
HYPER QUICKSORT

By Mohd Ehtesham Shareef



Sequential Quicksort
• Select median as pivot from the sample data set picked from the actual data set. 

• Divide the list into two sub lists: a “low list” containing numbers smaller than the pivot, and a “high list” 
containing numbers larger than the pivot 

• The low list and high list recursively repeat the procedure to sort themselves.

• The final sorted result is the concatenation of the sorted low list, the pivot, and the sorted high list.

2



Parallel Quicksort
• We choose a pivot from one of the processes and broadcast it to every process.

• Each process divides its unsorted list into two lists: those smaller than (or equal) the pivot, those greater 
than the pivot. Each process in the upper half of the process list sends its “low list” to a partner process in 
the lower half of the process list and receives a “high list” in return 

• Now, the upper-half processes have only values greater than the pivot, and the lower-half processes have 
only values smaller than the pivot. 

• Thereafter, the processes divide themselves into two groups and the algorithm recurses. 

• After log P recursions, every process has an unsorted list of values completely disjoint from the values held 
by the other processes.

• The largest value on process i will be smaller than the smallest value held by process i + 1. Each process 
finally sorts its list using sequential quicksort.

3



Hyper Quicksort
• Implementation of parallel quick sort on a hyper cube.

• N dimensional hypercube (number of processors is equal to 2N).

• Processors A and B are connected if and only if their unique log2 n-bit strings differ in exactly 
one position.

4



Algorithm
• Each process starts with a sequential quicksort on its local list. 

• Now we have a better chance to choose a pivot that is close to the true median. 

• The process that is responsible for choosing the pivot can pick the median of its local list. 

• The three next steps of hyper quick sort are the same as in parallel algorithm 1 

- Broadcast

- Division of “low list” and high list”.

- Swap between partner processes.

• The next step is different in hyper quick sort. 

- On each process, the remaining half of local list and the received half-list are merged into a sorted 
local list.

• Recursion within upper-half processes and lower-half processes.

5



Time Complexity

6

• NlogN to sort the local list to find the median which will be the pivot.

• d(d+1)/2 for the broadcast step in step 4 of the previous slide.

• dN is the time required for exchanging and merging of the set of elements.



Results

7



For 1/2 million values

8

Number of 
processors

Execution 
Time (in sec)

2 0.066013
4 0.035113
8 0.020448
16 0.011433
32 0.008648
64 0.010166
128 0.036267



For 1 million values

9

Number of 
processors

Execution 
Time (in sec)

2 0.108501
4 0.056542
8 0.030841
16 0.016540
32 0.012461
64 0.014786
128 0.017203



For 50 million values

10

Number of 
processors

Execution 
Time (in sec)

2 6.024641

4 3.035160

8 1.568181

16 0.953733

32 0.526780

64 0.511470

128 0.555545



For 100 million values

11

Number of 
processors

Execution 
Time (in 

sec)
2 12.129532

4 6.211917

8 3.180447

16 1.818400

32 1.127691

64 1.003973

128 1.001266



Observations

• Computations become faster as a result of parallelization for large amounts of data.

• Very high communication overhead as the number of processors increase after a certain point.

• In order to achieve better performance its important to identify the optimal number of processors 
that would be required for any given computation.

12



References
• Algorithms Sequential and Parallel: A Unified Approach by Russ Miller and Laurence Boxer

• https://www.tutorialspoint.com/parallel_algorithm/parallel_algorithm_sorting.htm

• https://pdfs.semanticscholar.org/16f2/590017d1cf27f60d869366ce281eb5e00802.pdf

• MPI C Documentation

13

https://www.tutorialspoint.com/parallel_algorithm/parallel_algorithm_sorting.htm
https://pdfs.semanticscholar.org/16f2/590017d1cf27f60d869366ce281eb5e00802.pdf


Thank You

14


