
CSE 633 –
PARALLEL 
ALGORITHMS
Parallel implementation of Dijkstra’s 
Single Source Shortest Path Algorithm

Kartik Sehgal

UB ID - 50466718



Contents
• Shortest Path Problem and Dijkstra’s algorithm

• Applications of Dijkstra’s algorithm

• Sequential algorithm

• The need for parallelizing the algorithm

• Parallel implementation

• Tasks achieved since midterm

• Execution results

• Future work

• References

2



Shortest Path Problem and Dijkstra’s algorithm

3

• In graph theory, the shortest path problem is the problem 
of finding a path between two vertices (or nodes) in 
a graph such that the sum of the weights of its constituent 
edges is minimized.

• There are many variants of this problem, and in this 
presentation, we are going to focus on one of them –
Dijkstra’s algorithm.

• Dijkstra’s algorithm finds the shortest path from one vertex, 
called the source vertex, to every other vertex in the graph.

Source: https://en.wikipedia.org/wiki/Dijkstra's_algorithm



Applications of Dijkstra’s algorithm

4

• Used to find the minimum distance between two destinations in Map 
applications

• Least cost paths are calculated to establish tracks of electricity lines 
or oil pipelines.

• Used to calculate optimal long-distance footpaths in Ethiopia and 
contrast them with the situation on the ground.

• Used in game theory, for example in Rubik’s cube where each 
directed edge corresponds to a single move or turn, to solve the 
game in minimum possible turns.

• Used to find the minimum delay path in networking and 
telecommunication.



Sequential algorithm

5

• Initialize the distance all vertices to infinity.

• Initialize the distance of source vertex to 0.

• Initialize a visitedQueue Q and add source 
vertex to it.

• While Q is not empty, dequeue the first 
element u.

• For all neighbors of v of u, check if the 
distance from u to v is greater than the 
currently stored distance.

• If it is, update with a shorter distance and 
add it it to Q to process its neighbors.

Source: https://en.wikipedia.org/wiki/Dijkstra's_algorithm



The need for parallelizing the algorithm

• The original sequential algorithm is slow, with a running time of O(V2), where V is the number of vertices.

• There are some optimizations available

- Binary heap - O((E + V) log V)

- Fibonacci heap - O(E + V log V)

• However, for a massive graph with millions of vertices, these approaches still take a long time.

• A parallel approach could further reduce the overall running time, improving the performance of the algorithm.

• A massive graph is hard to fit in memory of a single node. With a parallel approach, we can scale our algorithm 
easily.

• All computers these days are multicore systems. With a parallel implementation, we make sure that we are utilizing 
the resources of our system efficiently.

6



Parallel Approach
• The first step is to divide the graph into subgraphs

- We try to divide the number of vertices evenly in all processors, i.e., n/p 
vertices per processor.

- If there is an uneven distribution, we divide the remaining ‘k’ vertices 
evenly amongst the first ‘k’ processors.

• Each processor is responsible for computing the shortest path 
for its assigned vertices only.

• Each processor stores 3 data structures
1. The adjacency columns for each of its vertices with size = N/P * N

2. A distances array storing the current distances for its vertices with size = 
N/P * 1

3. (P-1) number of MessageArrays to send information to the other 
processors & 1 MessageArray to receive information from the other 
processors with size = N/P * P



Parallel Approach
• Computation step

- Each processor first finds local optimal shortest paths in each 
sub-graph using the sequential Dijkstra algorithm.

- If the currently calculated distance of the successor of the 
boundary node in the adjacent subgraph is greater than the 
distance from the boundary node to the successor node, we 
need to update its distance.

- This information, called boundary information, is collected for 
exchanging in the Communication step. If there is some 
exchange required, we store it in the MessageArray for that 
processor.

• Communication Step

- If there is some exchange required, we send and receive the 
boundary information with the adjacent subgraphs.

- We update the shortest path of the above nodes.



Parallel Approach
• The Computation step and the Communication step are 

repeated until we establish that the boundary nodes don’t 
need to update the distances in the adjacent subgraphs.

• The algorithm terminates and the source node gets the 
results from all other processes.

• MPI functions used –

- MPI_Send

- MPI_Receive

- MPI_Scatter

- MPI_Gather

- MPI_Bcast



Tasks achieved since midterm
• Work on fixing the Slurm script.

• Increase the number of processors.

• Increase the size of the graph.

• Obtain results for other parameters like speed up factor, sequential v/s parallel execution.

• Try to remove the outliers in the execution result.

10



Execution results 
(Running time)

11

1000 vertices

• Number of nodes up to 125.

• Number of vertices up to 1400.

• Results of

- Running time v/s no of nodes.

- Sequential vs parallel running time.

- Speed up.

- Cost.



Execution results 
(Running time)

12

1200 vertices



Execution results 
(Running time)

13

1400 vertices



Execution results 
(Sequential vs 
Parallel Running 
Times)

14

• Varied the number of vertices in the graph, 
keeping the number of nodes constant.



Execution results 
(Speed-up)

15

• Speed-up is defined as

• S = Tseq / Tpar



Execution results 
(Cost)

16

• Cost is defined as

• C = P * Tpar



References
• Dijkstra, E. W. (1959). "A note on two problems in connection with graphs,". Numerische Mathematik

1: 269–271. doi:10.1007/BF01386390. 

• Y. Tang, Y. Zhang, H. Chen, “A Parallel Shortest Path Algorithm Based on Graph- Partitioning and 
Iterative Correcting”, in Proc. of IEEE HPCC’08, pp. 155-161, 2008. 

• G.Stefano,A.Petricola,C.Zaroliagis,“On the implementation of parallel shortest path algorithms on a 
supercomputer”, in Proc. of ISPA’06, pp. 406-417, 2006. 

• A.Crauser, K.Mehlhorn, U.Meyer, P.Sanders, “A parallelization of Dijikstra’s shortest path algorithm”, in 
Proc. of MFCS’98, pp. 722-731, 1998. 

• https://en.wikipedia.org/wiki/Shortest_path_problem#CITEREFThorup1999

• https://en.wikipedia.org/wiki/Dijkstra's_algorithm

• https://en.wikipedia.org/wiki/Parallel_single-source_shortest_path_algorithm
17


