Parallel K means clustering
using MPI

Author: Gautam Shende
CSE 633: Parallel Algorithms
Instructor: Dr. Russ Miller

Date: 05/08/2018

PARALLEL K MEANS USING MPI 1

OVERVIEW

N o O s~ Db =

Clustering

K means

Parallel Model & Flow
Results & Inferences
Challenges

Future Scope

References

PARALLEL K MEANS USING MPI

1) CLUSTERING

CLUSTERING

1. Partitioning of data into subsets called clusters

2. Similar elements placed in same cluster. Similarity is
calculated based on some distance metric such as
euclidean distance or hamming distance.

3. Example :
Dataset = {US, CHN, IN, CA}
No of clusters = 2

Cluster 1: US, CA
Cluster 2: CHN, IN

PARALLEL K MEANS USING MPI 4

2) K-Means

PARALLEL K MEANS USING MPI 5

K-MEANS FOR CLUSTERING

1. Select k i.e. the number of clusters

2. Use any strategy* to select k points to be cluster
centers.

3. Put each point in the data set in the cluster which has
its center closest to the point

4. Calculate new cluster centers by taking means of all
points in a cluster

5. Repeat 3 and 4 until convergence

PARALLEL K MEANS USING MPI 6

EXAMPLE

U={1,6,10,18,3,14} , K=2
ASSUME CLUSTER CENTERS TOBE C1=1,C2=6

CLUSTER C1: {1,3}
CLUSTER C2: {6,10,18,14}

UPDATE CENTRE C1 =AVG {1,3} =2
UPDATE CENTRE C2 = AVG {6,10,18,14} = 12

UPDATED CLUSTER C1: {1,3,6}
UPDATED CLUSTER C2: {10,18,14}

UPDATE CENTRE C1 = AVG {1,3,6} = 3.333
UPDATE CENTRE C2 = AVG {10,18,14} = 14

UPDATED CLUSTER C1: {1,3,6}
UPDATED CLUSTER C2: {10,18,14}

NO CHANGE IN CLUSTER CONFIGURATION (CONVERGENCE)
-> STOP <-

PARALLEL K MEANS USING MPI 7

PARALLEL K-MEANS

1. Allot k cluster centers to the nodes(n) equally such that
each node is responsible for (k/n) clusters.

2. Now Each node does the following

a. Calculate centers of (k/n) clusters by mean

b. Broadcast (k/n) centers to all other nodes

c. Receive (k/n) centers from every other node

d. Calculate distance of all points from all centers
and find closest cluster

e. Send and receive points (internal and external
transfers)

3. Repeat until Convergence (stopping condition)

- No internal/external transfers
<-> Centers remain constant

PARALLEL K MEANS USING MPI

3) PARALLEL MODEL
& FLOW

MODEL PARAMETERS

g1994@zodiac:~/MPIprograms/kmeans$ cat allot_data.c
#include <stdio.h>

#include <math.h>

#include <stdlib.h>

#include <mpi.h>

#include <string.h>

#tdefine max(x,y) ((x>y)? x:y)
#tdefine min(x,y) ((x<y)? x:y)

#tdefine np 4 // no of processors (TUNE)

#define nfiles 256 // no of files (TUNE < 256)

#define filesize 1024 // no of inputs in each file (TUNE < 4096)

#define cK 256 // this is number of clusters K cK (TUNE -> multiple of np)
#tdefine max_transfers nfiles*filesize / (cK) // (NO TUNE)

#define range 10001 // (NO TUNE) this is the max int on any file

float precision = 0.0001; // for checking convergence i.e all centers are

*local parameter = Max iterations (=300)

Complexity: O(input*K*iterations*dimensions)
= O(nfiles*filesize*cK*max _iterations*1)
= ~(256*1024*256*300) = ~2*10710 =~20 billion calculations

Repository: https://github.com/thezodiac1994/Parallel-Alogrithms
PARALLEL K MEANS USING MPI 10

FLOW OF PARALLEL PROGRAM

int main (int argv, char ** argc) {

int MAXITER = 300;
double start = 0,end = 0, total_time = 0;

MPI_Init(&argv,&argc);
int node,csize,i,temp;
MPI_Comm_rank(MPI_COMM_WORLD,&node);
MPI_Comm_size(MPI_COMM_WORLD,&csize);

populate_data(node); // read from files and populate data
populate_clusters(cK/np,node); // cK/np is the number of clusters per node

MPI_Barrier (MPI_COMM_WORLD);
start = MPI_Wtime();

initialize_all_means(cK/np);

int iter = 0;
while((iter<MAXITER) && (!check_stop_condition(cK/np))){

copy_centers(cK/np); // to check stop condition
re_clusterify(cK/np,node); // calculate closest cluster and perform transfers to form updated clusters
bcast_and_get_means(cK/np,node); // calculate and broadcast new means for updated clusters
check_stop_condition(cK/np);
iter++;
if((iter%20==0) & (node==0))//{

printf("ITERATION %d\n",iter);

}

MPI_Barrier (MPI_COMM_WORLD);
end = MPI_Wtime();
total_time = end - start;

sum_validation(cK/np,node); // sum of all points at beginning and the end is same
// model_validation(cK/np,node); // each point is actually in a cluster closest to it -> only true for convergence

if(!node){
print_centers();
freopen("results.txt","a+",stdout);
printf("\nNo of iterations for convergence = %d : assuming that it did not reach MAXITER (%d)\nTOTAL TIME = %.3f
printdefines();

}

MPI_Finalize();
return 0;

PARALLEL K MEANS USING MPI 11

4) RESULTS & INFERENCES

RESULTS & INFERENCES

seff: slurm db query: jobid: 8789732 usec: 2.78778
Job ID: 8789732

Cluster: ub-hpc

User/Group: gautamav/cse633s18

State: COMPLETED (exit code 0)

Nodes: 256

Cores per node: 1

CPU Utilized: 01:21:20

CPU Efficiency: 18.51% of 07:19:28 core-walltime
Memory Utilized: 38.42 MB

Memory Efficiency: 0.01% of 700.00 GB

(First things first)

PARALLEL K MEANS USING MPI 13

a) Nodes vs Time

cK = 256, inpsize = 262,144, iterations = 106 (convergence)

nodes to t1 t2 t3 t4 avg
256 6.531 6.538 6.674 6.536 6.53 6.562
128 8.28 8.428 LY 8.298 8.282 8.306
64 10.526 10.54 10.698 10.548 10.78 10.618
32 14.42 14.405 14.393 14.543 14.392 14.431
16 18.104 18.114 18.092 18.09 17.388 17.746
8 21.214 21.201 21.201 21.211 21.578 21.281
4 27.329 27.305 27.328 27.312 27.353 27.352
2 38.61 38.632 38.64 38.62 38.6 38.621
1 59.317 59.378 59.425 59.352 59.349 59.364

PARALLEL K MEANS USING MPI 14

a) Nodes vs Time

100 150
nodes/servers

Nodes 1 2 4 8 16 32 64 128 256

Time(s) | 59.364 | 38.621 | 27.352 | 21.281 17.746 14.431 10.618 8.306 6.562

PARALLEL K MEANS USING MPI 15

b) SPEEDUP (starting n=2)

100 150
nodes/servers

Nodes 2 4 8 16 Ky 64 128 256

Speedup 1.0 1.411 1.814 2.176 2.676 3.637 4.649 5.886

PARALLEL K MEANS USING MPI 16

c) EFFICIENCY (starting n=2)

o
=]

0.6

1=
=

>
o
c
2
h—
5

=}
N

100 150
nodes/servers

Nodes 2 4 8 16 32 64 128

Efficiency 1.0 0.705 0.453 0.272 0.167 0.114 0.073

PARALLEL K MEANS USING MPI 17

d) Nodes vs Time
- increasing data with nodes

cK = 256

nodes |data #iter to t1 t2 t3 t4 avg

128| 131072 116| 5.173| 5.198| 5.211 5.089| 5.064| 5.1185

64| 65536 101| 3.879| 3.878 3.88 3.88| 3.874| 3.8765

32| 32768 105| 2.025(2.019| 2.024| 2.025| 2.017| 2.021

16| 16384 112 1.429| 1.432| 1.434| 1.431 1.445| 1.437

8 8192 118| 0.965 0.97| 0.966| 0.969| 0.941 0.953

4 4096 103| 0.574| 0.575| 0.579| 0.573| 0.574| 0.574

2 2048 2 0.011| 0.011 0.011 0.011 0.01| 0.0105

1 1024 1| 0.009| 0.005| 0.007| 0.008/ 0.008| 0.0085

PARALLEL K MEANS USING MPI 18

d) Nodes vs Time
- increasing data with nodes

40 60 80
nodes/servers
Nodes 1 2 4 8 16 Ky
Time(s) 0.008 | 0.010 0.574 0.953 1.437 2.021
Data (x = 2210) X 2x 4x 8x 16x 32x

PARALLEL K MEANS USING MPI

64

3.876

64x

128

5.118

128x

19

d) Nodes vs Time
- increasing data with nodes (considering iterations) -(é

w
c
2
=
[
~
o
=

Nodes 1 2 4 8 16 32
Time 0.008 0.010 0.574 0.953 1.437 2.021
Data (x = 2*10) X 2X 4x 8x 16x 32x
1 2 103 118 112 105

lterations
PARALLEL K MEANS USING MPI

64

3.876

64x

101

128

5.118

128x

116

20

e) Varying cpus per node

cK = 256, inpsize = 262144, nodes*cpus = 32

nodes cpus to t1 t2 t3 avg
2 16 16.026 18.446 17.73 17.035 16.531
4 8 14.457 14.46 14.439 14.423 14.44
8 4 14.396 14.411 14.394 14.419 14.408
16 2 14.68 14.617 14.656 14.396 14.538
32 1 14.42 14.405 14.426 14.419 14.418

PARALLEL K MEANS USING MPI 21

e) Varying cpus per node

Keeping nodes * processors constant

B Proc
B Time

nodes = 4

nodes = 16

nodes = 32

Nodes , cpus 2,16 4.8 8,4 16,2 32,1

Time(s) 16.531 14.44 14.408 | 14.538 14.418

PARALLEL K MEANS USING MPI 22

f) Varying input size

np = 32, cK = 256

inpsize (0] t1 t2 t3 avg iterations avgl/iter
4x = 262144 14.404 14.404 14.406 14.399 14.40325 106 0.136
3x = 196608 13.273 13.264 13.255 13.275 13.26675 123 0.108
2x = 131072 8.622 8.627 8.648 8.625 8.6305 130 0.066
X = 65536 4.494 4.491 4.497 4.497 4.49475 129 0.035

np = 16, cK = 256

inpsize (0] t1 t2 t3 avg iterations avgliter
4x = 262144 27.091 27.093 27.081 27.094 27.08975 106 0.256
3x = 196608 17.698 17.73 17.732 17.716 17.719 123 0.144
2x = 131072 11.121 11.12 11.123 11.118 11.1205 130 0.085
x = 65536 5.317 5.31 5.318 5.315 5.315 129 0.041

PARALLEL K MEANS USING MPI

23

Varying input size

=
N
[=]

01

[=]
Pt
(=]

c
2
-
o
e
[
-
—
@
o
@
E
=

125 150 175 200 225 250
Input size (x1000)

InpSize X 2x 3x 4x
Time/lteration (np = 16) 0.041 0.085 0.144 0.256
Time/lteration (np = 32) 0.035 0.066 0.108 0.136

*time/iter so we don’t have to consider the third variable/dimension (iterations) separately

PARALLEL K MEANS USING MPI 24

g) Varying cK

inpsize = 262144, nodes = 16, iterations = c

ck t0 t1 t2 avg
512 0.303 0.306 0.301 0.302
768 1.237 1.234 1.238 1.2375
1024 1.694 1.701 1.701 1.6975
1280 5.583 5.585 5.599 5.591
inpsize = 262144, nodes = 32, iterations = c

ck t0 t1 t2 avg
512 0.167 0.17 0.166 0.1665
768 0.547 0.548 0.55 0.5485
1024 1.043 1.044 1.044 1.0435
1280 2.258 2.26 2.263 2.2605

* Ran for low no of fixed iterations, because the motive was to see the effect of k and not reach convergence. Constant iterations eliminates the need to
consider it explicitly as an extra variable/dimension affecting the graph

PARALLEL K MEANS USING MPI

g) Varying cK

700 800 %00 1000 1100 1200 1300

cK
cK (x=256) 2x 3x 4x 5x
Time (np = 16) 0.302 1.237 1.697 5.591
Time (np = 32) 0.1665 0.5485 1.0435 2.2605

PARALLEL K MEANS USING MPI 26

h) Inferences

1)

2)

3)

4)

For my model, 16-32 nodes are ideal from the point of
view of efficiency and improvement in running times.

When keeping nodes * cpus = 32, the combination.,
there is not much deviation but nodes = 4, cpus = 8
was found to work best. Too many cpus on one node
saturates it and too few increases communication
cost.

Increasing cK has more impact on running time as in
comparison to adding more uniformly distributed data.

It is important to also consider the number of iterations
while scaling the model (input).

PARALLEL K MEANS USING MPI

27

5) CHALLENGES

CHALLENGES

1) Getting access to servers
- 5days -> 256 nodes
- 4 days -> 128 nodes
- 2 days -> 64 nodes

2) Sequencing of Parallel events

3) Hyper tuning parameters
- cK, nP, cores/node, input size, etc

4) Validation of the algorithm

PARALLEL K MEANS USING MPI 29

6) FUTURE SCOPE

FUTURE SCOPE

Implement on a multidimensional dataset

Apply to a real world clustering problem

See how different variations of the algorithm perform in
terms of time and number of iterations (like choosing a
different distance metric, different strategy to initialise

clusters, etc)

Implement a similar model on OpenMP and CUDA

PARALLEL K MEANS USING MPI

31

7) REFERENCES

REFERENCES

1) Algorithms Sequential & Parallel: A Unified Approach
(Dr. Russ Miller, Dr.Laurence Boxer)

2) https://ubccr.freshdesk.com/support/solutions/articles/130000
26245-tutorials-and-training-documents
(Dr. Matthew Jones)

3) A Parallel K-Means Clustering Algorithm with MPI
(Jing Zhang, Gongging Wu, Xuegang Hu, Shiying Li, Shuilong
Hao)

4) https://www.buffalo.edu/ccr/support/ccr-help.html
(UB CCR help)

5) Stackoverflow (for general MPI questions)

PARALLEL K MEANS USING MPI 33

