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•  We want to find the shortest 
path between two points on a 
connected graph  

•  We have a known start point, 
end point, and know the cost 
to move into any adjacent 
node from every point  

Problem Description 



•  Similar to other search algorithms like Dykstra's or breadth-first  

•  Uses a heuristic function to make decisions on traversal of graph 

•  The total cost from start to finish is modeled by F(n) = G(n) + H(n) 
–  F(n):  the total cost 

–  G(n):  cost to move into node we are on 

–  H(n):  Heuristic function estimating remaining cost to goal 

A* Algorithm  



•  When(if) a path is found 
from start to finish we want 
this F cost to be minimal 

•  This is where the heuristic 
function is used 

•  By estimating the 
remaining distance to the 
goal we can make an 
educated guess on where 
to check next 

A* Algorithm 

Optimal path found 



•  There are a wide variety of metrics to consider for the heuristic 
–  Optimality of solution 

–  Completeness of solution set 

–  Accuracy 

–  Running time 

•  Must consider what we need and tradeoffs associated 

•  Common choices 
–  Manhattan: x,y vector distance to goal 

–  Euclidean    : straight line distance to goal 

–  Chebyshev: max of either x or y distance to goal 

A* Algorithm - Heuristic Function 



•  Heuristic function must not overestimate remaining distance to be 
considered admissible 

A* Algorithm - Heuristic Function 

A* using Manhattan A* using Euclidean 



A* Algorithm – Heuristic Function 
•  All three heuristics 

found same optimal 
solution but did not 
search the same set 
of nodes 

•  Blue nodes represent 
closed set.  

•  Green represent 
open set.  

•  White nodes were not 
searched. 

A* using Chebyshev 



•  To actually perform the search we start with two sets 
–  List of open nodes to be searched 

–  List of closed nodes  that have been searched 

•  Add starting node to open list initially 
–  Expand open set to include each neighbor of starting node 

–  Put starting node on closed set 

–  Calculate the F costs of those open neighbor nodes 

•  During the next round we chose the neighbor node with the lowest 
calculated F cost to expand next and repeat the algorithm, until either a 
solution is found or we exhaust the set of available nodes 

A* Algorithm - Process 



A* Algorithm – Full Pseudo Code 



•  The graph to be searched is 
usually a grid with uniform 
cost to move from node to 
node 

•  Optimal data structures like 
priority queue are available 

•  Certain nodes act as 
obstacles that cannot be 
traversed easily if at all 
–  Examples: wall, bodies of 

water 

A* Algorithm – Common Assumptions 

Our go to visual example with walls and relocated end point 



•  Under ideal 
circumstances the 
amount of nodes 
searched relative 
to the graph size is 
small 

•  At worst every 
node must be 
searched to find 
solution as well as 
when the solution 
doesn’t exist 

A* Algorithm – Running Time 

Near worst case performance. Also note solution found is not optimal!!! 



•  Need to find a method to properly utilize parallel processing environment 

•  There are lots of variations on the A* algorithm that introduce a 
parallelizable component 

•  We are going to look at the hierarchical breakdown method and show 
that it allows for a parallel prefix style solution 

A* Algorithm – Parallelizing 



•  Adds a level of 
abstraction over graph 

•  Splits graph into clusters 

•  Algorithm finds entry and 
exit points between 
clusters 

Hierarchical Breakdown A* (HBA) 

Our base map before HBA divided into four clusters 



•  Now use algorithm 
to find points that 
connect the 
clusters 

•  These points are 
marked in yellow 

Hierarchical Breakdown A* 



•  In each cluster use A* to 
find the distances 
between each yellow 
node 

•  We know the cluster that 
contains our start and 
end nodes 

•  Use local A* to move 
from start node to HBA 
paths 

•  Travel along optimal HBA 
paths until end node 
cluster reached 

•  Use local A* to travel to 
end 

Hierarchical Breakdown A* 



•  Path not guaranteed 
optimal, but within 1% 

•  Trade off of optimal 
solution for computation 
time and smaller memory 
footprint 

•  Useful as a preprocessing 
step that can be reused for 
multiple path searches on 
same map 

Hierarchical Breakdown A* 

Path taken by base A* using Chebyshev heuristic. Compare to HBA path. 



Hierarchical Breakdown A* 



•  We break down the graph into clusters during HBA 

•  These clusters can be given to our set of PEs 

•  Compute entry points and the paths between them locally on each PE 

•  We know cluster location of goal node 

•  Each cluster calculates how to reach desired goal cluster using HBA paths 

•  PEs communicate these sub solutions to each other until all nodes know a 
solution (our parallel prefix step) 

•  Use MPI to accomplish message passing and internode communication 

Parallelizing HBA 



•  Multiple map types 
–  Empty rooms 

–  Spiral 

–  Maze-like 

–  Open area with large obstacles 

•  Test on various sizes 
–  512x512 

–  1024x1024 

–  4096x4096 

–  8192x8192 

Experimental Setup 



•  Change cluster sizes for each map 
–  16x16 

–  32x32 

–  64x64 

•  Vary number of PEs used 
–  1,2,4,8,16,etc 

Experimental Setup 



Examples of “Professional” Maps Used 



•  Map used as a test 
sample 

•  Will run tests on this 
first including 
changes to 
–  Overall map size 

–  # of PEs used 

Open Area Map 



	
  	
   512	
   1024	
   4096	
   8192	
  

2	
   60.345	
   279.34	
   1198.323	
   12567.409	
  

4	
   29.876	
   182.456	
   637.127	
   8404.23	
  

8	
   17.536	
   90.345	
   345.924	
   6290.234	
  

16	
   12.341	
   34.092	
   268.345	
   4093.104	
  

32	
   23.567	
   16.189	
   210.723	
   3913.863	
  

64	
   30.985	
   15.982	
   312.9	
   4323.903	
  

128	
   31.456	
   16.934	
   436.067	
   4923.5	
  

Results – Open Map 

Map Size 

# Nodes 

All results using 32x32 HBA cluster 
sizing 
 
Results are running time in 
milliseconds 
 
Experiment includes time to set up 
HBA clusters 
and navigate a path spanning the 
map 
 
Realistically the time spent making 
HBA clusters can be reused for 
repeated path calculations resulting 
in overall dramatically reduced 
times 



Results – Open Map 
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Results – Open Map 
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Results – Open Map Speedup 

 	
   512	
   1024	
   4096	
   8192	
  

2	
   1	
   1	
   1	
   1	
  

4	
   2.019848708	
   1.530999255	
   1.880822819	
   1.495367095	
  

8	
   3.441206661	
   3.091925397	
   3.464122177	
   1.997923925	
  

16	
   4.889798234	
   8.193711135	
   4.465605843	
   3.070385947	
  

32	
   2.560571986	
   17.25492618	
   5.686721431	
   3.210998699	
  

64	
   1.947555269	
   12.70766991	
   3.829731544	
   2.906496515	
  

128	
   1.918393947	
   11.67126264	
   2.748024959	
   2.552535595	
  

Map Size 

#PEs 



Results – Open Map Speedup 
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•  HBA allows for an easy implementation of the A* search algorithm 

•  There are many solutions to parallelizing that can be explored though 

•  Thorough experiments take time to conduct 
–  Did not have enough time/resources to generate data for more than one map 

type 

•  Running times increase drastically as map size increase 
–  More efficient data structures needed for maintaining node lists 
–  Message passing large datasets in costly 

•  Speedups follow a similar trend though 
–  For this setup maximum speedup was achieved with using 32 nodes for 

computation 

Conclusions 
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•  Visual examples created using PathFinding.js. 
–  http://qiao.github.io/PathFinding.js/visual/ 
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