Parallel Implementation of Dijkstra's and Bellman Ford Algorithm

Team 26 B

- Priyanka Ramanuja Kulkarni
- Meenakshi Muthuraman
- Aslesha Pansare
- Nikhil Kataria

Single Source Shortest Path Problem

• The Problem of finding the shortest path from a source vertex

S to all vertices in the graph

- Weighted graph G = (V,E)
- Distance from S to all the vertices

Dijkstra's Algorithm

- Solution to single source shortest path algorithm in graph theory
 - Both directed and undirected graphs
 - All edges must have nonnegative weights
 - Graph must be connected
 - Dijkstra's algorithm runs in O (E*lg|V|)

Dijkstra's algorithm

www.combinatorica.com

Pseudocode of Dijkstra's Algorithm

return dist

```
dist[s] \leftarrow o
                                             (distance to source vertex is zero)
for all v \in V - \{s\}
     do dist[v] \leftarrow \infty
                                            (set all other distances to infinity)
                                            (S, the set of visited vertices is initially empty)
S←ø
O←V
                                            (Q, the queue initially contains all vertices)
                                            (while the queue is not empty)
while Q ≠∅
do u \leftarrow mindistance(Q,dist)
                                             (select the element of Q with the min. distance)
    S \leftarrow S \cup \{u\}
                                            (add u to list of visited vertices)
    for all v \in neighbors[u]
         do if dist[v] > dist[u] + w(u, v)
                                                        (if new shortest path found)
                then d[v] \leftarrow d[u] + w(u, v)
                                                        (set new value of shortest path)
                                                        (if desired, add traceback code)
```

Negative Cycles

A negative cycle is a cycle in a weighted graph whose total weight is negative

Bellman Ford's Algorithm

BELLMAN-FORD(G,w,s)

- 1. INITIALIZE-SINGLE-SOURCE(G,s)
- 2. for i = 1 to |G.V|-1
- 3. for each edge $(u,v) \in G.E$
- 4. RELAX(u,v,w)
- for each edge (u,v) ∈ G.E
- 6. if v.d > u.d + w(u,v)
- 7. return FALSE
- 8. return TRUE
- Worst case performance 0 (|V||E|)
- Space Complexity 0(|V|)

BELLMAN-FORD(G,w,s)

- 1. INITIALIZE-SINGLE-SOURCE(G,s)
- 2. for i = 1 to |G.V|-1
- 3. for each edge $(u,v) \in G.E$
- 4. RELAX(u,v,w)
- 5. for each edge $(u,v) \in G.E$
- 6. if v.d > u.d + w(u,v)
- return FALSE
- 8. return TRUE

Comparing Sequential performance

		Bellman	
No of Nodes	Dijkstra's	Ford's	
1000	0.02354	0.02355	
3500	0.27148	0.27145	
5000	0.5337	0.5539	
7500	1.203	1.703	
10000	2.1728	2.3027	
13000	3.7544	4.1034	
15000	5.04	5.71	
17000	6.5479	6.994	
20000	9.1839	9.5033	
25000	14.4462	16.8432	
30000	20.73	23.2003	
35000	27.9595	30.9635	
40000	36.1225	45.8344	
50000	55.3941	75.4112	

Assumptions

- All the edges are undirected
- We consider a sparse matrix for the initial distance vector
- Each vertex is connected to at least 1 other vertex
- The weights of the edges are assigned randomly with a restriction on the x-axis rand()

Parallel Dijkstra's Algorithm

- On each cluster identify vertices closest to the source vertex
- Use parallel prefix to select the globally closest vertex
- Broadcast the results to all cores
- On each cluster update the distance vectors
- Running time = $o(V^2/P + V^*log(P))$

Parallel Approach

- ☐ MPI_Reduce(MPI_IN_PLACE,nextAN,1,MPI_INT,MPI_SUM,0,MPI_COMM_WORLD);
- ☐ MPI_Bcast(G->node[o], G->N*G->N, MPI_CHAR, o, MPI_COMM_WORLD);

Dijkstra's sequential Vs Parallel Implementation

Dijkstra's: #nodes v/s Running time

Djikstra's: Speed up

Speedup is defined by the following formula:

$$S_p = \frac{T_1}{T_p}$$

where:

- p is the number of processors
- \bullet T_1 is the execution time of the sequential algorithm
- T_p is the execution time of the parallel algorithm with p processors

DIJKSTRA'S ALGORITHM

Dijkstra's: Cost Analysis

Cost Vs No of Nodes

No of Nodes	1000	2000	3000	4000	5000
2	0.232	0.072004	0.1522	0.2462	0.3496
4	0.05044	0.13244	0.2404	0.376	0.5368
8	0.132	0.268	0.5256	0.8552	1.1584
12	0.2208	0.6972	0.9216	1.314	1.9332
14	0.2884	0.5628	1.14632	1.6464	2.2694
16	0.3056	0.5648	1.0224	1.4464	2.1232
32	0.784	1.4816	2.4064	3.6384	5.3952

Bellman Ford: sequential vs parallel

Bellman Ford: Running Time v/s # of Nodes

Bellman Ford: Speedup

Bellman Ford: Cost Analysis

Comparing parallel performance

References

- Implementing Parallel Shortest-Paths Algorithms (1994) by Marios
 Papaefthymiou and Joseph Rodrigue
- Algorithms Sequential & Parallel: A Unified Approach / Edition 2 by Russ
 Miller and Lawrence Boxer
- An Experimental Study of a Parallel Shortest Path Algorithm for Solving Large-Scale Graph Instances by Kamesh Madduri and David A. Bader, Georgia Institute of Technology and Jonathan W. Berry Sandia National Laboratories and Joseph R. Crobak, Rutgers University
- Parallel Algorithms by Guy E. Blelloch and Bruce M. Maggs, School of Computer Science, Carnegie Mellon University

