
Parallel PageRank Computation
using MPI

CSE 633 Parallel Algorithms (Fall 2012)
Xiaoyi (Eric) Li
Email: xiaoyili@buffalo.edu

Outline

n  Markov Chains
n  PageRank Computation
n  Parallel Algorithm
n  Message Passing Analysis
n  Experiments and result

Markov Chains

n  Markov Chain:
¨  A Markov chain is a discrete-time stochastic process consisting of N states.

n  Transition Probability Matrix:
¨  A Markov chain is characterized by an N*N transition probability matrix P.
¨  Each entry is in the interval [0,1].
¨  A matrix with non-negative entries that satisfies
¨  Chain is acyclic
¨  There is a unique steady-state probability vector π.

n  η(i,t) is the number of visits to state i in t steps.
n  π(i)>0 is the steady-state probability for state i.

∑
=

=∀
N

j
Piji

1
1,

)(),(lim i
t
ti

t
π

η
=

∞>−

PageRank Computation

n  Target
¨  Solve the steady-state probability
 vector π, which is the PageRank of the corresponding Web page.

n  Method
¨  Iteration.
¨  Given an initial probability distribution vector x0
¨  x0*P = x1, x1*P = x2 … Until the probability distribution converges.

(Variation in the computed values are below some predetermined
threshold.)

Practical PageRank Calculation

Worker
_1

Worker
_2

Worker
_3

Worker
_4

Worker
...

1 2 3 4 …

Parallel Algorithm

Worker
§  Read bucket, construct local

graph and send two index --
node to update & node required
to master

Master
§  Received individual index,

initialize send & receive buff for
each worker.

§  Initialize global weights, send
weights[index_i] to workers_i

Worker
§  Update local graph using

received weight. Calculate
PageRank once.

§  Send the updated score back to
master.

Master
§  Gather individual updates form

workers, update the global
weight determined by index_i

§  Check convergence
§  If not, send global weights to

workers
§  If yes.. Send stop signal and do

house keeping

-- Begin iteration ---

-- Initialization ---

Total number of iterations

Message Passing Analysis

Without weight index

§  Each worker send & receive
global weight from master:

1M web-nodes, 64 workers:
•  2 * 8 bytes * 1M = 16MB
•  16 * 64 = 1024MB = 1GB
•  Total = #iteration * 1GB

With weight index

§  Each worker send & receive global
weight from master:

1M web-nodes, 64 workers:
•  Send: 8 * 1M / #workers ≈ 0.128MB
•  Rec: 8 * 1M / (small fraction, e.g

#nodes/8) ≈ 1MB
•  1.128 * 64 ≈ 72MB
•  Total = #iteration * 72MB

Experiments

n Data: wiki-votes (67035 | 1025563)
n  #nodes = 32, IB2, ppn=4

#cores	
 run	
 *me	
 (ms)	
 speed	
 up	
 efficiency	

2	
 519	
 1	
 1	

3	
 269	
 1.92936803	
 0.96468401	

4	
 173	
 3	
 1	

5	
 148	
 3.50675676	
 0.87668919	

6	
 123	
 4.2195122	
 0.84390244	

7	
 96	
 5.40625	
 0.90104167	

8	
 87	
 5.96551724	
 0.85221675	

16	
 45	
 11.5333333	
 0.76888889	

32	
 25	
 20.76	
 0.66967742	

64	
 38	
 13.6578947	
 0.21679198	

128	
 74	
 7.01351351	
 0.05522452	

Results

Results

0

100

200

300

400

500

600

0 20 40 60 80 100 120 140

R
un

ni
ng

 ti
m

e
(m

s)

 Number of cores

Run time

Results

0

5

10

15

20

25

0 20 40 60 80 100 120 140

Sp
ee

du
p

Number of cores

Speedup

Results

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120 140

Ef
fic

ie
nc

y

Number of cores

Efficiency

n Questions?

