
GLOBAL SEQUENCE ALIGNMENT VIA

A PARALLEL-PREFIX BASED

NEEDLEMAN WUNSCH ALGORITHM
Max Farrington

What is global sequence alignment?
• Global sequence alignment is a bioinformatics technique for

aligning two [or more] protein sequences with respects to the
whole sequence.

• Every alignment is evaluated by maintaining a scoring matrix.

• Positive and negative scores are granted based on matches or

mismatches.

- Based on the use case, you can change the scoring

scheme (ex: +1 match, -1 insertion/deletion, -1 mismatch)

• The best alignment is then found by backtracing from the bottom

right
2

https://en.wikipedia.org/wiki/Needleman%E2%80%93Wunsch_algorithm

What is it actually used for?
• When comparing the sequences of two subjects that share a

common ancestor, you can view the mismatches, insertions, and
deletions as mutations from that ancestor.

• You can then derive the importance of specific subsequences by

how they are preserved in descendants of that ancestor.

• Millions of subsequences have also been tagged/identified for

specific behavior.

- You can find similarities between untagged/tagged

sequences to find known genes in a sequence.

3

https://en.wikipedia.org/wiki/Sequence_alignment

Why is it a good parallel
programming problem?
• To compute the running score, there are minimal data

dependencies, allowing for computation to be done in parallel
either row/column-wise, or along the anti-diagonal.

• These methods have tradeoffs in terms of efficiency and space

complexity.

- For anti-diagonal solutions, you only need to store the

current and previous anti-diagonal, which changes in size
as you fill the matrix.

- For row/column wise solutions you need to store the current

and previous row, but the size stays fixed.

4

https://www.researchgate.net/figure/Anti-diagonal-method-an
d-dependency-of-the-cells_fig11_222408669

How the algorithm relates to
parallel prefix
• Parallel prefix takes a binary associative operator (such as +, -,

*, MAX(), etc.) and an array of n elements, and for each
element, computes and stores a running total based on the
chosen operator.

• In the case of the Needleman Wunsch algorithm, we are

effectively keeping a running total, but the value in each spot
depends on the max value of its neighbors that have already
been computed.

• Needleman Wunsch also allows for negative values in the

matrix, so the work can very easily be split into chunks with the
preceding values communicated via parallel prefix.

5

https://link.springer.com/chapter/10.1007/978-3-031-12597-3_21

Aluru et all.

Parallel example

6

A A C T G G A A

0 -2 -4 -6 -8 -10 -12 -14 -16

C -2 -1 (1) -3 (1) -9* (1)

A -4

T -6

G -8

Gap penalty: -2, mismatch: -1, match 1
A = AACTGGAA
B = CATG

w[1] = Max(T[0,0] + Match(B[0],A[0]) ,T[0,1] - 2)
= -1

x[j] = max(-1 + 1(2), -∞) = 1

T[1,1] = 1 - 1(2) = -1

w[2] = Max(T[0,1] + Match(B[0],A[1]) ,T[0,2] - 2)
= -3

x[j] = max(-3 + 2(2), 1) = 1

T[1,2] = 1 - 2(2) = -3

w[5] = Max(T[0,4] + Match(B[0],A[4]) ,T[0,5] - 2)
= -9

x[j] = max(-9 + 5(2), -∞) = 1

T[1,5] = 1 - 5(2) = -9

0 1 2 3 4 5 6 7 8

Parallel example

7

A A C T G G A A

0 -2 -4 -6 -8 -10 -12 -14 -16

C -2 -1 (1) -3 (1) -3* (3) -5* (3) -9* (1) -11* (1) -15* (1) -15* (1)

A -4

T -6

G -8

Gap penalty: -2, mismatch: -1, match 1
A = AACTGGAA
B = CATG

0 1 2 3 4 5 6 7 8

Parallel example

8

A A C T G G A A

0 -2 -4 -6 -8 -10 -12 -14 -16

C -2 -1 (1) -3 (1) -3* (3) -5* (3) -9* (1) -11* (1) -15* (1) -15* (1)

A -4

T -6

G -8

Gap penalty: -2, mismatch: -1, match 1
A = AACTGGAA
B = CATG

Prefix time!

Binary associative operator -
Max(x)

0 1 2 3 4 5 6 7 8

Parallel example

9

A A C T G G A A

0 -2 -4 -6 -8 -10 -12 -14 -16

C -2 -1 (1) -3 (1) -3 (3) -5 (3) -7 (3) -9 (3) -11 (3) -13 (3)

A -4

T -6

G -8

Gap penalty: -2, mismatch: -1, match 1
A = AACTGGAA
B = CATG

Now, recompute x[j] using the
value received during the prefix
scan, and use for calculating
T[i,j]

Additionally, share the last
value in your local row with the
processor next to you

0 1 2 3 4 5 6 7 8

Benchmarking and
scalability

Runtime analysis

11

n/p 100000 120000 140000 160000 180000 200000
1 94.972 142.176 194.823 257.642 318.329 470.006
2 73.5367 108.38 126.419 171.986 240.79 280.597
4 49.3603 70.1906 95.9919 125 158.477 217.044
8 24.1509 34.7976 46.5727 60.3988 85.1384 115.308

16 14.2428 20.195 25.385 33.2346 52.0935 75.9925
32 7.85093 10.6655 15.6509 19.5389 24.7102 28.8214

Speedup

12

100000 120000 140000 160000 180000 200000

1 1 1 1 1 1 1

2 1.29 1.31 1.54 1.5 1.32 1.68

4 1.92 2.03 2.03 2.06 2.01 2.17

8 3.93 4.09 4.18 4.27 3.74 4.08

16 6.67 7.04 7.67 7.75 6.11 6.18

32 12.1 13.33 12.45 13.19 12.88 16.31

Efficiency

13

100000 120000 140000 160000 180000 200000

1 1 1 1 1 1 1

2 0.65 0.66 0.77 0.75 0.66 0.84

4 0.48 0.51 0.51 0.52 0.5 0.54

8 0.49 0.51 0.52 0.53 0.47 0.51

16 0.42 0.44 0.48 0.48 0.38 0.39

32 0.38 0.42 0.39 0.41 0.4 0.51

Conclusions
• Strong scaling is shown for p=2 (efficiency >= 65%) according to amdahl’s law for n

= 100000 through n = 200000.

• No weak scaling according to Gustafson’s law with fixed ratio of problem size to
processors

• Problem size during testing may not have been high enough, as performance

showed some promise for higher problem size.

- Ran into bottleneck with ram, but further testing development is required for

implementing a more space efficient solution

• Better utilization of on-chip parallelism would have likely greatly increased the
performance of the algorithm with MPI.

14

References
• https://en.wikipedia.org/wiki/Needleman%E2%80%93Wunsch_al

gorithm

• https://en.wikipedia.org/wiki/Sequence_alignment

• https://www.researchgate.net/figure/Anti-diagonal-method-and-d

ependency-of-the-cells_fig11_222408669

• https://link.springer.com/chapter/10.1007/978-3-031-12597-3_21

• Srinivas Aluru, Natsuhiko Futamura, Kishan Mehrotra, Parallel

biological sequence comparison using prefix computations,

• https://bioboot.github.io/bimm143_W20/class-material/nw/

15

https://en.wikipedia.org/wiki/Sequence_alignment
https://www.researchgate.net/figure/Anti-diagonal-method-and-dependency-of-the-cells_fig11_222408669
https://www.researchgate.net/figure/Anti-diagonal-method-and-dependency-of-the-cells_fig11_222408669
https://link.springer.com/chapter/10.1007/978-3-031-12597-3_21

