
Thornton Haag-Wolf
University at Buffalo, The State University of New York
CSE 633
Spring 2014

A* Path-Finding with
MPI

•  We want to find the shortest
path between two points on a
connected graph

•  We have a known start point,
end point, and know the cost
to move into any adjacent
node from every point

Problem Description

•  Similar to other search algorithms like Dykstra's or breadth-first

•  Uses a heuristic function to make decisions on traversal of graph

•  The total cost from start to finish is modeled by F(n) = G(n) + H(n)
–  F(n): the total cost

–  G(n): cost to move into node we are on

–  H(n): Heuristic function estimating remaining cost to goal

A* Algorithm

•  When(if) a path is found
from start to finish we want
this F cost to be minimal

•  This is where the heuristic
function is used

•  By estimating the
remaining distance to the
goal we can make an
educated guess on where
to check next

A* Algorithm

Optimal path found

•  There are a wide variety of metrics to consider for the heuristic
–  Optimality of solution

–  Completeness of solution set

–  Accuracy

–  Running time

•  Must consider what we need and tradeoffs associated

•  Common choices
–  Manhattan: x,y vector distance to goal

–  Euclidean : straight line distance to goal

–  Chebyshev: max of either x or y distance to goal

A* Algorithm - Heuristic Function

•  Heuristic function must not overestimate remaining distance to be
considered admissible

A* Algorithm - Heuristic Function

A* using Manhattan A* using Euclidean

A* Algorithm – Heuristic Function
•  All three heuristics

found same optimal
solution but did not
search the same set
of nodes

•  Blue nodes represent
closed set.

•  Green represent
open set.

•  White nodes were not
searched.

A* using Chebyshev

•  To actually perform the search we start with two sets
–  List of open nodes to be searched

–  List of closed nodes that have been searched

•  Add starting node to open list initially
–  Expand open set to include each neighbor of starting node

–  Put starting node on closed set

–  Calculate the F costs of those open neighbor nodes

•  During the next round we chose the neighbor node with the lowest
calculated F cost to expand next and repeat the algorithm, until either a
solution is found or we exhaust the set of available nodes

A* Algorithm - Process

A* Algorithm – Full Pseudo Code

•  The graph to be searched is
usually a grid with uniform
cost to move from node to
node

•  Optimal data structures like
priority queue are available

•  Certain nodes act as
obstacles that cannot be
traversed easily if at all
–  Examples: wall, bodies of

water

A* Algorithm – Common Assumptions

Our go to visual example with walls and relocated end point

•  Under ideal
circumstances the
amount of nodes
searched relative
to the graph size is
small

•  At worst every
node must be
searched to find
solution as well as
when the solution
doesn’t exist

A* Algorithm – Running Time

Near worst case performance. Also note solution found is not optimal!!!

•  Need to find a method to properly utilize parallel processing environment

•  There are lots of variations on the A* algorithm that introduce a
parallelizable component

•  We are going to look at the hierarchical breakdown method and show
that it allows for a parallel prefix style solution

A* Algorithm – Parallelizing

•  Adds a level of
abstraction over graph

•  Splits graph into clusters

•  Algorithm finds entry and
exit points between
clusters

Hierarchical Breakdown A* (HBA)

Our base map before HBA divided into four clusters

•  Now use algorithm
to find points that
connect the
clusters

•  These points are
marked in yellow

Hierarchical Breakdown A*

•  In each cluster use A* to
find the distances
between each yellow
node

•  We know the cluster that
contains our start and
end nodes

•  Use local A* to move
from start node to HBA
paths

•  Travel along optimal HBA
paths until end node
cluster reached

•  Use local A* to travel to
end

Hierarchical Breakdown A*

•  Path not guaranteed
optimal, but within 1%

•  Trade off of optimal
solution for computation
time and smaller memory
footprint

•  Useful as a preprocessing
step that can be reused for
multiple path searches on
same map

Hierarchical Breakdown A*

Path taken by base A* using Chebyshev heuristic. Compare to HBA path.

Hierarchical Breakdown A*

•  We break down the graph into clusters during HBA

•  These clusters can be given to our set of PEs

•  Compute entry points and the paths between them locally on each PE

•  We know cluster location of goal node

•  Each cluster calculates how to reach desired goal cluster using HBA paths

•  PEs communicate these sub solutions to each other until all nodes know a
solution (our parallel prefix step)

•  Use MPI to accomplish message passing and internode communication

Parallelizing HBA

•  Multiple map types
–  Empty rooms

–  Spiral

–  Maze-like

–  Open area with large obstacles

•  Test on various sizes
–  512x512

–  1024x1024

–  4096x4096

–  8192x8192

Experimental Setup

•  Change cluster sizes for each map
–  16x16

–  32x32

–  64x64

•  Vary number of PEs used
–  1,2,4,8,16,etc

Experimental Setup

Examples of “Professional” Maps Used

•  Map used as a test
sample

•  Will run tests on this
first including
changes to
–  Overall map size

–  # of PEs used

Open Area Map

	
 	
 512	
 1024	
 4096	
 8192	

2	
 60.345	
 279.34	
 1198.323	
 12567.409	

4	
 29.876	
 182.456	
 637.127	
 8404.23	

8	
 17.536	
 90.345	
 345.924	
 6290.234	

16	
 12.341	
 34.092	
 268.345	
 4093.104	

32	
 23.567	
 16.189	
 210.723	
 3913.863	

64	
 30.985	
 15.982	
 312.9	
 4323.903	

128	
 31.456	
 16.934	
 436.067	
 4923.5	

Results – Open Map

Map Size

Nodes

All results using 32x32 HBA cluster
sizing

Results are running time in
milliseconds

Experiment includes time to set up
HBA clusters
and navigate a path spanning the
map

Realistically the time spent making
HBA clusters can be reused for
repeated path calculations resulting
in overall dramatically reduced
times

Results – Open Map

0

2000

4000

6000

8000

10000

12000

14000

16000

2 4 8 16 32 64 128

Ru
nn

in
g

 T
im

e
 (

m
s)

Running Time vs #PEs

8192

4096

1024

512

Results – Open Map

0

200

400

600

800

1000

1200

1400

1600

1800

2 4 8 16 32 64 128

Ru
nn

in
g

 T
im

e
 (

m
s)

Running Time vs #PEs

4096

1024

512

Results – Open Map Speedup

 	
 512	
 1024	
 4096	
 8192	

2	
 1	
 1	
 1	
 1	

4	
 2.019848708	
 1.530999255	
 1.880822819	
 1.495367095	

8	
 3.441206661	
 3.091925397	
 3.464122177	
 1.997923925	

16	
 4.889798234	
 8.193711135	
 4.465605843	
 3.070385947	

32	
 2.560571986	
 17.25492618	
 5.686721431	
 3.210998699	

64	
 1.947555269	
 12.70766991	
 3.829731544	
 2.906496515	

128	
 1.918393947	
 11.67126264	
 2.748024959	
 2.552535595	

Map Size

#PEs

Results – Open Map Speedup

0

4

8

12

16

20

24

28

32

36

2 4 8 16 32 64 128

Sp
e

e
d

up

Speedup vs #PEs

8192

4096

1024

512

•  HBA allows for an easy implementation of the A* search algorithm

•  There are many solutions to parallelizing that can be explored though

•  Thorough experiments take time to conduct
–  Did not have enough time/resources to generate data for more than one map

type

•  Running times increase drastically as map size increase
–  More efficient data structures needed for maintaining node lists
–  Message passing large datasets in costly

•  Speedups follow a similar trend though
–  For this setup maximum speedup was achieved with using 32 nodes for

computation

Conclusions

•  A. Botea et al. “Near Optimal Hierarchical Path-Finding”, Journal of Game
Development, Vol. 1, pp.7-28, 2004.

•  H. Cao et al. “OpenMP Parallel Optimal Path Algorithm and Its
Performance Analysis”, Proceedings of the 2009 WRI World Congress on
Software Engineering – Volume 01, pp. 61-66, 2009.

•  BLEIWEISS, A. 2008. GPU Accelerated Pathfinding. In Graphics Hardware. In
Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on
Graphics Hardware, 66–73.

References

•  Visual examples created using PathFinding.js.
–  http://qiao.github.io/PathFinding.js/visual/

References

