
Graphs at Pace: Profiling
Parallel Dijkstra's
Algorithm in HPC
Kiran Radhakrishnan
CSE 633 Spring 2024

Introduction

Dijkstra's algorithm is a method for finding the shortest paths between nodes

in a graph, by iteratively selecting the node with the lowest known distance

from the start node and updating the distances to its neighbors.

5/12/24 Graphs at Pace 2

Introduction
Dijkstra’s algorithm was conceived by computer scientist Edsger W. Dijkstra in 1956.

This algorithm finds the shortest distance from a source node to all the other nodes in a given
weighted graph.

It is ideal for solving the single source shortest path problem.

5/12/24 Graphs at Pace 3

Common uses

• IP routing to find Open shortest Path First.

• Google maps for navigation

• Delivery route optimization
• Warehouse robot pickers

• Modeling biological network pathways

5/12/24 Graphs at Pace 4

Dijkstra’s Algorithm Sequential

This algorithm finds the shortest path from a source node to

other nodes in a graph by sequentially going over temporary

distances to each node, picking the nearest node and then

updating the distance to its neighbors. This step is repeated

till all nodes are visited.

5/12/24 Graphs at Pace 5

Adjacency Matrix

5/12/24 Graphs at Pace 6

Sequential Pseudocode
function Dijkstra(Graph, source):

 dist[] := array of distances initialized to infinity for all nodes

 prev[] := array of predecessors initialized to NULL for all nodes

 visited[] := array initialized to false for all nodes

 dist[source] := 0

 while there are unvisited nodes:

 u := node with the minimum distance in dist[] among unvisited nodes

 mark u as visited

 for each neighbor v of u:

 if v is not visited and dist[u] + weight(u, v) < dist[v]:

 dist[v] := dist[u] + weight(u, v)

 prev[v] := u

 return dist[], prev[]

5/12/24 Graphs at Pace 7

Example:

5/12/24 Graphs at Pace 8

Example:

5/12/24 Graphs at Pace 9

Example:

5/12/24 Graphs at Pace 10

Example:

5/12/24 Graphs at Pace 11

Example:

5/12/24 Graphs at Pace 12

5/12/24 PRESENTATION TITLE 13

https://www3.cs.stonybrook.edu/~skiena/combinatorica/ani
mations/dijkstra.html

Parallel Dijkstra’s approaches

5/12/24 Graphs at Pace 14

Two approaches:
- Single source (Vertex Centric)

- Multiple sources across each processor
- Less communication required(Not the objective of this course)
- Better for multiple source path computation

- Shared source (Edge Centric)
- A single source used by all processors
- More communication required to find global minimum.

Parallel Dijkstra’s
1. Initialize MPI environment.

2. Read the number of vertices 'n' from command line argument.

3. Broadcast 'n' to all processes.

4. Calculate the local size of matrix.

5. Allocate memory for local matrices, distances, and predecessors.

7. Initialize random weight matrix on process 0 and broadcast it.

8. Perform Dijkstra's initialization locally:

 - Set the known status of the source node to 1.

 - For all other nodes, set known status to 0.

 - Initialize distances from source node and predecessors.

9. Execute Dijkstra's algorithm :

 - Find the node with the minimum tentative distance among unvisited nodes.

 - Share the minimum distance globally.

 - Update local distances and predecessors based on global minimum distances.

10. Gather local distances and predecessors to process 0.

11. Print global distances and paths.

12. Finalize MPI environment.

5/12/24 Graphs at Pace 15

Overall performance with 40000 vertices

5/12/24 Graphs at Pace 16

For Reference:
of tasks = # of Cores per node

Total # of cores =
of nodes * # of tasks per node

Overall performance with 40000 vertices

5/13/24 Graphs at Pace 17

For Reference:
of tasks = # of Cores per node

Total # of cores =
of nodes * # of tasks per node

Each line represents a constant
number of nodes

Overall performance with 40000 vertices but for x>20

5/14/24 Graphs at Pace 18

Cropped graph, with a
zoomed in perspective for a
better understanding.

Time vs Number of Nodes

Number of nodes

Key for number of tasks per node

Time taken for 1 Task per node with 40000 vertices

5/13/24 Graphs at Pace 19

Time taken for 10 Task per node with 40000 vertices

5/14/24 Graphs at Pace 20

Time taken for 26 Task per node with 40000 vertices

5/14/24 Graphs at Pace 21

Time taken for 32 Task per node with 40000 vertices

5/14/24 Graphs at Pace 22

Time taken for 40 Task per node with 40000 vertices

5/14/24 Graphs at Pace 23

Time taken for 1 Node with 40000 vertices

5/12/24 Graphs at Pace 24

Speedup for 1 Node with 40000 vertices

5/12/24 Graphs at Pace 25

Cost for 1 Node with 40000 vertices

5/12/24 Graphs at Pace 26

Time taken for 2 Nodes with 40000 vertices

5/12/24 Graphs at Pace 27

Speedup for 2 Nodes with 40000 vertices

5/12/24 Graphs at Pace 28

Cost for 2 Nodes with 40000 vertices

5/12/24 Graphs at Pace 29

Time taken for 4 Nodes with 40000 vertices

5/12/24 Graphs at Pace 30

Speedup for 4 Nodes with 40000 vertices

5/12/24 Graphs at Pace 31

Cost for 4 Nodes with 40000 vertices

5/12/24 Graphs at Pace 32

Time taken for 8 Nodes with 40000 vertices

5/12/24 Graphs at Pace 33

Speedup for 8 Nodes with 40000 vertices

5/12/24 Graphs at Pace 34

Cost for 8 Nodes with 40000 vertices

5/12/24 Graphs at Pace 35

Time taken for 16 Nodes with 40000 vertices

5/12/24 Graphs at Pace 36

Speedup for 16 Nodes with 40000 vertices

5/12/24 Graphs at Pace 37

Cost for 16 Nodes with 40000 vertices

5/12/24 Graphs at Pace 38

Time taken for 32 Nodes with 40000 vertices

5/12/24 Graphs at Pace 39

Speedup for 32 Nodes with 40000 vertices

5/12/24 Graphs at Pace 40

Cost for 32 Nodes with 40000 vertices

5/12/24 Graphs at Pace 41

Time taken for 40 Nodes with 40000 vertices

5/12/24 Graphs at Pace 42

Speedup for 40 Nodes with 40000 vertices

5/12/24 Graphs at Pace 43

Cost for 40 Nodes with 40000 vertices

5/12/24 Graphs at Pace 44

Time taken for 44 Nodes with 40000 vertices

5/12/24 Graphs at Pace 45

Speedup for 44 Nodes with 40000 vertices

5/12/24 Graphs at Pace 46

Cost for 44 Nodes with 40000 vertices

5/12/24 Graphs at Pace 47

Time taken for 46 Nodes with 40000 vertices

5/12/24 Graphs at Pace 48

Speedup for 46 Nodes with 40000 vertices

5/12/24 Graphs at Pace 49

Cost for 46 Nodes with 40000 vertices

5/12/24 Graphs at Pace 50

Time taken for 50 Nodes with 40000 vertices

5/12/24 Graphs at Pace 51

Cost for 50 Nodes with 40000 vertices

5/12/24 Graphs at Pace 52

Time taken for 60 Nodes with 40000 vertices

5/12/24 Graphs at Pace 53

Speedup for 60 Nodes with 40000 vertices

5/12/24 Graphs at Pace 54

Cost for 60 Nodes with 40000 vertices

5/12/24 Graphs at Pace 55

Time taken for 80 Nodes with 40000 vertices

5/12/24 Graphs at Pace 56

Speedup for 80 Nodes with 40000 vertices

5/12/24 Graphs at Pace 57

Cost for 80 Nodes with 40000 vertices

5/12/24 Graphs at Pace 58

Time Taken for 1 nodes with increasing vertices

5/12/24 Graphs at Pace 59

1 core => 625 vertices
2 cores => 1250 vertices
4 cores => 2500 vertices
8 cores => 5000 vertices
16 cores => 10000 vertices
32 cores => 20000 vertices

Speedup for 1 nodes with increasing vertices

5/12/24 Graphs at Pace 60

1 core => 625 vertices
2 cores => 1250 vertices
4 cores => 2500 vertices
8 cores => 5000 vertices
16 cores => 10000 vertices
32 cores => 20000 vertices

Time Taken for 2 nodes with increasing vertices

5/12/24 Graphs at Pace 61

1 core => 625 vertices
2 cores => 1250 vertices
4 cores => 2500 vertices
8 cores => 5000 vertices
16 cores => 10000 vertices
32 cores => 20000 vertices

Speedup for 2 nodes with increasing vertices

5/12/24 Graphs at Pace 62

Conclusions

5/16/24 Graphs at Pace 63

- We could see that when increasing the scaling, initially we notice a constant drop in the
time taken from parallellization.

- After a certain point, especially with over 20 nodes, and around 40 tasks per node, we see
a gradual increase in time taken for most scenarios.

- This tells us that Parallelization is beneficial to us, to a certain extent, but when the
overhead of inter process communication, and extent of parallellization is really high, the
cons outweigh the pros of parallellization.

References

5/12/24 Graphs at Pace 64

https://resources.saylor.org/wwwresources/archived/site
/wp-content/uploads/2012/06/CS408-2.3.2-Dijkstras-
algorithm.pdf

http://www.algolist.com/Dijkstra's_algorithm

https://www3.cs.stonybrook.edu/~skiena/combinatorica/ani
mations/dijkstra.html

https://www.researchgate.net/publication/273264449_Unde
rstanding_Dijkstra_Algorithm

Thank you
Kiran Radhakrishnan
kiranrad@buffalo.edu

