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QR Algorithm

Chosen by editors at Computing in Science and Engineering as
one of the 10 most influential algorithms of the 20th century

Used for finding eigenvalues and eigenvectors of a matrix

One of the algorithms implemented by LAPACK
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Research and Motivation

Current research uses the LAPACK sequential implementation

Eigenvalues can tell us about the stability of solutions

Want a higher resolution solution, which isn’t feasible with a
sequential implementation

The sequential implementation also limits throughput of code
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Algorithm

Let A0 = A. For each k ≥ 0:

Ak = QkRk

Ak+1 = RkQk

Note that:

Ak+1 = RkQk = QT
k QkRkQk = QT

k AkQk = Q−1
k AkQk

So all of the Ak ’s are similar and therefore have the same
eigenvalues
As k increases, the Ak ’s converge to an upper triangular matrix,
and the eigenvalues are the diagonal entries

Eric Mikida

The QR Algorithm for Finding Eigenvectors



QR Decomposition

Given matrix A, using Givens Rotation we can zero out an entry in
the matrix, by multiplication by orthogonal matrix G1

A =

 1 2 3
4 5 6
7 8 9

 ,G1 =

 1 0 0
0 0.4961 0.8682
0 −0.8682 0.4961



G1A =

 1 2 3
8.0623 9.4266 10.7910

0 −0.3721 −0.7442


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QR Decomposition (cont)

Continuing in this fashion, find G2,G3... such that:

G3G2G1A = R =

 r11 r12 r13
0 r22 r23
0 0 r33


The G ’s are orthagonal, so their product is orthagonal

Q = (G3G2G1)T

A = QR
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Parallelization

In each iteration we compute Qk , Rk , and Ak+1:

Parallelize the Givens rotation matrices

by column
by row
by row and column

Parallelize the matrix multiplication to get Qk , Rk and Ak+1

by tractor tread algorithm
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Problem Reduction

Focus only on the QR Decomposition portion of the algorithm
to get more focused results

Dependence between individual steps of Given’s rotations
raises a few complications

Used OpenMP for the benefits of shared memory (hybrid
row/column method doesn’t make sense here)
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Given’s Rotation Independence

Trick to parallelizing is to how each entry is zeroed out.
To zero out entry A(i , j) you must find row k such that A(k , j) is
non-zero but A has zeros in row k for all columns less than j .

Figure: Only the second row can be used to zero out the circled entry.
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Column Method

Iterate through each entry that must be zeroed out

Calculate the 2x2 matrix needed to zero it out

Each thread then applies the matrix multiplication to a subset
of the columns

Very naive translation of the sequential algorithm that involves a
lot of bottlenecking, and little independence between threads. An
MPI implementation would require a broadcast at each step so
that all processes would know the 2x2 zeroing matrix. OpenMP
alleviates this issue but it still creates an implicit barrier. OpenMP
also allows for an OpenMP for loop instead of statically allocating
columns to each thread.
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Column Method

Figure: Must zero out each column sequentially.
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Column Method

Figure: To zero out the 7, we use the 1. The first two rows will be
modified by this multiplication, and each thread will apply the
multiplication to a subset of the columns.
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Column Method

Figure: A similar procedure will zero out the 13 and modify the first and
third rows.
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Column Method

Figure: Continuing in this fashion we can zero out the whole first column.
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Column Method

Figure: The same procedure can be applied to the second column. This
time, the second row will be used to zero the entries.
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Column Method

Figure: Applying this method to each column in turn will result in an
upper triangular matrix as desired.
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Row Method

Each thread picks a row that still needs to be zeroed out more

It then finds a row that it can use to zero out the next entry

It calculates the 2x2 matrix and does the multiplication on the
2 rows

Much more independence between threads since they can each
zero out an entry independently of the others. The only constraint
is that when a pair of rows are being worked on by one thread, no
other thread can use them. Expect much better scalability from
this method, although it is more difficult to implement. The trick
is minimizing the time needed for a thread to figure out what two
rows to work on. Ideally it should be done in O(1) time.
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Row Method

Figure: First a thread picks a pair of rows that it can work on.
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Row Method

Figure: Once again, to zero out the 7, we use the 1. This time, the
matrix multiplication is carried out by only one thread. The other threads
are working independently on other rows.
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Row Method

Figure: A similar procedure will zero out the 13 and modify the first and
third rows.
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Row Method

Figure: The 14, however, cannot be zeroed out with the first row.
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Row Method

Figure: Instead it must be zeroed out with the second row, because the
second row has already been partially zeroed out.
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Row Method

Figure: Eventually the last entry can be zeroed out and we once again
end up with an upper triangular matrix.
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Results

For all of the following results, the following assumptions can be
made:

Matrices were generated once uniformly at random.

Because they are random, the matrices are also dense.

All tests were done on one 32 core fat node, with all the cores
checked out.

Timing results are in seconds and all used the OpenMP timer.
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Results
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Figure: Keeping data size constant (and small). Each point is the
average of 10 runs.
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Results

With the exception of two points, the row scheme
outperforms the column scheme

It would appear the turning point of the row scheme happens
later, which implies that it may scale better

Overall the schemes perform similarly

Shared memory may reduce the penalty of ”broadcasting” at
each step in the column scheme which is why performance is
comparable

Hypothesize that the performance difference would be more
exaggerated in an MPI scheme
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Results
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Figure: Keeping data per thread constant. Each point is the average of
10 runs.
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Results

Obviously not the ideal (but unrealistic) constant trend, but
both are close to linear

Difference between 1 thread and 32 threads is less than 20
seconds

The row schemes performance increase is more obvious in this
plot
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Results
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Figure: Keeping number of threads constant. Each point is the average
of 10 runs.
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Results

In both cases the run time appears to scale much better than
O(n3) which is the complexity of a sequential QR
Decomposition
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Results
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Figure: Keeping data size constant (and large). Each point is the average
of 10 runs.
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Results

Problems with large data sets:

For larger matrices, the problem scales similarly to previous
results

However, when limited to 32 threads, we don’t see a clear
turning point in the graphs

The benefits of the OpenMP implementation are somewhat
limited by the number of cores on one node

OpenMP’s limitations become more apparent for larger data
sets
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Conclusions

Future Plans:

Use CUDA to alleviate the limitations of OpenMP

Use a hybrid MPI/OpenMP method to allow for more threads
when data set gets large

Explore a hybrid between the row and column schemes when
using MPI

Is there a point where we should finish the decomposition
sequentially?

Parallelize the matrix multiplication portion of the QR
algorithm
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