Parallel PageRank Computation

using MPI

CSE 633 Parallel Algorithms (Fall 2012)
Xiaoyi (Eric) Li
Email; xiaovili@buffalo.edu

Outline

Markov Chains

PageRank Computation
Parallel Algorithm
Message Passing Analysis
Experiments and result

Markov Chains

m Markov Chain:
A Markov chain is a discrete-time stochastic process consisting of N states.
m Transition Probability Matrix:
A Markov chain is characterized by an N*N transition probability matrix P.
Each entry is in the interval [0,1].
A matrix with non-negative entries that satisfies ¥z, Z Pij =1
Chain is acyclic

There is a unique steady-state probability vector Tr.
= N(i,t) is the number of visits to state i in t steps. 1 77 l t)
m T1(i)>0 is the steady-state probability for state i. o / = ﬂ"(l)

" J——
PageRank Computation o) -— @
Y QN

g >

PageRank ©

m Target

Solve the steady-state probability
vector 11, which is the PageRank of the corresponding Web page.

m Method

Iteration.

Given an initial probability distribution vector x0

x0*P = x1, x1*P = x2 ... Until the probability distribution converges.
(Variation in the computed values are below some predetermined

threshold.)

Practical PageRank Calculation

1
\
£

®

\

Parallel Algorithm

&
/

Initialization

Master
Received individual index,
initialize send & receive buff for
each worker.
Initialize global weights, send
weights[index_i] to workers i

Master
Gather individual updates form
workers, update the global
weight determined by index_i
Check convergence
If not, send global weights to
workers
If yes.. Send stop signal and do

house keeping

Begin iteration ---

N

L—

Worker
Read bucket, construct local
graph and send two index --
node to update & node required
to master

Worker

Update local graph using
received weight. Calculate
PageRank once.

= Send the updated score back to

master.

Message Passing Analysis

Without weight index With weight index
» Each worker send & receive = Each worker send & receive global
global weight from master: weight from master:
1M web-nodes, 64 workers: 1M web-nodes, 64 workers:
« 2*8bytes* 1M = 16MB « Send: 8 * 1M / #workers = 0.128MB
« 16 *64 =1024MB = 1GB Rec: 8 * 1M/ (small fraction, e.g
« Total = #iteration * 1GB #nodes/8) = 1MB

e 1128 *64 = 72MB
* Total = #iteration * 72MB

Experiments

m Data: wiki-votes (67035 | 1025563)
m #nodes = 32, IB2, ppn=4

Hcores
2

0O N OO 1 & W

16

32

64
128

Results

run time (ms) speed up
519 1
269 1.92936803
173 3
148 3.50675676
123 4.2195122
96 5.40625
87 5.96551724
45 11.5333333
25 20.76
38 13.6578947
74 /7.01351351

efficiency
1
0.96468401
1
0.87668919
0.84390244
0.90104167
0.85221675
0.76888889
0.66967742
0.21679198
0.05522452

=
Results

Run time

600

500'1

400

300

Running time (ms)

200

100

— —

0 T T T T T T 1
0 20 40 60 80 100 120 140

Number of cores

"
Results

Speedup

25

20

15

Speedup

10

R

“*

120

140

20

40

60 80
Number of cores

100

"
Results

Efficiency

1.2

0.8

Efficiency
o
»

0.4

0.2 \

0 20 40 60 80 100 120 140
Number of cores

m Questions?

