


Outline

#* String Matching

» Knuth-Morris-Pratt Algorithm

= How to improve with parallelization
#* Experimental Set up

= Data Description

= Hardware Specifications
#* Results
#* Analysis
#* Future Work




String Matching

#* Goal: Find occurrences of a pattern P of length m in a
string S of length n (m <n)

#* Applications:
= Text Processing
= DNA & Protein sequence matching
= Anti-Virus & Intrusion Detection

= Database Query




Knuth-Morris-Pratt

*The prefix function m[q]

* Encapsulates how the pattern matches against shifts of
itself

= When there is a mismatch, the prefix function tells you
how far to shift the pattern

Plqq A B A B A C A
Mgl O 0 1 2 3 0 1

= Mismatch: P[q+1] != S[i] -> q = 1t[q]




In Parallel

#* Open MP on Shared Memory Machine

#* Matching multiple patterns on same text

#*[f p = number of patterns, c = number of cores, S =
input string

#* Find match faster by:

» Distribute p/c patterns to each core
= Distribute S to each core

* Projected speed up approximately c times




Architecture

Master
Reads S from text
And sends to each thread

Run
KMPMatch on

Run
KMPMatch on

KMPMatch on

Record Results Record Results Record Results
in Struct in Struct in Struct

Master can analyze results from Structs




Experimental Set up - Data

#* Input Text
= 100,000 lines each 256 characters
= Random 1 and 0

#* Pattern
» Each permutation in order (ie binary counting)
= 4 ‘bit’ through 13 ‘bit’
* 1, 2, and 3 ‘bit’ seemed too trivial

= [nitial trials were fixed on the 6 ‘bit’ pattern

* Time is average over 3 trials




Experimental Set up -
Hardware

%12 Core Machine
= 2.4 GHz
= 48GB Memory

#* 32 Core Machine
= 2.13GHz - INTEL
= 2.2GHz - AMD
= 256GB Memory

#* [nitial tests varied threads from 1-64




in

Proces

Initial Results

1 node: 32 cores 1 node: 12 cores
6 character pattern 6 character Pattern

e e =
[T RN NN

S N B O ©

0 5 10 15 20 25 30 35

Processing time in Seconds

o
N

4 6 8 10— 1214
Number of Threads Number of Threads

RAM Time 32 Cores: 16.176 seconds

Best Time 32 Cores: 13 threads - 3.575 seconds
= Deviation from 8-21 threads is 0.1575 seconds

RAM Time 12 Cores: 14.626 seconds
Best Time 12 Cores: 12 threads - 2.384 seconds




Overall Results for 6 Character Pattern
1 through 64 threads

O
o

(o¢]
o

N
o

o))
o

—32 Core

ul
o

S
o

12 Core

Time in Seconds
w
()

N
o

\— :

0 10 20 30 40 50 60 70
Number of Threads

[EN
o

o




Speedup Factor

Speedup

Speedup On 32 Core Node

S

w

N

=

i kR U1 N U1 W U1 A ;1!

o
o

5 10 15 20 25 30 35
Number of Threads

o

Best Speedup 4.52x

Speedup Factor

o

Speedup on 12 Core Node

0 2 4 6 8 10 12

Number of Threads

Best Speedup 6.13x

14



How problem Size effects time

2500
2000

1500

1000 ——RAM

12 Threads

Time in Seconds

500

o

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Number of Patterns




Speedup

S

3

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Number of Patterns

Speedup Factor




Summary of Results

= Parallel good until number of threads exceeds number
of cores

» 14 ‘bit’, 16k patterns would not run on 12 core
machine

* Max speedup on 12 core machine 6.13x not 12x

*= Max speedup on 32 core machine even worse 4.52x
not 32x!




Future Work

#* Only compute prefix function one time for a pattern
#* Write results to a file rather than into a struct

= Memory issues with size of struct per pattern limited
the length of pattern

= Writing to a file solves this issue

#* Examine load balancing directives




References

Fast Pattern Matching in Strings Donald E. Knuth, James
H. Morris, Jr., and Vaughan R. Pratt, SIAM ]. Comput. 6,
323 (1977),DO0I:10.1137/0206024

Cormen, Thomas H., Charles E. Leiserson, Ronald L.
Rivest, and Clifford Stein. "32 String Matching.”
Introduction to Algorithms. Cambridge, MA: MIT, 2009.
1002-006. Print.




