss <- L1_loss(current_q1, target_q1) +  

 L1_loss(current_q2, target_q2)

 critic_loss.backward() // computes gradients

 // MPI calls below are simplified; done in PyTorch

 MPI_gather(critic.grad)

 MPI_broadcast(critic.params, 0) // receive master’s parameters

6

Actor pseudocode is omitted, 

but its implementation is similar



MPI-TD3 Critic Psuedocode - Master
// Called at each step by Rank 0

function do_update():

 // MPI calls below are simplified; done in PyTorch

 MPI_gather(critic.grad, 0) // receive gradients from workers

 for each worker:

  copy gradients to critic network

  update network parameters by stepping

 MPI_broadcast(critic.params) // broadcast master’s parameters
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Distributed TD3 – Forward Pass
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Distributed TD3 – Backward Pass
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Distributed TD3 – Model Update
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Distributed TD3 – Parameter Broadcast
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Distributed TD3 – Health Check
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Environment
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Pendulum-v1 from Gymnasium

Continuous state and action space

Episode reward cutoff is -200



Results – Time Elapsed
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Results – Steps Elapsed

15



Results – Time Speedup
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Cost of sending gradients and receiving 

weights potentially outweighs any 

benefits from distributed training.

This is likely because of the significant 

overhead of encoding Python objects.



Results – Step Speedup
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Potential Issues: Buggy Implementation

• Master agent does learn, but most workers are idle.
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On some runs, CPU utilization 

in some nodes was near 0%



Potential Issues: Bad Environment Choice
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Environment may be too ‘simple’. 

This can be confirmed with more 

complex environments.



Potential Issues: Serial Work
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If the gradients here are not ‘diverse’, then 

most of the work in the bottlenecked part 

could be equivalent to serial work.



Potential Future Work

• True asynchronous training without MPI_gather and MPI_broadcast

• Decentralized version that fetches gradients with MPI_Allgather

• Environment sharding for intractable environments
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