Unstructured integrator using MPI

Frank Tsai^{1,2}

¹(SUNY at Buffalo)

²(Göteborgs universitet)

• total amount of heat generated over a fixed period

- total amount of heat generated over a fixed period
- total amount of stress exerted on a wing over a given area

- total amount of heat generated over a fixed period
- total amount of stress exerted on a wing over a given area
- probability of an event in a probability space

- total amount of heat generated over a fixed period
- total amount of stress exerted on a wing over a given area
- probability of an event in a probability space
- How do we integrate functions?
 - Analytic solution

• Numerical solution

- total amount of heat generated over a fixed period
- total amount of stress exerted on a wing over a given area
- probability of an event in a probability space
- How do we integrate functions?
 - Analytic solution
 - Some functions have nonelementary antiderivatives, e.g., $\exp(x^2)$
 - Numerical solution

- total amount of heat generated over a fixed period
- total amount of stress exerted on a wing over a given area
- probability of an event in a probability space
- How do we integrate functions?
 - Analytic solution
 - Some functions have nonelementary antiderivatives, e.g., $\exp(x^2)$
 - Numerical solution
 - Convergence, accuracy, and conservation

Intuition: integration accumulates local data into an integral [nLa24]

- Intuition: integration accumulates local data into an integral [nLa24]
- Classical approach: integration is defined by extending the "integration" of locally constant functions to measurable functions [Kle07]

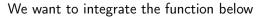
- Intuition: integration accumulates local data into an integral [nLa24]
- Classical approach: integration is defined by extending the "integration" of locally constant functions to measurable functions [Kle07]
- **3** Measures are σ -additive: $\mu(\biguplus_i A_i) = \sum_i \mu(A_i)$

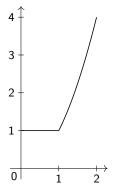
- Intuition: integration accumulates local data into an integral [nLa24]
- Classical approach: integration is defined by extending the "integration" of locally constant functions to measurable functions [Kle07]
- **3** Measures are σ -additive: $\mu(\biguplus_i A_i) = \sum_i \mu(A_i)$

Idea

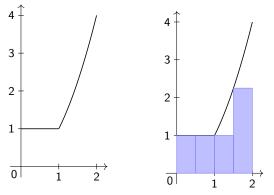
To compute $\int_I f d(\sigma)$, divide *I* into "equal" disjoint subsets.

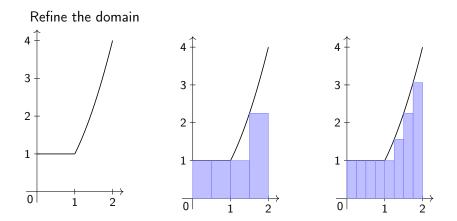
Naïve (numerical) solution





Divide the domain uniformly and calculate the area of each individual bar



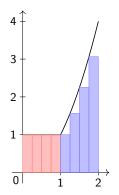


1 Evident parallelization of the naïve solution

2 Coarse mesh is sufficient for constant functions

- 1 Evident parallelization of the naïve solution
 - Each processor is responsible for a chunk of the domain
- 2 Coarse mesh is sufficient for constant functions

- 1 Evident parallelization of the naïve solution
 - Each processor is responsible for a chunk of the domain
- 2 Coarse mesh is sufficient for constant functions
 - Refining the red region does not improve accuracy



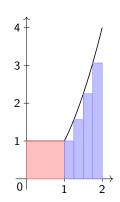
An unstructured integrator using unstructured domain

- **Input:** mesh elements
- **Output:** integral of a given function over

the given mesh elements

An unstructured integrator using unstructured domain

- **Input:** mesh elements
- **Output:** integral of a given function over the given mesh elements



Suppose that the input contains chunks M_1, M_2, \ldots, M_n , where each M_i is a (disjoint) collection of mesh elements.

1 Compute the integration of the given function f over each M_i and store the result in s_i

Suppose that the input contains chunks M_1, M_2, \ldots, M_n , where each M_i is a (disjoint) collection of mesh elements.

- **1** Compute the integration of the given function f over each M_i and store the result in s_i
- **2** Compute the sum of s_i

Given *n* processors, suppose that the input contains chunks M_1, M_2, \ldots, M_n , where each M_i is a (disjoint) collection of mesh elements.

1 Distribute each chunk M_i to a processor P_i

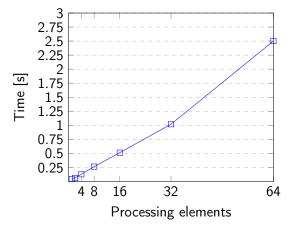
Given *n* processors, suppose that the input contains chunks M_1, M_2, \ldots, M_n , where each M_i is a (disjoint) collection of mesh elements.

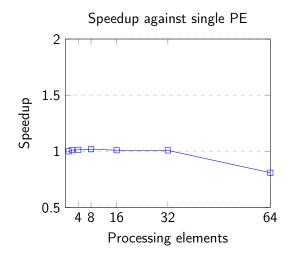
- **1** Distribute each chunk M_i to a processor P_i
- 2 In parallel, each processor P_i computes the integration of the given function f over M_i

Given *n* processors, suppose that the input contains chunks M_1, M_2, \ldots, M_n , where each M_i is a (disjoint) collection of mesh elements.

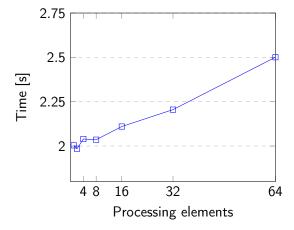
- **1** Distribute each chunk M_i to a processor P_i
- 2 In parallel, each processor P_i computes the integration of the given function f over M_i
- **3** Compute the sum of the results via collective communication, and store the final result in the master processor P_0

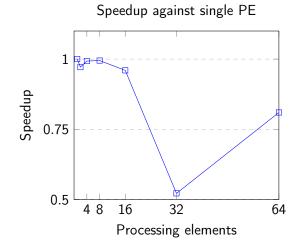
Each process element computes 10 million mesh elements





All processing elements collectively compute 640 million elements





• Adaptive refinement [Tra97, MK06, BKL+16]

- Adaptive refinement [Tra97, MK06, BKL+16]
 - Discretization by hand is not easy

- Adaptive refinement [Tra97, MK06, BKL+16]
 - Discretization by hand is not easy
 - Garbage in, garbage out

- Adaptive refinement [Tra97, MK06, BKL+16]
 - Discretization by hand is not easy
 - Garbage in, garbage out
- A "domain specific language" for measure theory

- Adaptive refinement [Tra97, MK06, BKL+16]
 - Discretization by hand is not easy
 - Garbage in, garbage out
- A "domain specific language" for measure theory
 - A synthetic development of measure theory

- Adaptive refinement [Tra97, MK06, BKL+16]
 - Discretization by hand is not easy
 - Garbage in, garbage out
- A "domain specific language" for measure theory
 - A synthetic development of measure theory
 - Euclidean geometry is a synthetic theory

- Adaptive refinement [Tra97, MK06, BKL+16]
 - Discretization by hand is not easy
 - Garbage in, garbage out
- A "domain specific language" for measure theory
 - A synthetic development of measure theory
 - Euclidean geometry is a synthetic theory
- Topos theoretic approach to measure theory

- Adaptive refinement [Tra97, MK06, BKL+16]
 - Discretization by hand is not easy
 - Garbage in, garbage out
- A "domain specific language" for measure theory
 - A synthetic development of measure theory
 - Euclidean geometry is a synthetic theory
- Topos theoretic approach to measure theory
 - Topoi are generalized sets

- Adaptive refinement [Tra97, MK06, BKL+16]
 - Discretization by hand is not easy
 - Garbage in, garbage out
- A "domain specific language" for measure theory
 - A synthetic development of measure theory
 - Euclidean geometry is a synthetic theory
- Topos theoretic approach to measure theory
 - Topoi are generalized sets
 - Similar work has been done in [Jac06]

 Nicolas Barral, Matthew G Knepley, Michael Lange, Matthew D Piggott, and Gerard J Gorman.
Anisotropic mesh adaptation in firedrake with petsc dmplex. arXiv preprint arXiv:1610.09874, 2016.

Matthew Jackson.

A sheaf theoretic approach to measure theory. PhD thesis, University of Pittsburgh, 2006.

Achim Klenke.

Probability Theory: A Comprehensive Course. Springer, 2007.

Matthias Möller and Dmitri Kuzmin.

Adaptive mesh refinement for high-resolution finite element schemes.

International journal for numerical methods in fluids, 52(5):545–569, 2006.

nLab authors.

integral.

https://ncatlab.org/nlab/show/integral, March 2024. Revision 27.

B. A. Shadwick, John C. Bowman, and P. J. Morrison.
Exactly conservative integrators.
SIAM Journal on Applied Mathematics, 59(3):1112–1133, 1998.

Christoph T Traxler. An algorithm for adaptive mesh refinement in n dimensions. *Computing*, 59:115–137, 1997.