
Bitonic Sort

Amrutha Mullapudi

CSE633: Parallel Algorithms (Spring 2014)



Sorting

Arrange an unordered collection of items into a 

meaningful order.

Sorting can be

• Comparison Based. Example: Bubble Sort, 

Selection Sort

• Non Comparison Based. Example: Bucket Sort 

or a Count Sort



Parallel Sorting Algorithms

Perform many comparisons in parallel.

Data distributed among multiple processors.

• How many per processor?

Communication between processors and data 

exchange.

Find a trade-off between local vs global processing 

time.



Applications of sorting algorithm

• Organize an MP3 library

• Display Google PageRank results

• Find the median

• Identify statistical outliers

• Find duplicates in a mailing list

• Data compression

• Computer graphics 

Every system needs (and has) a system sort!



Bitonic Sequence

A sequence a = (a1, a2, . . ., ap) of p numbers is said 

to be bitonic if and only if

1. a1 ≤ a2 ≤ . . . ≤ ak ≥ . . . ≥ ap, for 

some k, 1 < k < p, or

2. a1 ≥ a2 ≥ . . . ≥ ak ≤ . . . ≤ ap, for 

some k, 1 < k < p, or

3. a can be split into two parts that can be 

interchanged to give either of the first two cases.



Bitonic Sorting Network



• Input: Random set of 2n=2k (k is some positive integer) 

numbers. Note that every pair of elements is bitonic.

• Bitonic sequences of size 2 are merged to create ordered lists of 

size 2. At the end of this first stage of merging, we actually 

have n/4 bitonic sequences of size 4.

• Bitonic sequences of size 4 are merged into sorted sequences of 

size 4, alternately into increasing and decreasing order, so as to 

form n/8 bitonic sequences of size 8 and so on.

• Given an unordered sequence of size 2n, exactly log2 2n stages 

of merging are required to produce a completely ordered list.

• Output : Ordered list of size 2n

• Θ(log2 n) levels of comparators are required to sort completely 

an initially unordered list of size 2n when done in parallel.

Algorithm



Bitonic Merge Sort



Implementation

• Input: Number of processors, Data length

• Find the ranks of each processor

• Generate data in each processor using randomize function

• Sort the lists generated in the processor

• Compare and exchange data with a neighbor whose (d-bit 

binary) processor number differs only at the jth bit to 

merge the local subsequences

• The above steps use comparison functions to compare and 

exchange





Test Strategy

Parameters: Number of Processors, Number of data 

elements per processor

Keeping number of processors constant- Plot number 

of data elements per processor vs execution time

Keeping number of data elements constant- Plot 

number of processors vs execution time

Exchanging the complete dataset chunks between 

processors.



0

200

400

600

800

1000

1200

1400

0 20 40 60 80 100 120

Execution Time

Number of Processors vs Execution Time with increase in 

data elements per processor No of Processors Execution Time

2 3

4 9

8 20

16 40

32 80

64 300

128 1150

No. of data elements per processor

10000

20000

30000

40000

50000

60000

100000



0

200

400

600

800

1000

1200

1400

0 50000 100000 150000 200000 250000 300000

Execution Time

Number of data elements per processor vs Execution time 

with constant number of processors
Data per Processor Execution Time

8000 40

16000 70

32000 170

64000 270

128000 550

256000 1320



0

5

10

15

20

25

30

35

0 50 100 150 200 250 300

Execution Time

Number of processors vs Execution time with constant data 

element set No. of Processors Execution Time

2 20

4 15

8 11

16 8

32 5

64 6

128 10

256 30



Dataset Chunk Exchange

Exchanging the processor’s complete dataset with another 

did not make any significant difference in running time.

Time taken to sort is dominating the running time.

Communication time is negligible in comparison to sorting 

time.



Future Scope

Implement parallel quicksort and hyper quicksort 

algorithms and compare their running times.

Analyze the advantages and disadvantages of bitonic 

sort when compared to other sorting algorithms



References

• Algorithms Sequential and Parallel: A Unified 

Approach by Russ Miller and Laurence Boxer

• http://en.wikipedia.org/wiki/Bitonic_sorter

• http://www.cs.rutgers.edu/~venugopa/parallel_su

mmer2012/bitonic_overview.html

http://en.wikipedia.org/wiki/Bitonic_sorter


THANK YOU


