
PARALLELIZATION 

OF RAY TRACING

GNANI PASUPULA 

CSE 633 - Parallel Algorithms

Instructor - Dr. Russ Miller



What is Ray Tracing?
Ray tracing is a rendering technique that simulates how light 

interacts with objects in a scene. It works by tracing rays of 

light from the camera through each pixel into the scene, 

determining how they interact with surfaces, and calculating 

the final color.

Process Breakdown

• Ray Casting – A ray is cast from the camera through 

each pixel into the scene.

• Intersection Testing – The ray is checked for 

intersections with objects. The closest intersection 

determines the visible surface.

• Color Calculation – The surface color is computed 

based on material properties, light sources, and shading 

models.

• Reflection & Refraction – If the material is reflective or 

transparent, secondary rays are traced to compute 

reflections and refractions, adding realism.

2



Why is Ray Tracing Computationally Intensive?

• Each pixel requires tracing multiple rays, performing intersection tests, and computing lighting 

effects (shadows, reflections, refractions).

• Complexity increases with scene detail, object count, and light interactions.

• Rendering high-resolution images can involve millions of rays, making real-time ray tracing extremely 

demanding.

 

.

3



Limitations of the Sequential Approach

• Linear Execution: Each pixel is computed one at a time, leading to long render times.

• Exponential Complexity: Advanced effects (global illumination, soft shadows) require more rays, 

increasing computational load.

• Not Scalable: As resolution and scene complexity grow, rendering time increases drastically.

.

4



Parallel Computing With MPI 
• Tasks: A unit of work that needs to be performed. In ray tracing, a task could be rendering a portion of 

the image (e.g., a row, a tile, or a set of pixels).

• Processes: Independent units of execution that can run concurrently. In the MPI implementation, each 

process will be assigned a portion of the rendering task.

• Communication (Message Passing): How different processes exchange information and coordinate 

their work? We use MPI to send and receive data (e.g., the rendered portions of the image) between 

processes.

• Synchronization : Mechanisms to coordinate the execution of processes to ensure correct results. We 

use barriers (MPI_Barrier) to ensure all processes complete a certain stage before proceeding.

5



Parallelization Strategy – Task Decomposition
• Image Decomposition: Task/Image divided into a few horizontal or vertical strips, with each strip 

labeled "Process 1," "Process 2," etc.

• Pixel-Level Decomposition: Each Task/Image with individual pixels or small blocks highlighted and 

labeled as being worked on by different processes.

6



Our Approach: Image Decomposition
Why? We opted for Image Decomposition, specifically dividing the final image. Each process in our MPI 

implementation is responsible for rendering a specific portion of the image.

• Justification:

- Simplicity: This approach is relatively straightforward to implement using MPI's communication 

primitives (like MPI_Gather).

- Data Locality: Each process primarily works on a contiguous block of pixels, which can improve data 

locality and reduce the need for complex inter-process communication during the core ray tracing 

calculations.

- Load Balancing : For a well-defined image, the workload for each strip is generally balanced, as 

each strip contains a similar number of pixels.

7



With MPI:
• Few Key MPI Concepts Utilized in Our Project:

• MPI_Init(): Initializes the MPI environment.

• MPI_Comm_rank(): Determines the unique rank (ID number) of the current process within a 

communicator.

• MPI_Comm_size(): Determines the total number of processes in the communicator.

• MPI_Gather(): Collects data from all processes and sends it to a designated root process. This was 

used to assemble the final rendered image.

8



Sequential Ray Tracing Algorithm

• Generate Ray:

• Determine the screen coordinates of the 

current pixel.

• Construct a ray originating from the camera 

position and passing through the pixel.

• Ray-Scene Intersection:

• For each object in the scene (e.g., spheres): 

- Calculate the intersection point of the 

ray with the object.

- If an intersection occurs and is closer 

than the current closest intersection, 

record it.

9



Parallel Ray Tracing with MPI

• MPI as the Framework: We utilized the 

Message Passing Interface (MPI) to 

parallelize the ray tracing process across 

multiple processors.

• Image Distribution Strategy: We employed 

Image Decomposition by dividing the final 

image into horizontal strips.

• Work Assignment: Each MPI process is 

responsible for rendering a specific portion of 

the image. The master process (rank 0) 

distributes the work, and each worker 

process renders its assigned pixels 

independently.

10



Communication & Synchronization
• Communication Mechanisms (using MPI):

• Data Exchange: The primary communication happens when each process finishes rendering its assigned portion of 

the image.

• MPI_Gather() for Image Assembly: We used the MPI_Gather() function to collect the rendered image segments 

from all the worker processes and send them to the root process (rank 0). This allows the root process to assemble the 

complete final image.

• Synchronization Mechanisms:

• MPI_Barrier() for Coordination: We utilized MPI_Barrier() at strategic points in our code to ensure that all 

processes reach a certain point before any of them proceed further. This was particularly important: 

- After work assignment: To ensure all processes know their assigned image section before starting rendering.

- Before image collection: To ensure all processes have finished rendering their parts before the MPI_Gather() 

operation.

11



Communication & Synchronization
• Communication Bottlenecks Considered:

• MPI_Gather() Overhead: The MPI_Gather() operation, while essential for assembling the final 

image, can become a bottleneck if the number of processes is very large or if the image size is 

extremely high. The root process needs to receive and combine data from all other processes.

12



Overcoming Bottlenecks
• 1. MPI_Gather() Overhead:

• Reduce Data Volume:

- Lossy Compression : If acceptable for your application, consider compressing the image data 

before gathering. However, be mindful of the added computational cost of 

compression/decompression.

• Alternative Communication Patterns (for very large scale):

- Scatter-Gather: Instead of a single gather, consider a more distributed approach where 

intermediate results are gathered in stages or within subgroups of processes.

- Non-Blocking Communication: Use non-blocking MPI_Igather and MPI_Wait to overlap 

communication with computation, potentially hiding some of the communication latency. However, 

this adds complexity to the code.

13



MPI Functions used 
• MPI_Init(&argc, &argv)

• MPI_Comm_rank(MPI_COMM_WORLD, &rank)

• MPI_Comm_size(MPI_COMM_WORLD, &size)

• MPI_Get_processor_name(hostname, &name_len)

• MPI_Wtime()

• MPI_Bcast(&num_images, 1, MPI_INT, 0, MPI_COMM_WORLD)

• MPI_Send(&count, 1, MPI_INT, proc, 0, MPI_COMM_WORLD)

• MPI_Recv(&count, 1, MPI_INT, 0, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE)

• MPI_Barrier(MPI_COMM_WORLD)

• MPI_Reduce(&processing_time, &max_processing_time, 1, MPI_DOUBLE, MPI_MAX, 0, 

MPI_COMM_WORLD)

• MPI_Finalize()
14



Scene A: Simple Scene

15

• Objects at similar distances: 

Simplifies intersection calculations.

• Non-overlapping objects: Reduces 

multi-object intersections, 
simplifying shadow/reflection rays

• Few objects: Fewer ray-object 

intersection tests per pixel.



Sequential vs Parallel Execution Times

• Simple scene

16



17



Output:

18



Scene B: Complex scene

19

• Objects at varying distances: Requires 

complex intersection calculations, 

potentially depth sorting.

• Overlapping objects: Leads to multi-
object intersections, complex shadow, 

reflection, and refraction calculations.

• Many objects: Increases ray-object 

intersection tests per pixel.



Sequential vs Parallel Execution Times

• Complex scene

20



21



Output:

22



Conclusion:

23

• As demonstrated with Scene 2 (Complex Scene), parallelization excels at handling 

computationally demanding tasks. The significant workload in complex scenes allows 

parallel processing to effectively distribute the rendering calculations, leading to 

substantial performance gains.

• In contrast, Scene 1 (Simple Scene) illustrated the limitations of parallelization for less 

intensive tasks. The communication overhead associated with managing multiple 

processes can outweigh the benefits of distributing the relatively small amount of work, 

resulting in diminished returns or even performance degradation.

• When designing a ray tracing system, it's crucial to consider the complexity of the 

scenes that will be rendered. Parallelization is better for applications involving complex 

geometry, numerous light sources, and advanced rendering effects.



Thank You

24


	Slide 1: Parallelization of ray tracing
	Slide 2: What is Ray Tracing?
	Slide 3: Why is Ray Tracing Computationally Intensive?
	Slide 4: Limitations of the Sequential Approach
	Slide 5: Parallel Computing With MPI 
	Slide 6: Parallelization Strategy – Task Decomposition
	Slide 7: Our Approach: Image Decomposition
	Slide 8: With MPI:
	Slide 9: Sequential Ray Tracing Algorithm
	Slide 10: Parallel Ray Tracing with MPI
	Slide 11: Communication & Synchronization
	Slide 12: Communication & Synchronization
	Slide 13: Overcoming Bottlenecks
	Slide 14: MPI Functions used 
	Slide 15: Scene A: Simple Scene
	Slide 16: Sequential vs Parallel Execution Times
	Slide 17
	Slide 18: Output:
	Slide 19: Scene B: Complex scene
	Slide 20: Sequential vs Parallel Execution Times 
	Slide 21
	Slide 22: Output:
	Slide 23: Conclusion:
	Slide 24: Thank You

