A* Path-FInding with
MP]

Thornton Haag-W
University at Buffa Io The State University of New York

CSE 633
Spring 2014




Problem Description

« We want to find the shortest
path between two points on @

connected graph

* We have a known start point,
end point, and know the cost
to move into any adjacent
node from every point




A* Algorithm

 Similar to other search algorithms like Dykstra's or breadth-first

« Uses a heuristic function to make decisions on traversal of graph

* The total cost from start to finish is modeled by F(n) = G(n) + H(Nn)
— F(n): the total cost
- G(n): cost to move into node we are on
— H(n): Heuristic function estimating remaining cost to goal




A* Algorithm

- When(if) a path is found
from start to finish we want
this F cost to be minimal

This is where the heuristic
function is used

By estimating the
remaining distance to the
goal we can make an
educated guess on where
to check next

Optimal path found




A* Algorithm - Heuristic Function

« There are a wide variety of metrics to consider for the heuristic
— Optimality of solution
— Completeness of solution set
— Accuracy
— Running time

* Must consider what we need and tfradeoffs associated

« Common choices
— Manhattan: x,y vector distance to goal
— Euclidean : straight line distance to goal
— Chebyshev: max of either x or y distance to goal




A* Algorithm - Heuristic Function

* Heuristic function must not overestimate remaining distance to be
considered admissible

A* using Manhattan A* using Euclidean




A* Algorithm — Heuristic Function

A* using Chebyshev

All three heuristics
found same optimal
solution but did not
search the same set
of nodes

Blue nodes represent
closed sef.

Green represent
open set.

White nodes were not
searched.




A* Algorithm - Process

« To actually perform the search we start with two sets

— List of open nodes to be searched
— List of closed nodes that have been searched

« Add starfing node to open list initially
— Expand open set to include each neighbor of starting node

— Put starting node on closed set
— Calculate the F costs of those open neighbor nodes

« During the next round we chose the neighbor node with the lowest
calculated F cost to expand next and repeat the algorithm, unftil either a
solution is found or we exhaust the set of available nodes




A* Algorithm — Full Pseudo Code

initialize the open list
initialize the closed list
put the starting node on the open list (you can leave its f at zero)
while the open list is not empty
find the node with the least f on the open list, call it "q"
pop q off the open list
generate q's 8 successors and set their parents to q
for each successor
if successor is the goal, stop the search
successor.g = q.g + distance between successor and q
successor.h = distance from goal to successor
successor.f = successor.g + successor.h

if a node with the same position as successor is in the OPEN list \
which has a lower f than successor, skip this successor
if a node with the same position as successor is in the CLOSED list \
which has a lower f than successor, skip this successor
otherwise, add the node to the open list
end
push g on the closed list
end




A* Algorithm — Common Assumptions

The graph to be searched is
usually a grid with uniform
cost to move from node to
node

Opftimal data structures like

priority queue are available

Certain nodes act as
obstacles that cannot be
traversed easily it at all

— Examples: wall, bodies of
water

Our go to visual example with walls and relocated end point




A* Algorithm — Running Time

« Underidedl
circumstances the
amount of nodes
searched relative
to the graph size is
small

At worst every
node must be
searched to find
solution as well as
when the solution
doesn’t exist

Near worst case performance. Also note solution found is not optimallll




A* Algorithm — Parallelizing

* Need to find a method to properly utilize parallel processing environment

» There are lots of variations on the A* algorithm that infroduce a
parallelizable component

* We are going to look at the hierarchical breakdown method and show
that it allows for a parallel prefix style solution




Hierarchical Breakdown A* (HBA)

« Adds a level of
abstraction over graph

« Splits graph into clusters

« Algorithm finds entry and

exit points between
clusters

Our base map before HBA divided into four clusters




Hierarchical Breakdown A*

* Now use algorithm
to find points that
connect the
clusters

* These points are

marked in yellow




Hierarchical Breakdown A*

* In each cluster use A* to
find the distances
between each yellow
node

We know the cluster that
contains our start and
end nodes

Use local A* 1o move
from start node to HBA
paths

Travel along optimal HBA
paths until end node
cluster reached

Use local A* to travel to
end




Hierarchical Breakdown A*

Path not guaranteed
optimal, but within 1%

Trade off of optimal
solution for computation
time and smaller memory
footprint

Useful as a preprocessing
step that can be reused for
multiple path searches on

same map

Path taken by base A* using Chebyshev heuristic. Compare to HBA path.




Hierarchical Breakdown A*




Parallelizing HBA

We break down the graph into clusters during HBA

These clusters can be given to our set of PEs

Compute entry points and the paths between them locally on each PE
We know cluster location of goal node

Each cluster calculates how to reach desired goal cluster using HBA paths

PEs communicate these sub solutions to each other until all nodes know a
solution (our parallel prefix step)

Use MPI to accomplish message passing and internode communication




Experimental Sefup

* Multiple map types
— Empty rooms
— Spiral
— Maze-like
— Open area with large obstacles

« Test on various sizes
— 512x512
— 1024x1024
— 4096x4096
— 8192x8192




Experimental Sefup

« Change cluster sizes for each map
— 16x16
— 32x32
— 64x64

* Vary number of PEs used
- 1,2,4,8,16,etc




' Examples of “Professional” Maps Used

F 3

.""E

:




Open Area Map

* Map used as a test
sample

« Will run tests on this
first including
changes to
— Overall map size

— # of PEs used




Results — Open Map

Map Size

1024

182.456

637.127

268.345

8404.23

4093.104

All results using 32x32 HBA cluster
sizing

Results are running time in
milliseconds

Experiment includes time to set up
HBA clusters

and navigate a path spanning the
map

Realistically the time spent making
HBA clusters can be reused for
repeated path calculations resulting
in overall dramatically reduced
times




Results — Open Map

Running Time vs #PEs

16000
14000
12000
10000

6000
4000
2000

0

z
E
()
£
= 8000
(8))
c
=
c
-
oz




Results — Open Map

Running Time vs #PEs




Results — Open Map Speedup

Map Size




Results — Open Map Speedup
Speedup vs #PEs

AN

- gé
/A
/54 —
vy




Conclusions

* HBA allows for an easy implementation of the A* search algorithm

There are many solutions to parallelizing that can be explored though

Thorough experiments take time to conduct

— JIrDid not have enough time/resources to generate data for more than one map
ype

Running times increase drastically as map size increase

— More efficient data structures needed for maintaining node lists

— Message passing large datasets in costly

Speedups follow a similar trend though

— For this setup maximum speedup was achieved with using 32 nodes for
computation




References

* A. Botea et al. “Near Optimal Hierarchical Path-Finding”, Journal of Game
Development, Vol. 1, pp.7-28, 2004.

* H. Cao et al. “OpenMP Parallel Optimal Path Algorithm and Its

Performance Analysis”, Proceedings of the 2009 WRI World Congress on
Software Engineering — Volume 01, pp. 61-66, 2009.

* BLEIWEISS, A. 2008. GPU Accelerated Pathfinding. In Graphics Hardware. In
Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on

Graphics Hardware, 66-73.




References

* Visual examples created using PathFinding.js.
— http://qiao.github.io/PathFinding.js/visual/




