
Parallel Implementation of Dijkstra’s
and Bellman Ford Algorithm

Team 26 B
● Priyanka Ramanuja Kulkarni
● Meenakshi Muthuraman
● Aslesha Pansare
● Nikhil Kataria

Single Source Shortest Path Problem

● The Problem of finding the
shortest path from a source
vertex
S to all vertices in the graph
● Weighted graph G = (V,E)
● Distance from S to all the

vertices

Dijkstra’s Algorithm

● Solution to single source shortest
path algorithm in graph theory
○ Both directed and undirected

graphs
○ All edges must have non-

negative weights
○ Graph must be connected
○ Dijkstra’s algorithm runs in O

(E*lg|V|)

Pseudocode of Dijkstra’s Algorithm

Negative Cycles

A negative cycle is a cycle in a weighted graph
whose total weight is negative

Bellman Ford’s Algorithm

BELLMAN-FORD(G,w,s)

1. INITIALIZE-SINGLE-SOURCE(G,s)

2. for i = 1 to |G.V|-1

3. for each edge (u,v) ∈ G.E

4. RELAX(u,v,w)

5. for each edge (u,v) ∈ G.E

6. if v.d > u.d + w(u,v)

7. return FALSE

8. return TRUE

BELLMAN-FORD(G,w,s)

1. INITIALIZE-SINGLE-SOURCE(G,s)

2. for i = 1 to |G.V|-1

3. for each edge (u,v) ∈ G.E

4. RELAX(u,v,w)

5. for each edge (u,v) ∈ G.E

6. if v.d > u.d + w(u,v)

7. return FALSE

8. return TRUE

● Worst case performance - 0 (|V||E|)
● Space Complexity - 0(|V|)

Comparing Sequential performance

Assumptions

● All the edges are undirected
● We consider a sparse matrix for the initial distance

vector
● Each vertex is connected to at least 1 other vertex
● The weights of the edges are assigned randomly with a

restriction on the x-axis
 rand()

Parallel Dijkstra’s Algorithm

● On each cluster identify vertices closest to the source
vertex

● Use parallel prefix to select the globally closest vertex
● Broadcast the results to all cores
● On each cluster update the distance vectors
● Running time = 0(V2/P + V*log(P))

Parallel Approach

1.Allocate

graph nodes to
different processors.

2.Shortest distance is

computed using

parallel prefix.

3. Broadcast the

Result to all nodes after finding

closest path.

❏ MPI_Reduce(MPI_IN_PLACE,nextAN,1,MPI_INT,MPI_SUM,0,MPI_COMM_WORLD);
❏ MPI_Bcast(G->node[0], G->N*G->N, MPI_CHAR, 0, MPI_COMM_WORLD);

Dijkstra’s sequential Vs Parallel
Implementation

Dijkstra’s: #nodes v/s Running time

Djikstra’s: Speed up

Dijkstra’s: Cost Analysis

Bellman Ford: sequential vs parallel

Bellman Ford: Running Time v/s # of Nodes

Bellman Ford: Speedup

Bellman Ford: Cost Analysis

Comparing parallel performance

References

● Implementing Parallel Shortest-Paths Algorithms (1994) by by Marios
Papaefthymiou and Joseph Rodrigue

● Algorithms Sequential & Parallel: A Unified Approach / Edition 2 by Russ
Miller and Lawrence Boxer

● An Experimental Study of a Parallel Shortest Path Algorithm for Solving
Large-Scale Graph Instances by Kamesh Madduri and David A. Bader,
Georgia Institute of Technology and Jonathan W. Berry Sandia National
Laboratories and Joseph R. Crobak, Rutgers University

● Parallel Algorithms by Guy E. Blelloch and Bruce M. Maggs, School of
Computer Science, Carnegie Mellon University

