
HYPERQUICK 
SORT
CSE 633: Parallel Algorithms

Guide: Dr. Russ Miller

Presenter: Gaurav Nathani



Hypercube

• Multi-dimensional mesh network

• Has 2d processors or processing elements (d – degree)

• Degree = 0 – just a point (single processor)

• Degree = 1 – line (2 processors connected)

• Degree = 2 – square (Each processor connected to 2 other processors)

• Degree = 3 – cube (Each processor connected to 3 other processors)

2



Hypercube - Network
• Network connections only between processors that differ at 

exactly 1 bit in the binary representation of their processor ids



Hypercube – Communication Diameter
• Minimum number of hops to connect most distant processors

• For hypercube – log2(P) = d

• Observe multiple shortest paths present 



Hypercube – Bisection Width
• Number of connections we need to cut in order to create 2 

networks of equal size - half the size of the original network –
2(d-1)



Quick Sort

• Divide and conquer algorithm

• Choose pivot/splitter

• Divide list: less than or equal to pivot & greater than pivot/splitter

• Recurse on the 2 sub lists

• Time Complexity O(n log(n))

6



Hypercube Quick Sort
1. Divide data equally on each processor

2. Sort data individually on each processor

3. Pick median from the lowest numbered processor/s in current sub cube and broadcast to all 
processors in the sub cube

4. Based on this median, create a less than equal to median list & a greater than median list

5. Along dimension 0, each pair of neighbors exchange their greater & lesser list

6. Merge the 2 lists at each processor to create sorted list

7. Create 2 sub-networks or 2 sub-cubes along the lowest dimension and repeat steps 3 to 7 until only 
one processor in the sub-cube.

7



Hyperquick Sort – Divide and Conquer

8

d – degree of hypercube
P – number of processors = 2d

Number of Phases = log2(P) = d
Total Number of Broadcast 

Communications = 2d - 1

• Example: d=3, P=8
Number of phases = 3
Total number of broadcast steps = 7



Hyperquick Sort – Analysis

9

n – number of data points, d – degree of hypercube, p – number of processors = 2d

• (n/p)log2(n/p) – time for sequential sort on each processor [only done at the beginning]

• (2d-1)(tb) – time for all broadcast communication where tb is the time required for broadcast 

• d(te) – time for all data exchange communication where te is the time required for data exchange

• d(n/p) + d(n/p) – time for creating sublists and merging sublists

Expected Running Time for Hyperquick Sort :
Q((n/p)log2(n/p) + (2d-1)(tb) + d(te) + d(n/p) + d(n/p)) [Non-simplified]

* tb & te depend on message size, p, and network latency & bandwidth



Strong Scaling

10
We observe considerable speedup for constant data by increasing the number of processors.

p/n 2 GB 4 GB 8 GB 10 GB 20 GB
1 358.049 744.424 1532.8 1956.08 4140
2 182.204 378.132 790.97 1002.09 2210.49
4 90.7163 188.477 392.078 496.728 1042.77
8 45.7771 94.9527 197.01 247.982 522.592

16 23.2691 47.5236 98.8261 123.863 268.314
32 11.6798 24.073 49.287 62.0191 130.855
64 6.26326 13.5721 25.1438 31.7966 65.8802

128 3.42971 6.60675 13.1622 16.512 33.715



Strong Scaling

11

0

500

1000

1500

2000

2500

2 4 8 16 32 64 128

Ti
m

e 
in

 s
ec

on
ds

Number of Processors

Strong Scaling

2 GB 4 GB 8 GB 10 GB 20 GB



Speedup vs Efficiency: Strong Scaling

12

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

1 2 4 8 16 32 64 128

Efficiency
8 GB 10 GB

0.000 20.000 40.000 60.000 80.000 100.000 120.000 140.000

2

4

8

16

32

64

128

Speedup

10 GB 8 GB



Weak Scaling

13
For same ratio of data per processor we see sort of similar times.

p/n 1 GB Per Node 2 GB Per Node
1 173.309 358.049
2 184.062 378.132
4 188.477 392.078
8 197.008 407.917

16 204.384 430.394
32 212.644 461.355
64 223.135 473.859

128 289.025 553.869



Speedup vs Efficiency: Weak Scaling

14

0 0.2 0.4 0.6 0.8 1 1.2

2

4

8

16

32

64

128

Speedup

2GB/P 1GB/P

0

0.2

0.4

0.6

0.8

1

1.2

1 2 4 8 16 32 64 128

Efficiency

1GB/P 2GB/P



Pros

• Hypercube properties – high bisection width & low communication diameter

• With uniform distribution of data, we get good median/splitter and hence good speedup possible

15



Cons

• Number of nodes must be power of 2

• High communication overheads

• Load imbalance due to bad splitter affects performance

• If some prior knowledge of data – choose better sort options

16



High Communication Overheads

17

n/p 2 4 8 16 32

50k 0.02642 0.02555 0.054602 0.1408 0.1883

100k 0.0459 0.03452 0.05832 0.1291 0.1716

200k 0.0831 0.05852 0.069626 0.1397 0.1693

400k 0.15262 0.09348 0.090608 0.1473 0.1818

800k 0.26634 0.1635 0.121906 0.164 0.194
0

0.05

0.1

0.15

0.2

0.25

0.3

2 4 8 16 32

Ti
m

e 
in

 s
ec

on
ds

Number of Processors

Communication Overhead

50k 100k 200k 400k 800k



Load Imbalance

18

P Neighbor Phase 1 Broadcast
0 2 1 1 1 1 1 1 1 1 1 1 1 1 splitter 1
1 3 1 1 1 1 1 1 1 1 1 2 5 6
2 0 2 3 4 5 6 6 6 20 24 24 26 28
3 1 1 2 3 8 9 21 22 29 29 32 39 41 52
P Phase 2 Broadcast
0 1 1 1 1 1 1 1 1 1 1 1 1 1 splitter 1
1 0 1 1 1 1 1 1 1 1 1 1
2 3 2 3 4 5 6 6 6 20 24 24 26 28 splitter 6
3 2 2 2 3 5 6 8 9 21 22 29 29 32 39 41 52
P Final Broadcast
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1
2 2 2 2 3 3 4 5 5 6 6 6 6
3 8 9 20 21 22 24 24 26 28 29 29 29 32 39 41 52



Questions?

19



THANK YOU!


