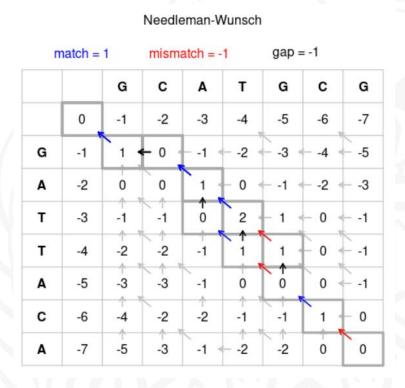
GLOBAL SEQUENCE ALIGNMENT VIA A PARALLEL-PREFIX BASED NEEDLEMAN WUNSCH ALGORITHM Max Farrington

What is global sequence alignment?

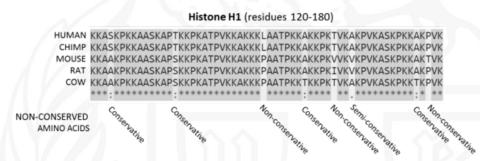
- Global sequence alignment is a bioinformatics technique for aligning two [or more] protein sequences with respects to the whole sequence.
- Every alignment is evaluated by maintaining a scoring matrix.
- Positive and negative scores are granted based on matches or mismatches.
 - Based on the use case, you can change the scoring scheme (ex: +1 match, -1 insertion/deletion, -1 mismatch)
- The best alignment is then found by backtracing from the bottom right



https://en.wikipedia.org/wiki/Needleman%E2%80%93Wunsch_algorithm

What is it actually used for?

- When comparing the sequences of two subjects that share a common ancestor, you can view the mismatches, insertions, and deletions as mutations from that ancestor.
- You can then derive the importance of specific subsequences by how they are preserved in descendants of that ancestor.
- Millions of subsequences have also been tagged/identified for specific behavior.
 - You can find similarities between untagged/tagged sequences to find known genes in a sequence.



https://en.wikipedia.org/wiki/Sequence_alignment

Why is it a good parallel programming problem?

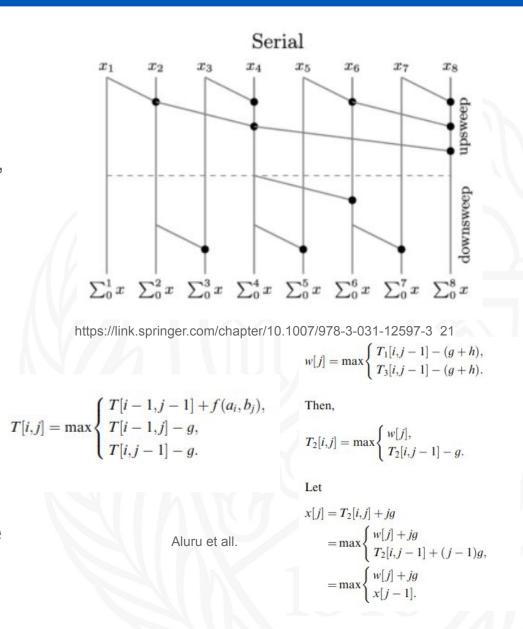
- To compute the running score, there are minimal data dependencies, allowing for computation to be done in parallel either row/column-wise, or along the anti-diagonal.
- These methods have tradeoffs in terms of efficiency and space complexity.
 - For anti-diagonal solutions, you only need to store the current and previous anti-diagonal, which changes in size as you fill the matrix.
 - For row/column wise solutions you need to store the current and previous row, but the size stays fixed.

	0	С	Α	G	С	С	U	С	G	С	U	U	Α	G
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Α	0	0	5	0	0	0	0	0	0	0	?			
A	0	0	5	2	0	0	0	0	0	?				
U	0	0	0	2	0	0	5	0	?					
G	0	0	0	5	0	0	0	?						
С	0	5	0	0	10,	51	?							
С	0	5	2	0	5	**								
A	0	0	10	1	?	3								
U	0	0	1	?										
U	0	0	?											
G	0	?												
С	0													
С	0													
G	0													
G	0													

https://www.researchgate.net/figure/Anti-diagonal-method-an d-dependency-of-the-cells_fig11_222408669

How the algorithm relates to parallel prefix

- Parallel prefix takes a binary associative operator (such as +, -,
 - *, MAX(), etc.) and an array of n elements, and for each element, computes and stores a running total based on the chosen operator.
- In the case of the Needleman Wunsch algorithm, we are effectively keeping a running total, but the value in each spot depends on the max value of its neighbors that have already been computed.
- Needleman Wunsch also allows for negative values in the matrix, so the work can very easily be split into chunks with the preceding values communicated via parallel prefix.



Parallel example

Gap penalty: -2, mismatch: -1, match 1 A = AACTGGAA B = CATG

$$w[j] = \max \begin{cases} T_1[i,j-1] - (g+h), \\ T_3[i,j-1] - (g+h). \end{cases} \quad T_2[i,j] = x[j] - jg.$$

$$\begin{split} x[j] &= T_2[i,j] + jg \\ &= \max \begin{cases} w[j] + jg \\ T_2[i,j-1] + (j-1)g, \\ &= \max \begin{cases} w[j] + jg \\ x[j-1]. \end{cases} \end{split}$$

w[1] = Max(T[0,0] + Match(B[0],A[0]),T[0,1] - 2)= -1

 $x[j] = max(-1 + 1(2), -\infty) = 1$

T[1,1] = 1 - 1(2) = -1

w[2] = Max(T[0,1] + Match(B[0],A[1]),T[0,2] - 2) = -3

x[j] = max(-3 + 2(2), 1) = 1

T[1,2] = 1 - 2(2) = -3

w[5] = Max(T[0,4] + Match(B[0],A[4]),T[0,5] - 2)= -9

 $x[j] = max(-9 + 5(2), -\infty) = 1$

T[1,5] = 1 - 5(2) = -9

Parallel example

Gap penalty: -2, mismatch: -1, match 1 A = AACTGGAA B = CATG

 $w[j] = \max \begin{cases} T_1[i, j-1] - (g+h), \\ T_3[i, j-1] - (g+h). \end{cases} \quad T_2[i, j] = x[j] - jg.$ $x[j] = T_2[i,j] + jg$ $= \max \begin{cases} w[j] + jg \\ T_2[i, j-1] + (j-1)g, \end{cases}$ $\begin{cases} w[j] + jg \\ x[j-1]. \end{cases}$ = max

	0	1	2	3	4	5	6	7	8
		А	А	С	Т	G	G	А	A
	0	-2	-4	-6	-8	-10	-12	-14	-16
С	-2	-1 (1)	-3 (1)	-3* (3)	-5* (3)	-9* (1)	-11* (1)	-15* (1)	-15* (1)
А	-4								
Т	-6								
G	-8								

2

Α

-4

-3 (1)

3

-3* (3)

С

-6

Parallel example

Α

-2

1

-1 (1)

0

0

-2

-4

-6

-8

С

А

Т

G

Gap penalty: -2, mismatch: -1, match 1 A = AACTGGAA B = CATG

6

-11* (1)

G

-12

5

-9* (1)

G

-10

4

-5* (3)

Т

-8

7

-15* (1)

Α

-14

8

Α

-16

-15* (1)

 $w[j] = \max \begin{cases} T_1[i, j-1] - (g+h), \\ T_3[i, j-1] - (g+h). \end{cases} \quad T_2[i, j] = x[j] - jg.$ $x[j] = T_2[i,j] + jg$ $= \max \begin{cases} w[j] + jg \\ T_2[i, j-1] + (j-1)g, \end{cases}$ $= \max \begin{cases} w[j] + jg \\ x[j-1]. \end{cases}$

Prefix time!

Binary associative operator -Max(x)

Parallel example

Gap penalty: -2, mismatch: -1, match 1 A = AACTGGAA B = CATG

	0	1	2	3	4	5	6	7	8
		А	А	С	Т	G	G	А	A
	0	-2	-4	-6	-8	-10	-12	-14	-16
С	-2	-1 (1)	-3 (1)	-3 (3)	-5 (3)	-7 (3)	-9 (3)	-11 (3)	-13 (3)
А	-4								
Т	-6								
G	-8								

 $w[j] = \max \begin{cases} T_1[i, j-1] - (g+h), \\ T_3[i, j-1] - (g+h), \end{cases} \quad T_2[i, j] = x[j] - jg.$ $x[j] = T_2[i,j] + jg$ $\begin{cases} w[j] + jg \\ T_2[i, j-1] + (j-1)g, \end{cases}$ $= \max \{$ w[j] + jg= max

Now, recompute x[j] using the value received during the prefix scan, and use for calculating T[i,j]

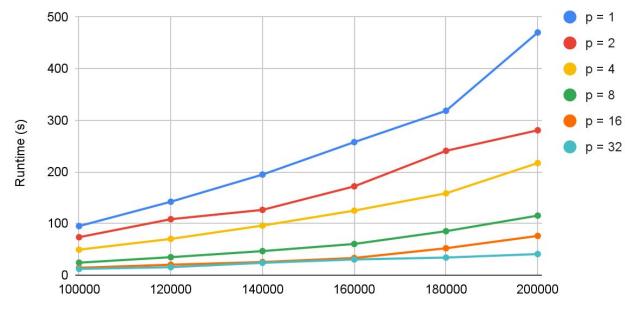
Additionally, share the last value in your local row with the processor next to you

		А	A	C	Т	G	G	A	Α
	0	-2	-4	-6	-8	-10	-12	-14	-16
С	-2	-1	↓ -3	-3	<mark>↓ -</mark> 5	+ -7	<mark>↓ -9</mark>	+ -11	↓-1 3

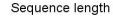
Benchmarking and scalability

Runtime analysis

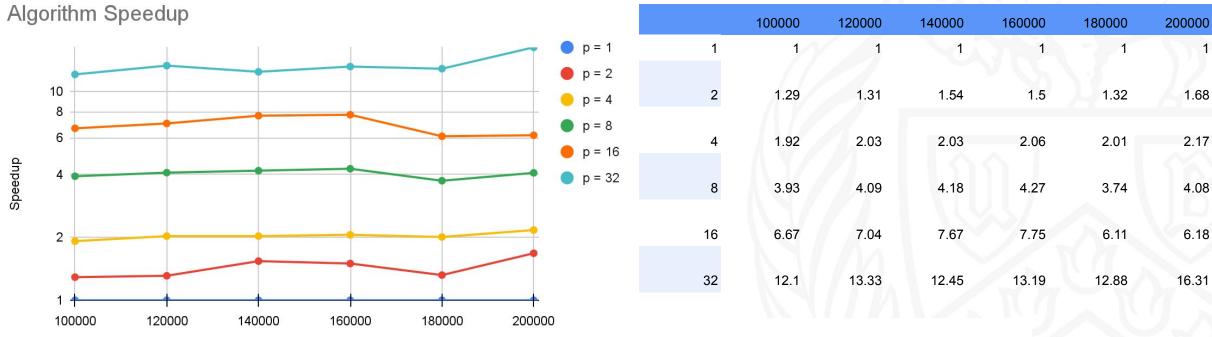
Algorithm Runtime Comparison



n/p		100000	120000	140000	160000	180000	200000
	1	94.972	142.176	194.823	257.642	318.329	470.006
	2	73.5367	108.38	126.419	171.986	240.79	280.597
	4	49.3603	70.1906	95.9919	125	158.477	217.044
	8	24.1509	34.7976	46.5727	60.3988	85.1384	115.308
	16	14.2428	20.195	25.385	33.2346	52.0935	75.9925
	32	7.85093	10.6655	15.6509	19.5389	24.7102	28.8214



Speedup

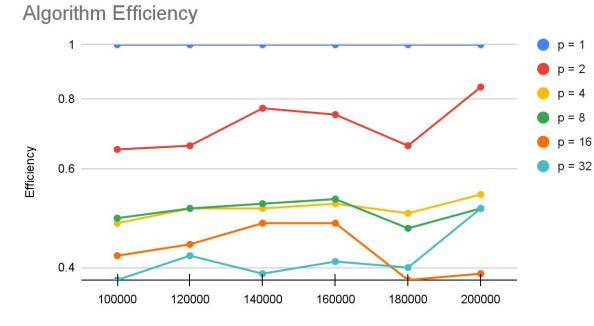


Sequence size

Speedup = $\frac{T_1}{T_p}$

12

Efficiency



	100000	120000	140000	160000	180000	200000
1	1	1	1	1	1	1
2	0.65	0.66	0.77	0.75	0.66	0.84
4	0.48	0.51	0.51	0.52	0.5	0.54
8	0.49	0.51	0.52	0.53	0.47	0.51
16	0.42	0.44	0.48	0.48	0.38	0.39
32	0.38	0.42	0.39	0.41	0.4	0.51

Sequence size

Efficiency = $\frac{T_1}{pT_p}$

Conclusions

- Strong scaling is shown for p=2 (efficiency >= 65%) according to amdahl's law for n = 100000 through n = 200000.
- No weak scaling according to Gustafson's law with fixed ratio of problem size to processors
- Problem size during testing may not have been high enough, as performance showed some promise for higher problem size.
 - Ran into bottleneck with ram, but further testing development is required for implementing a more space efficient solution
- Better utilization of on-chip parallelism would have likely greatly increased the performance of the algorithm with MPI.

References

- https://en.wikipedia.org/wiki/Needleman%E2%80%93Wunsch_al gorithm
- <u>https://en.wikipedia.org/wiki/Sequence_alignment</u>
- <u>https://www.researchgate.net/figure/Anti-diagonal-method-and-d</u>
 <u>ependency-of-the-cells_fig11_222408669</u>
- <u>https://link.springer.com/chapter/10.1007/978-3-031-12597-3_21</u>
- Srinivas Aluru, Natsuhiko Futamura, Kishan Mehrotra, Parallel biological sequence comparison using prefix computations,
- https://bioboot.github.io/bimm143_W20/class-material/nw/