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We integrate functions to calculate the...
® total amount of heat generated over a fixed period
e total amount of stress exerted on a wing over a given area
e probability of an event in a probability space
How do we integrate functions?
e Analytic solution
® Some functions have nonelementary antiderivatives, e.g.,
exp(x?)
® Numerical solution
® Convergence, accuracy, and conservation
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Integration review

@ Intuition: integration accumulates local data into an integral
[nLa24]

@® Classical approach: integration is defined by extending the
“integration” of locally constant functions to measurable
functions [Kle07]

© Measures are g-additive: u(lH; Aj) = >, u(Ai)

Idea
To compute [, f d(o), divide / into “equal” disjoint subsets.



Naive (numerical) solution

We want to integrate the function below
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Naive (numerical) solution

Divide the domain uniformly and calculate the area of each
individual bar
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Naive (numerical) solution

Refine the domain
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the naive solution Z
® Each processor is 31
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® Coarse mesh is sufficient
for constant functions
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An unstructured integrator using unstructured domain
Input: mesh elements
Output: integral of a given function over
the given mesh elements
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An unstructured integrator using unstructured domain
Input: mesh elements
Output: integral of a given function over
the given mesh elements
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Sequential algorithm

Suppose that the input contains chunks My, My, ..., M,, where
each M; is a (disjoint) collection of mesh elements.

@ Compute the integration of the given function f over each M;
and store the result in s;
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Parallel algorithm

Given n processors, suppose that the input contains chunks
My, My, ..., My, where each M; is a (disjoint) collection of mesh
elements.
@ Distribute each chunk M; to a processor P;
® In parallel, each processor P; computes the integration of the
given function f over M;

©® Compute the sum of the results via collective communication,
and store the final result in the master processor P



Strong scaling

Each process element computes 10 million mesh elements
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Strong scaling

Speedup against single PE
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Weak scaling

All processing elements collectively compute 640 million elements
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Weak scaling

Speedup against single PE
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e Adaptive refinement [Tra97, MK06, BKL'16]
® Discretization by hand is not easy
® Garbage in, garbage out
e A “domain specific language” for measure theory
® A synthetic development of measure theory
® Euclidean geometry is a synthetic theory
® Topos theoretic approach to measure theory

® Topoi are generalized sets
e Similar work has been done in [Jac06]
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