Implementing a
Point Domination Query
using MP]

Eric Nagler
ednagler@buffalo.edu

What is a Point Domination Query?

* A Point Domination Query is from the field of
computational geometry where we are
interested if a point “dominates” another
point

* The query will return the dominating points
that encompass the other non-dominated
points in the dataset

. A pomt “dominates” another point g, = (x,,y,),
= (X,,Y,) if and only if x, > x, and y, >,

100
90

80 -
70 -

60
50
40
30

20

10
0

\S

Graphical Example

 Example Values : 29, 95, 51, 4, 84, 6, 27,49, 71, 22
* Domination Points : 95, 84, 71, 22

2,95

_ ’

1,29

- 3,51

7,27

8,49

4,4

6, 6

Tm, 22

10

12

Implementations of the Query

 Three implementations of the query

— RAM Implementation

* Implement the RAM version and run against different sizes of the
dataset and benchmark the performance

— Master/Worker Implementation

* Implement a version that a master node will distribute different
sizes of the dataset to the worker nodes to process. The worker
nodes will process the data using the RAM algorithm. When the
worker nodes are complete they will communicate their local
postfix result to the master, then the master will take a final
postfix to retrieve the final result

— Parallel Postfix Implementation

* Implement a version that will perform a parallel postfix operation
between nodes and in the first node the final answer will be
collected. The workers will run the local RAM algorithm and then

pass their local results to their next postfix node

Testing Details

All tests were conducted on the IBM eight cores per node CCR machines

All tests were conducted on a variety of input data set sizes. The final
qguery result is smaller than the input data set. The final query results
number of data items are shown in parentheses

— 1,000,000 items (5847 items)
— 5,000,000 items (25274 items)
— 10,000,000 items (28359 items)
— 20,000,000 items (35869 items)
— 30,000,000 items (47687 items)

All items passed between processing elements are integers

For the parallel implementations, the data set was evenly distributed
among the processing elements for querying

The run times represent the average over three tests of the algorithms

RAM Algorithm Details

Pseudo Code:

* |nitially, postfixArray and valueArray contain

the read in dataset

int valueArray[ARRAYSIZE], postfixArray[ARRAYSIZE];
for (x = ARRAYSIZE-1 to 0)

postfixArray[x-1]1 = max(postfixArray[x], valueArrayl[x-11);
end for

 Run time of the RAM algorithm is O(n)

RAM Performance Results

Algorithm Runtime compared to Number of Items
Number | Runtime to Process
of Items |(seconds) 1.2
T 1
1,000,000 0.01 o
§ 0.8
£ 06
5,000,000 0.2)
g g
10,000,000| 0.3 e 0-2 /
0
20,000,000/ 0.5 > > > S O
™ > N ™ >
Q Q Q Q Q
M 1o} ,\9‘ ,»Q\ ,,)Q\
30,000,000 1.01
Number of Items to Process

Master/Worker Implementation

* Algorithm Outline

— Processor zero will distribute the input dataset to
all of the child processors

— When the file is completely distributed, the
worker processors will take their local query and
send their results back to processor zero

— The master processor will collect the workers
results append them together and take a final
qguery and write the results to disk

Master/Worker Results

Table of runtime in seconds with multiple dataset sizes on
multiple numbers of processing elements

Two processing

Three processing

Four processing

Five processing

Eight processing

Number of elements elements elements elements elements
data items to (1 Master 1 (1 Master 2 (1 Master 3 (1 Master 4 (1 Master 7

process Worker) Workers) Workers) Workers) Workers)
1,000,000 0.025623 0.014198 0.010928 0.009412 0.007821

5,000,000 0.341468 0.179464 0.14994 0.136634 0.12355
10,000,000 0.593014 0.248078 0.208775 0.190851 0.166605
20,000,000 1.098337 0.656923 0.35209 0.315826 0.276557
30,000,000 2.300388 1.300863 0.962853 0.553948 0.518589

All tests were ran on one node with 8 processing elements

Table of runtime in seconds with multiple dataset sizes on

Master/Worker Results

multiple numbers of processing elements

Nine Sixteen Seventeen Thirty-Two Thirty-Three Sixty-Four
processing processing processing processing processing processing
Number of elements elements elements elements elements elements
dataitems to| (1 Master 8 | (1 Master 15 | (1 Master 16 | (1 Master31 | (1 Master 32 (1 Master 63
process Workers) Workers) Workers) Workers) Workers) Workers)
1,000,000 [0.008436 0.00701 0.007159 0.007022 0.007336 0.008803
5,000,000 0.12237 0.118056 0.11527 0.114039 0.114701 0.115285
10,000,000 | 0.163099 0.151837 0.150433 0.145029 0.14584 0.144701
20,000,000 | 0.270884 0.251032 0.249424 0.241156 0.240604 0.237576
30,000,000 | 0.489801 0.459813 0.459662 0.419091 0.434146 0.438205
Number of
nodes needed: 2 nodes 3 nodes 4 nodes 5 nodes 8 nodes

(8 PE’s each)

10

Master/Worker Results

Table of runtime in seconds with multiple dataset sizes on
multiple numbers of processing elements

Ninety-Six processing

Number of data items elements 128 processing elements | 256 processing elements

to process (1 Master 95 Workers)| (1 Master 127 Workers) | (1 Master 255 Workers)
1,000,000 0.010756 0.009933 0.020966
5,000,000 0.117194 0.118332 0.126832
10,000,000 0.147281 0.149588 0.194236
20,000,000 0.239105 0.2401713 0.252065
30,000,000 0.437994 0.441021 0.448289

Number of

nodes needed: 12 nodes 16 nodes 32 nodes

(8 PE’s each)

11

Master/Worker Performance Observations

* When a test was conducted that required only
one process on a separate node the run time was
slightly higher. This was most likely because of
the inter-node communication

e When the number of nodes increases, the most
amount of time taken by the algorithm is by the
workers waiting to send their local postfix results
to the master.

— This can be observed easily because at 256 processing

elements the algorithm running time starts to
Increase.

Runtime in seconds

Time in seconds needed to process 1,000,000
items divided evenly among N processing elements

0.03

0.025

0.02

0.015

0.01

0.005

X

\ f

’ * (%)
&g S

Number of processing elements 3

Runtime in seconds

Time in seconds needed to process 5,000,000 items
divided evenly among N processing elements

0.4
0.35 \

0.25

o
)

o
N

0.15

o
[EY

0.05

R

< e Qo Q o e
R\ S & & & & & c
& & A O &

o & . S & 4 <
RN N o) <
Number of processing elements

14

Time in seconds needed to process 10,000,000 items

divided evenly among N processing elements

0.7

0.6 \
w 0.5
©
c
o \
(8}
0.4
E \
(V]
€03
=
c
=]
% 0.2

0.1

0 . :
,\\v\o ,\\\&e <<°\\:\ Q\4® 055‘" é\(\e ..\.’@é\ 6&@‘\ *«\V\O &\\&Qf Aﬁ(o\\} 6’(,‘)& \,)‘/b ’f?b
> N A Y & N\
o NN S D

Number of processing elements
15

Time in seconds needed to process 20,000,000 items
divided evenly among N processing elements

AR
\
\

1.2

o
0o

Runtime in seconds
o o
> o))

o
N

Number of processing elements iy

Time in seconds needed to process 30,000,000 items
divided evenly among N processing elements

2.5

2
%)
©
S
o
S 1.5
s
k=
£
.p 1
c
=]
o

0.5

0

o e N - & Qo N o o < & % ©
SEEPSOIER O R (_}&e 6&"*@ *f\““ N & é,«"\ vV
N\ & X xS D
32 & /{(’\\‘\& &S

Number of processing elements .

Parallel Postfix Implementation

* Implemented parallel postfix using MPI by modifying the parallel prefix
algorithm in the Algorithms Sequential and Parallel textbook

* The original algorithm pseudo code is shown below:

For 1 = 1 to n, do in parallel
pi.prefix = xi;

pi.first in segment = 1i;

End For

For 1 = 2 to n, do in parallel
While pi.first in segment > 1, do
j = pi.first in segment - 1;
pi.prefix = pj.prefix @ pi.prefix;
pi.first in segment = pj.first in segment;
End While

End For

Parallel Postfix Implementation

* To successfully implement this algorithm two
modifications were needed

e Modification One

— Each processing element needs to know where
they are sending their values to and where they
are receiving from. Each processing element can
calculate this by adding one for their receiving
from their first in segment for receiving and
subtract one for their sending iteration

Parallel Postfix Example

-9 0 0 ©

Set up Step
Initial Eirst Log,(4) = 2
nitial First in ' _
iterations
segment 0 1 2 3
j.send_to -1 0 1 7
j.recv_from 1 p) 3 4
New First in Iteration 1
segment
j.send_to 0 1 ’) 3
j.recv_from 2 3 4 5
irsti lteration 2
New First in
3 4 5 6
segment

* After the first iteration, the calculation the j.recv_from is correct, but the j.send_tois

incorrect

* Node 2 should be sending to Node 0 and Node 3 should be sending to Node 1

20

Parallel Postfix Implementation

 The second modification to the algorithm is not calculating
the j.send_to value correctly. We can correct for this by
modifying the calculation of j.send to. At the end of a
postfix iteration we multiply a counter initialized at one by
two

countlterations = countlterations * 2

* Then to calculate the j.send to value simply subtract the
processing element i’s identification value from the
countlterations value

j.send_to = node..id - countlterations

* This equation will calculate the correct processing element
to send the postfix data to correcting the sending problem

Parallel Postfix Example

' Set up
Node i Step

Initial first i Log,(4) = 2
nitial first in : :
iterations
segment 0 1 2 3
j.send_to -1 0 1 2
j.-recv_from 1 2 3 4
Iteration 1
New first in 1 5 3 4 lterationNumber = 1
segment
j.send_to -2 -1 0 1
j.recv_from 2 3 4 5 lteration 2
. . I[terationNumber = 2
New first
wnrstin 4 5 6
segment

* After the second modification, the calculation of j.send_to and j.recv_from is correct
* With this calculation correct, the postfix will run for any number iterations correctly

22

Parallel Postfix Pseudo Code

For i = 1 to n, do in parallel
pi.postfix = xi;
pi.first _in segment = 1i;

End For

totalIterations = ceil(log2(n));

countIterations = 1;

For i = 1 to n, do in parallel
While totallIterations > 0, do
j.send to = pi.id — countIterations;
j.recv_from = pi.first in segment + 1;
if(j.send _to >= 0)

{
send pi.postfix to pj.send to
}
if(j.recv_from < n)
{

recv recvedprefix from j.recv_from;
pi.prefix = pi.prefix @ recvedprefix;

}
if(j.send _to >= 0)
{
send pi.first in segment to j.send to
}
if(j.recv_from < n)
{

recv newFIS from j.recv_from;
pi.first in segment = newFIS
}
totalIterations--;
countIterations=countIterations*2;
End While
End For

Parallel Postfix Results

Table of runtime in seconds with multiple dataset sizes on
multiple numbers of processing elements

Number of
data items to| Two processing | Three processing | Four processing Five processing Eight processing
process elements elements elements elements elements
1,000,000 0.031092 0.022284 0.019831 0.018036 0.017211
5,000,000 0.262823 0.213076 0.216446 0.25277 0.20309
10,000,000 0.418481 0.313178 0.303652 0.383399 0.290436
20,000,000 0.95053 0.550902 0.51744 0.631492 0.501563
30,000,000 1.785445 1.160773 1.064436 1.652871 0.945759

All tests were ran on one node with 8 processing elements

24

Parallel Postfix Results

Table of runtime in seconds with multiple dataset sizes on
multiple numbers of processing elements

Number of Nine Sixteen Seventeen Thirty-Two Thirty-Three Sixty-Four

data items to| processing processing processing processing processing processing
process elements elements elements elements elements elements

1,000,000 | 0.019451 0.015108 0.018363 0.01571 0.016884 0.015406

5,000,000 | 0.2607153 | 0.240822 0.311957 0.223178 0.318088 0.220724
10,000,000 | 0.372847 0.341503 0.42765 0.31045 0.431284 0.301486
20,000,000 | 0.5850726 | 0.499397 0.69038 0.514603 0.729233 0.491735
30,000,000| 1.7470815 | 0.9880633 1.48113 1.05995 1.63448 1.07413

Number of e "

nodes needed:

(8 PE’s each)

2 nodes

3 nodes

4 nodes

5 nodes

8 nodes

25

Parallel Postfix Results

Table of runtime in seconds with multiple dataset sizes on
multiple numbers of processing elements

Number of data items | Ninety-Six processing
to process elements 128 processing elements | 256 processing elements
1,000,000 0.020267 0.021986 0.036986
5,000,000 0.239257 0.221295 0.23376
10,000,000 0.358634 0.3039986 0.3106978
20,000,000 0.551017 0.525583 0.5351053
30,000,000 1.162384 1.05421 1.111625
Number of
nodes needed: 12 nodes 16 nodes 32 nodes

(8 PE’s each)

26

Parallel Postfix Performance
Observations

* When the number of iterations calculated is not an
integer value, for example Log,(4) = 2, Log,(8) = 3, then
the runtime is longer because an extra postfix is
required

e When inter-node communication is needed then the
running time is longer. This occurs because the

processing elements need to communicate between
nodes in later iterations of the postfix

* The runtime on larger processing element tests run
longer because of barriers in the algorithm that ensure
that the processing elements are at the same step of
the postfix

Time in seconds needed to process 1,000,000
items divided evenly among N processing elements

0.04

0.035

0.03

o
o o
o N
N9 (Oa]

Runtime in seconds
o
o
[N
(O]

0.01

0.005

4

/

A

P

Number of processing elements

©

28

Time in seconds needed to process 5,000,000 items

0.35

0.3

4 0.25
c
o
(S

2 0.2
£
<))

£ 0.15
B
c
=]

€ 0.1

0.05

0

divided evenly among N processing elements

o} Q \ Q N Q Q Q) < \ NE Sl ©
,\$ Q \\@ <<o° Q\A 0%\ é\o d)d‘&e @6&6 *§$ &\& XQOQ é}ﬁb\ Q% ’f?
K\ & X 3 Q
AN /\\‘*& RN

Number of processing elements

29

Time in seconds needed to process 10,000,000 items

0.5
0.45

o
© w ©
w U b

Runtime in seconds
o
© o
N9 (0]

0.15
0.1
0.05

divided evenly among N processing elements

| A A
N A / \/ \

oA

o Q \ 4 L Q Q o 2 \ 3 52 0
S SRR S O &€ X«°° Q}@ S
A S U
AN /\\‘*& RN

Number of processing elements

30

Time in seconds needed to process 20,000,000 items

& 0.3

divided evenly among N processing elements

\

\

\ A /\
NNV —

g Q Q O 2 <& O
& 4&@ & & 2 & O ’c\,%\ N
S R 5) .\’.\'A é\(\@

S
Number of Processing Elements

31

Time in seconds needed to process 30,000,000 items

Runtime in seconds
© o o N
H (@)} (0] = N D (@) (0]

0.2

C

ivided evenly among N processing elements

\
\

A A
N /N A A

\VARRA e

\ /S \/ \/\/ \
\!\JV

v

o 7 R © S » Q Q o 2 X Ny D ©
SR T S R
\\Q/ .(& A’ .) QO
SN /\\{*& SN

Number of Processing Elements

32

Final Results

For both the parallel postfix and master/worker
implementation immediate algorithm runtime benefits can be
seen when the number of processing elements working on
the problem increases

For all of the test cases the master/worker implementation is
faster than the parallel postfix implementation. This is most
likely because the parallel prefix algorithm requires multiple
iterations to achieve a final answer

But, the parallel prefix algorithm calculates every individual
prefix on every processing element where the master/worker
algorithm just calculates the final result

Future Work

* Distribute and collect the dataset using MPI
Scatter and Gather
— Currently using sends and receives to distribute
the portions of the data set to the nodes

* Implement the algorithm in OpenMP and
compare the performance of the two
solutions

Questions?

References

* R. Miller and L. Boxer, Algorithms Sequential
and Parallel, A Unified Approach, Prentice
Hall, Upper Saddle River, NJ (2000).

Thank youl!

