
HPC SUBJECT:
MESH ORIENTATION
Harvey Kwong, MS CSE, University at Buffalo



2

Orienting Simplices
Suppose we define a triangle by its 3 vertices. The orientation of that triangle is given by the sequence of these indices. 

We say a triangle is oriented once we arbitrarily fix an ordering for it. By doing so, 

we induce an orientation for the edges as well.

Flipping any two indices an odd number of times (ie. swapping v[1] and v[2]) will 

reverse the orientation (clockwise <-> counterclockwise)

Flipping them an even number of times preserves the orientation and the 

subsequent vertex order is considered equivalent.



3

Orientation (Consistency)
For the whole mesh to have a consistent orientation, whenever two triangles share an edge, that edge’s orientation should be 

opposite in the two triangles. If two adjacent triangles accidentally had the shared edge oriented the same way, they would form an 
inconsistent loop (one triangle’s orientation would be flipped relative to the other), leading to a conflict 



4

Parallel Orientation
Assume the mesh is partitioned such that each processor has a list of triangles 

and knows which edges on its triangles are shared with triangles on neighboring 
processors. 

• Local Orientation: Each processor orients their local submesh using the 
algorithm from last slide.

• Boundary communication: Each processor reports to neighboring 
processors regarding the orientation of shared edges.

• Conflict resolution: If two waves of opposing orientations collide, we use 

some scheme such as processor rank to determine who has the master 
orientation. The other processor will have to flip its orientations on the 
boundary and those changes propagate throughout its local submesh. Then, 

we repeat from step 2.



5

Parallel Orientation Communications
When the mesh (and submeshes) is balanced, the 

ratio of boundary elements to internal elements is very 

small. The cost of communicating orientations is small 

as well. Since the bulk of computation occurs locally 

within each processor's submesh, this is a highly 

parallelizable algorithm. 

10 communications needed

Not Balanced partition



6

Close look at Parallel Output
Triangle 136 owned by processor 0

Triangle 33 owned by processor 1

2, 2

137, 137

136 33
135

3



7

Comments on Triangle Generation



8

Benchmark results – How well do we scale?

Triangle Count 2 million 4 million 8 million 16 million 32 million

Processor Count Orientation Time (Seconds)

2 0.339 0.734 1.604 3.139 6.711

4 0.165 0.407 0.850 1.778 3.612

8 0.097 0.221 0.427 0.919 2.016

16 0.058 0.122 0.268 0.489 1.995

32 0.069 0.133 0.252 0.397 0.949



9

Triangle Count 2 million 4 million 8 million 16 million 32 million

Processor 

Count Speedup (T_2/T_P)

2 - - - - -

4 2.06 1.81 1.89 1.77 1.86

8 3.49 3.33 3.76 3.42 3.33

16 5.84 6.00 5.99 6.42 3.36

32 4.93 5.52 6.38 7.91 7.07



10

Triangle Count 2 million 4 million 8 million 16 million 32 million

Processor Count Efficiency (Speedup/P)

2 - - - - -

4 0.51 0.45 0.47 0.44 0.46

8 0.44 0.42 0.47 0.43 0.42

16 0.37 0.38 0.37 0.40 0.21

32 0.15 0.17 0.20 0.25 0.22



11

That is all, Thank You
Questions?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

