
PARALLEL 
LEVENSHTEIN
DISTANCE
Gianna Bossoreale

CSE633: Parallel Algorithms



Levenshtein Distance Implementation

- Every element of the levenshtein distance matrix is calculated from a 

previously calculated distance.

- The only information that is needed is the top, top left, and left 

element for our calculation.

- This is what is communicated between processors

2



"Matrix" vs Matrix

3

- Rather than allocating an entire matrix, we only need two rows 

at a time

- For example, row 1 depends on row 0

- Thus, we only have two arrays (a prev and a curr) and just swap 

them after every row is calculated



Assigning Processors

4

- The "matrix" is split up between the processors

- For example:

- Processor 0 calculates the edit distance then sends its 

results to the bottom and bottom right processors

- Each processor has its own portion of the input strings so that 
we can split the work up equally between the processors

- As said before, each processor needs three things:

- Top, top left, left values

- The bottom right quadrant would thus need the top left 

value from the pink processor and both blue processors
- Information spreads through the matrix across the diagonals



Example

5

- Processor 0 calculates its edit distance, then sends the values 

to the bottom and bottom right processors

- It doesn't need to send to the right because it'll be the same 

processor as the current one

- Thus, in order for green to calculate its edit distance, it needs 
to wait for the blue to calculate the distance first

- We find the final edit distance at last processor at the last 

column of the curr array



Benchmarking: Time 

6



Benchmarking: Speedup

7



Benchmarking: Efficiency

8



9

Questions?


	Slide 1: Parallel levenshtein distance
	Slide 2: Levenshtein Distance Implementation
	Slide 3: "Matrix" vs Matrix
	Slide 4: Assigning Processors
	Slide 5: Example
	Slide 6: Benchmarking: Time 
	Slide 7: Benchmarking: Speedup
	Slide 8: Benchmarking: Efficiency
	Slide 9

