
Parallel AutoClass

Kevin R Keane

CSE 633

Spring 2009

Given Observed Data

Estimate Class
Distribution Parameters

Original update_parameters()

Parameter Estimation

New update_parameters()

New - inside the former loops

Estimate Class
Membership Weights

Weight Estimation

So much code … so little time
the speed bumps

• It took 8.5 seconds to push hello world to the
device.
– After that, hellos arrived 12/millisecond.

• Apparently try and class are keywords in C++.

• The NVIDIA compiler, nvcc compiles the *.cu files
in C++ mode. So, for the C portion of the program
to link properly, you need to wrap headers:

extern ”C” {
int myCoolDemo(int argc,char **argv);

}

So much code … so little time
the speed bumps

• 3-D dimensions have modest limits in the third
dimension.

• Maximum dimensions for a block
– 512, 512, and 64 for the x, y, and z

• A grid is at most two dimensional
– Blocks can be arrayed in two dimensional grids to

large size.
– Third dimension is limited to 64. So, need to pick a

dimension to be relegated to the 64 count limit.

• Perhaps that's ok for the class dimension, and
then again maybe not.

So much code … so little time
the speed bumps

• There is not an intrinsic all-reduce function in CUDA
– Required along the summation dimensions for parallel

code

• Implementation
– thread per each class / attribute combination for

parameter estimation
– Thread per datum for weight estimation
– Summation and product dimensions handled serially

• Not so bad …
– #classes x #attributes frequently 50-100 or more
– Number of observations typically large, 1000 – 100,000+

• Significant parallel speedup still possible

Optimizing reduction code provides
further opportunity for speedup

Source: developer.download.nvidia.com

Optimizing reduction code provides
further opportunity for speedup

Source: developer.download.nvidia.com

Lessons learned …

• Porting legacy code is not pretty …
– Loops spread widely across functions

– Data structures not compactly allocated
• Copy & ship is a pain

• Probably best to design software directly to
take advantage of architecture

• On the other hand –
– Software per architecture is probably a bad idea

– Coding is frequently the bottleneck

