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Motivation

We integrate functions to calculate the...
• total amount of heat generated over a fixed period

• total amount of stress exerted on a wing over a given area
• probability of an event in a probability space

How do we integrate functions?
• Analytic solution

• Some functions have nonelementary antiderivatives, e.g.,
exp(x2)

• Numerical solution

• Convergence, accuracy, and conservation
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Integration review

1 Intuition: integration accumulates local data into an integral
[nLa24]

2 Classical approach: integration is defined by extending the
“integration” of locally constant functions to measurable
functions [Kle07]

3 Measures are σ-additive: µ(
⊎

i Ai ) =
∑

i µ(Ai )

Idea

To compute
∫
I f d(σ), divide I into “equal” disjoint subsets.
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Naïve (numerical) solution

We want to integrate the function below
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Naïve (numerical) solution

Divide the domain uniformly and calculate the area of each
individual bar
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Naïve (numerical) solution

Refine the domain
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Observations

1 Evident parallelization of
the naïve solution

• Each processor is
responsible for a chunk
of the domain

2 Coarse mesh is sufficient
for constant functions

• Refining the red region
does not improve
accuracy
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Unstructured integrator

An unstructured integrator using unstructured domain
Input: mesh elements

Output: integral of a given function over
the given mesh elements
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Sequential algorithm

Suppose that the input contains chunks M1,M2, . . . ,Mn, where
each Mi is a (disjoint) collection of mesh elements.

1 Compute the integration of the given function f over each Mi

and store the result in si

2 Compute the sum of si
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Parallel algorithm

Given n processors, suppose that the input contains chunks
M1,M2, . . . ,Mn, where each Mi is a (disjoint) collection of mesh
elements.

1 Distribute each chunk Mi to a processor Pi

2 In parallel, each processor Pi computes the integration of the
given function f over Mi

3 Compute the sum of the results via collective communication,
and store the final result in the master processor P0
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Strong scaling
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Weak scaling
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Future work

• Adaptive refinement [Tra97, MK06, BKL+16]

• Discretization by hand is not easy
• Garbage in, garbage out

• A “domain specific language” for measure theory

• A synthetic development of measure theory
• Euclidean geometry is a synthetic theory

• Topos theoretic approach to measure theory

• Topoi are generalized sets
• Similar work has been done in [Jac06]
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