HYPER QUICKSORT

By Mohd Ehtesham Shareef

% University at Buffalo The State University of New York



% University at Buffalo The State University of New York

Sequential Quicksort

* Select median as pivot from the sample data set picked from the actual data set.

* Divide the list into two sub lists: a “low list” containing numbers smaller than the pivot, and a “high list”
containing numbers larger than the pivot

* The low list and high list recursively repeat the procedure to sort themselves.

* The final sorted result is the concatenation of the sorted low list, the pivot, and the sorted high list.



% University at Buffalo The State University of New York

Parallel Quicksort

« WWe choose a pivot from one of the processes and broadcast it to every process.

« Each process divides its unsorted list into two lists: those smaller than (or equal) the pivot, those greater
than the pivot. Each process in the upper half of the process list sends its “low list” to a partner process in
the lower half of the process list and receives a “high list” in return

* Now, the upper-half processes have only values greater than the pivot, and the lower-half processes have
only values smaller than the pivot.

 Thereafter, the processes divide themselves into two groups and the algorithm recurses.

* After log P recursions, every process has an unsorted list of values completely disjoint from the values held
by the other processes.

» The largest value on process i will be smaller than the smallest value held by process i + 1. Each process
finally sorts its list using sequential quicksort.



% University at Buffalo The State University of New York

Hyper Quicksort

* Implementation of parallel quick sort on a hyper cube.
* N dimensional hypercube (number of processors is equal to 2N).

* Processors A and B are connected if and only if their unique log2 n-bit strings differ in exactly
one position.

100 110
000 ? 010
v é 111
001 ou/!{

3-D hypercube




% University at Buffalo The State University of New York

Algorithm

* Each process starts with a sequential quicksort on its local list.
* Now we have a better chance to choose a pivot that is close to the true median.

* The process that is responsible for choosing the pivot can pick the median of its local list.

The three next steps of hyper quick sort are the same as in parallel algorithm 1
- Broadcast
- Division of “low list” and high list”.

- Swap between partner processes.

The next step is different in hyper quick sort.

- On each process, the remaining half of local list and the received half-list are merged into a sorted
local list.

Recursion within upper-half processes and lower-half processes.



% University at Buffalo The State University of New York

Time Complexity

d(d+ 1)
O| Nlog N + +dN ).

2

* NlogN to sort the local list to find the median which will be the pivot.
* d(d+1)/2 for the broadcast step in step 4 of the previous slide.

* dN is the time required for exchanging and merging of the set of elements.



% University at Buffalo The State University of New York

Results



% University at Buffalo The State University of New York

For 1/2 million values

Number of Execution
processors | Time (in sec)
0.06

2 0.066013 g
4 0.035113 %
8 0.020448
16 0.011433 £ oon
32 0.008648
64 0.010166 20 40 60 " 100 oo
128 0.036267 Number of processors



% University at Buffalo The State University of New York

For 1 million values

Number of Execution
processors | Time (in sec)
0.1

2 0.108501 i
0.056542 £
8 0.030841 2 oos
16 0.016540 o
32 0.012461
64 0.014786
128 0.017203 ) . ) )

Number of processors



% University at Buffalo The State University of New York

For 50 million values

Number of Execution
processors | Time (in sec)

2 6.024641 6

4 3.035160 o

8 1.568181 5

16 0953733 °

32 0.526780 o

04 0.511470 20 40 60 80 100 120
Number of processors

128 0.555545

10



% University at Buffalo The State University of New York

For 100 million values

Number of | Execution

processors Time (in 12
sec) o
2 12.129532
6.211917 t 8
3.180447 £
16 1.818400 g
32 1.127691 2
64 1.003973 20 40 60 80 100 120
128 1.001266 Number of processors

11



% University at Buffalo The State University of New York

Observations

* Computations become faster as a result of parallelization for large amounts of data.
* Very high communication overhead as the number of processors increase after a certain point.

* In order to achieve better performance its important to identify the optimal number of processors
that would be required for any given computation.

12



% University at Buffalo The State University of New York

References

* Algorithms Sequential and Parallel: A Unified Approach by Russ Miller and Laurence Boxer
* https://www.tutorialspoint.com/parallel algorithm/parallel algorithm sorting.htm

* https://pdfs.semanticscholar.org/16f2/590017d1cf27f60d869366ce281eb5e00802.pdf

* MPI C Documentation

13


https://www.tutorialspoint.com/parallel_algorithm/parallel_algorithm_sorting.htm
https://pdfs.semanticscholar.org/16f2/590017d1cf27f60d869366ce281eb5e00802.pdf

% University at Buffalo The State University of New York

Thank You

14



