
PARALLEL K MEANS USING MPI

Parallel K means clustering
using MPI

Author: Gautam Shende

CSE 633: Parallel Algorithms

Instructor: Dr. Russ Miller

Date: 05/08/2018

1

PARALLEL K MEANS USING MPI

OVERVIEW

2

1. Clustering

2. K means

3. Parallel Model & Flow

4. Results & Inferences

5. Challenges

6. Future Scope

7. References

PARALLEL K MEANS USING MPI

1) CLUSTERING

3

PARALLEL K MEANS USING MPI

CLUSTERING

4

1. Partitioning of data into subsets called clusters

2. Similar elements placed in same cluster. Similarity is
calculated based on some distance metric such as
euclidean distance or hamming distance.

3. Example :
Dataset = {US, CHN, IN, CA}
No of clusters = 2

Cluster 1: US, CA
Cluster 2: CHN, IN

PARALLEL K MEANS USING MPI

2) K-Means

5

PARALLEL K MEANS USING MPI

K-MEANS FOR CLUSTERING

6

1. Select k i.e. the number of clusters

2. Use any strategy* to select k points to be cluster
centers.

3. Put each point in the data set in the cluster which has
its center closest to the point

4. Calculate new cluster centers by taking means of all
points in a cluster

5. Repeat 3 and 4 until convergence

PARALLEL K MEANS USING MPI

EXAMPLE

7

- U = {1,6,10,18,3,14} , K=2

- ASSUME CLUSTER CENTERS TO BE C1 = 1, C2 = 6

- CLUSTER C1: {1,3}
CLUSTER C2: {6,10,18,14}

- UPDATE CENTRE C1 = AVG {1,3} = 2
UPDATE CENTRE C2 = AVG {6,10,18,14} = 12

- UPDATED CLUSTER C1: {1,3,6}
UPDATED CLUSTER C2: {10,18,14}

- UPDATE CENTRE C1 = AVG {1,3,6} = 3.333
UPDATE CENTRE C2 = AVG {10,18,14} = 14

- UPDATED CLUSTER C1: {1,3,6}
UPDATED CLUSTER C2: {10,18,14}

- NO CHANGE IN CLUSTER CONFIGURATION (CONVERGENCE)
-> STOP <-

PARALLEL K MEANS USING MPI

PARALLEL K-MEANS

8

1. Allot k cluster centers to the nodes(n) equally such that
each node is responsible for (k/n) clusters.

2. Now Each node does the following

a. Calculate centers of (k/n) clusters by mean
b. Broadcast (k/n) centers to all other nodes
c. Receive (k/n) centers from every other node
d. Calculate distance of all points from all centers

and find closest cluster
e. Send and receive points (internal and external

transfers)

 3. Repeat until Convergence (stopping condition)
- No internal/external transfers

<-> Centers remain constant

PARALLEL K MEANS USING MPI

3) PARALLEL MODEL
& FLOW

9

PARALLEL K MEANS USING MPI

MODEL PARAMETERS

10

*local parameter = Max iterations (=300)

Complexity: O(input*K*iterations*dimensions)
= O(nfiles*filesize*cK*max_iterations*1)
= ~(256*1024*256*300) = ~2*10^10 =~20 billion calculations

Repository: https://github.com/thezodiac1994/Parallel-Alogrithms

PARALLEL K MEANS USING MPI

FLOW OF PARALLEL PROGRAM

11

PARALLEL K MEANS USING MPI

4) RESULTS & INFERENCES

12

PARALLEL K MEANS USING MPI

RESULTS & INFERENCES

13

 (First things first)

PARALLEL K MEANS USING MPI

a) Nodes vs Time

14

nodes t0 t1 t2 t3 t4 avg

256 6.531 6.538 6.674 6.536 6.53 6.562

128 8.28 8.428 8.242 8.298 8.282 8.306

64 10.526 10.54 10.698 10.548 10.78 10.618

32 14.42 14.405 14.393 14.543 14.392 14.431

16 18.104 18.114 18.092 18.09 17.388 17.746

8 21.214 21.201 21.201 21.211 21.578 21.281

4 27.329 27.305 27.328 27.312 27.353 27.352

2 38.61 38.632 38.64 38.62 38.6 38.621

1 59.317 59.378 59.425 59.352 59.349 59.364

cK = 256, inpsize = 262,144, iterations = 106 (convergence)

PARALLEL K MEANS USING MPI

a) Nodes vs Time

15

Nodes 1 2 4 8 16 32 64 128 256

Time(s) 59.364 38.621 27.352 21.281 17.746 14.431 10.618 8.306 6.562

PARALLEL K MEANS USING MPI

 b) SPEEDUP (starting n=2)

16

Nodes 2 4 8 16 32 64 128 256

Speedup 1.0 1.411 1.814 2.176 2.676 3.637 4.649 5.886

PARALLEL K MEANS USING MPI

 c) EFFICIENCY (starting n=2)

17

Nodes 2 4 8 16 32 64 128 256

Efficiency 1.0 0.705 0.453 0.272 0.167 0.114 0.073 0.046

PARALLEL K MEANS USING MPI 18

nodes data #iter t0 t1 t2 t3 t4 avg

128 131072 116 5.173 5.198 5.211 5.089 5.064 5.1185

64 65536 101 3.879 3.878 3.88 3.88 3.874 3.8765

32 32768 105 2.025 2.019 2.024 2.025 2.017 2.021

16 16384 112 1.429 1.432 1.434 1.431 1.445 1.437

8 8192 118 0.965 0.97 0.966 0.969 0.941 0.953

4 4096 103 0.574 0.575 0.579 0.573 0.574 0.574

2 2048 2 0.011 0.011 0.011 0.011 0.01 0.0105

1 1024 1 0.009 0.005 0.007 0.008 0.008 0.0085

d) Nodes vs Time
- increasing data with nodes

cK = 256

PARALLEL K MEANS USING MPI 19

d) Nodes vs Time
- increasing data with nodes

Nodes 1 2 4 8 16 32 64 128

Time(s) 0.008 0.010 0.574 0.953 1.437 2.021 3.876 5.118

Data (x = 2^10) x 2x 4x 8x 16x 32x 64x 128x

PARALLEL K MEANS USING MPI 20

d) Nodes vs Time
- increasing data with nodes (considering iterations)

Nodes 1 2 4 8 16 32 64 128

Time 0.008 0.010 0.574 0.953 1.437 2.021 3.876 5.118

Data (x = 2^10) x 2x 4x 8x 16x 32x 64x 128x

Iterations 1 2 103 118 112 105 101 116

PARALLEL K MEANS USING MPI 21

e) Varying cpus per node

nodes cpus t0 t1 t2 t3 avg

2 16 16.026 18.446 17.73 17.035 16.531

4 8 14.457 14.46 14.439 14.423 14.44

8 4 14.396 14.411 14.394 14.419 14.408

16 2 14.68 14.617 14.656 14.396 14.538

32 1 14.42 14.405 14.426 14.419 14.418

 cK = 256, inpsize = 262144, nodes*cpus = 32

PARALLEL K MEANS USING MPI 22

e) Varying cpus per node

Nodes , cpus 2,16 4,8 8,4 16,2 32,1

Time(s) 16.531 14.44 14.408 14.538 14.418

PARALLEL K MEANS USING MPI

f) Varying input size

23

 np = 32, cK = 256

 np = 16, cK = 256

inpsize t0 t1 t2 t3 avg iterations avg/iter

4x = 262144 14.404 14.404 14.406 14.399 14.40325 106 0.136

3x = 196608 13.273 13.264 13.255 13.275 13.26675 123 0.108

2x = 131072 8.622 8.627 8.648 8.625 8.6305 130 0.066

x = 65536 4.494 4.491 4.497 4.497 4.49475 129 0.035

inpsize t0 t1 t2 t3 avg iterations avg/iter

4x = 262144 27.091 27.093 27.081 27.094 27.08975 106 0.256

3x = 196608 17.698 17.73 17.732 17.716 17.719 123 0.144

2x = 131072 11.121 11.12 11.123 11.118 11.1205 130 0.085

x = 65536 5.317 5.31 5.318 5.315 5.315 129 0.041

PARALLEL K MEANS USING MPI

f) Varying input size

24

InpSize x 2x 3x 4x

Time/Iteration (np = 16) 0.041 0.085 0.144 0.256

Time/Iteration (np = 32) 0.035 0.066 0.108 0.136

*time/iter so we don’t have to consider the third variable/dimension (iterations) separately

PARALLEL K MEANS USING MPI

g) Varying cK

25

 inpsize = 262144, nodes = 16, iterations = c

 inpsize = 262144, nodes = 32, iterations = c

ck t0 t1 t2 avg
512 0.303 0.306 0.301 0.302
768 1.237 1.234 1.238 1.2375

1024 1.694 1.701 1.701 1.6975
1280 5.583 5.585 5.599 5.591

ck t0 t1 t2 avg
512 0.167 0.17 0.166 0.1665
768 0.547 0.548 0.55 0.5485

1024 1.043 1.044 1.044 1.0435
1280 2.258 2.26 2.263 2.2605

* Ran for low no of fixed iterations, because the motive was to see the effect of k and not reach convergence. Constant iterations eliminates the need to
consider it explicitly as an extra variable/dimension affecting the graph

PARALLEL K MEANS USING MPI

g) Varying cK

26

cK (x=256) 2x 3x 4x 5x

Time (np = 16) 0.302 1.237 1.697 5.591

Time (np = 32) 0.1665 0.5485 1.0435 2.2605

PARALLEL K MEANS USING MPI

h) Inferences

27

1) For my model, 16-32 nodes are ideal from the point of
view of efficiency and improvement in running times.

2) When keeping nodes * cpus = 32, the combination.,
there is not much deviation but nodes = 4, cpus = 8
was found to work best. Too many cpus on one node
saturates it and too few increases communication
cost.

3) Increasing cK has more impact on running time as in
comparison to adding more uniformly distributed data.

4) It is important to also consider the number of iterations
while scaling the model (input).

PARALLEL K MEANS USING MPI

5) CHALLENGES

28

PARALLEL K MEANS USING MPI

CHALLENGES

29

1) Getting access to servers
- 5 days -> 256 nodes
- 4 days -> 128 nodes
- 2 days -> 64 nodes

2) Sequencing of Parallel events

3) Hyper tuning parameters
- cK, nP, cores/node, input size, etc

4) Validation of the algorithm

PARALLEL K MEANS USING MPI

6) FUTURE SCOPE

30

PARALLEL K MEANS USING MPI

FUTURE SCOPE

31

1) Implement on a multidimensional dataset

2) Apply to a real world clustering problem

3) See how different variations of the algorithm perform in
terms of time and number of iterations (like choosing a
different distance metric, different strategy to initialise
clusters, etc)

4) Implement a similar model on OpenMP and CUDA

PARALLEL K MEANS USING MPI

7) REFERENCES

32

PARALLEL K MEANS USING MPI

REFERENCES

33

1) Algorithms Sequential & Parallel: A Unified Approach
(Dr. Russ Miller, Dr.Laurence Boxer)

2) https://ubccr.freshdesk.com/support/solutions/articles/130000
26245-tutorials-and-training-documents
(Dr. Matthew Jones)

3) A Parallel K-Means Clustering Algorithm with MPI
(Jing Zhang, Gongqing Wu, Xuegang Hu, Shiying Li, Shuilong
Hao)

4) https://www.buffalo.edu/ccr/support/ccr-help.html
(UB CCR help)

5) Stackoverflow (for general MPI questions)

