
A PARALLEL

APPROACH TO THE

STABLE MATCHING

PROBLEM
Naveen Udhayasankar, CSE 633 Parallel Algorithms, Final Presentation

What is the stable matching
problem?

Given N men and N women, where each person has ranked all

members of the opposite gender in order of preference, marry the

men and women together such that there are no two people of

opposite gender who would both rather have each other than their

current partners. If there are no such people, all the marriages are

“stable”.

https://en.wikipedia.org/wiki/Stable_marriage_problem

What is the stable matching
problem?
Consider the following example.

• Let there be two men m1 and m2 and two women w1 and w2.

• Let m1‘s list of preferences be {w1, w2}

• Let m2‘s list of preferences be {w1, w2}

• Let w1‘s list of preferences be {m1, m2}

• Let w2‘s list of preferences be {m1, m2}

The matching { {m1, w2}, {m2, w1} } is not stable because m1 and w1 would prefer

each other over their assigned partners. The matching {m1, w1} and {m2, w2} is

stable because there are no two people of opposite sex that would prefer each other

over their assigned partners.

https://www.geeksforgeeks.org/stable-marriage-problem/

Forming a stable matching
• Gale Shapley Algorithm (1962)

- David Gale and Lloyd Shapley proved that, for any equal number of men and

women, it is always possible to solve the stable matching problem.

- Always favors one gender over the other.

- Initially all persons are free.

- The men start off by proposing the woman at the beginning of their

preference list.

- The women receive the proposal and accept it if they are free. Else, they

compare it with their existing proposal and select the best out of the two

proposals.

- The result of the algorithm doesn't depend on the order in which the men/the

women propose.

Gale Shapley
Algorithm

A sequential version of the Gale

Shapley algorithm, in which the men

propose first.

https://en.wikipedia.org/wiki/Stable_marriage_problem​

Proof of termination

Proposition:

The algorithm described for stable

matching terminates.

Proof:

Assume there are n men and n women

involved. A man must propose to at most n

women before being accepted or being

rejected by the final one. So at most n2

proposals may occur, after which the

algorithm terminates.

Proof of engagement

Proposition:

At the end of the algorithm, all

men/women are married.

Proof:

• Assume towards contradiction that m is an unmarried man

at the termination of the algorithm.

• Then there is some unmarried woman w, since there are the

same number of men and women and no one can be

married to more than one person.

• So if a woman gets even one proposal, she is married when

the algorithm terminates. This means that the woman

received no proposals.

• But, in order for the algorithm to terminate man m must be

married, which he is not, or have been rejected by every

woman, including w.

• So m must have proposed to w, which is a contradiction. So

m must be married at the termination of the algorithm.

Proof of stable matching

Proposition:

The described algorithm produces a

stable matching.

Proof:

• Assume towards contradiction that the algorithm produces an

unstable matching for an instance of the stable marriage

problem.

• Then there exists a pair, m, w', who are not matched by the

algorithm, such that m prefers w' to his assigned partner w, and

w' prefers m to her assigned partner m'.

• Then m proposed to w' before he proposed to w, since w' is

before w on his list.

• But a woman can only reject a man if she receives a proposal

from a man she prefers.

• So if a woman rejects a man, she prefers her final marriage

partner to the rejected man. So w' prefers m' to m, which is a

contradiction. So the G-S algorithm produces a stable matching.

Gale Shapley
Algorithm -
Parallelized

A parallel version of the Gale Shapley

algorithm.

Gale Shapley Algorithm -
Parallelized
• There are N men and N women.

• A master-worker approach is followed, there are 2N workers and 1 master, hence,

total processes in 2N+1.

• The master sends out the preference lists and termination messages to the male

and female processes and listens for termination messages from the female

processes.

• The male processes send out proposal messages to the female processes and

listen for termination messages from the master or rejection messages from the

female processes.

• The female processes listen for preference lists from the master or proposal

messages from the male processes and send out termination messages to the

master indicating engagement or rejection messages to the male processes.

Runtime comparison

N 3 5 10 25 50 100 150 160 200

sequential 0.00035 0.00037 0.0009 0.0029 0.041 0.19 0.27 0.21 0.14

parallel 0.0056 0.0064 0.0052 0.0086 0.033 0.17 0.53 0.80 OOM

Runtime comparison

Learnings
• This is a really naïve implementation that does not provide considerable

speedup.

• The amount of work done in communicating the data between the

master and the workers is heavier than the actual computation.

• The computations in the sequential code are just unit time computation,

except for a few like finding the indices.

• The parallel code, however, spends more time in communicating the

data along with the unit time computations.

• The runtime also depends on the preference lists of the men and the

women.

• The worst-case runtime is O(N2).

Story so far…

• The speedup provided by the parallelization is not

significant.

• Infact, the runtimes for the parallel algorithm gets worse

as the number of processes increase.

• Since, the communication is too expensive when

compared to the amount of work to be done, the stable

matching problem is best solved sequentially.

Ordering inputs
• The runtime also depends on the order of the preference lists.

• When the lists are ordered randomly, the sequential code outperforms

the parallel implementation.

• A pattern seems to emerge when there is some inherent ordering to the

preference lists of both the men and women.

• This is especially true in social networks, where the graph nodes are

connected based on the similarities and/or differences between them.

Ordering inputs – Worst case
scenario

N 30 50 100 150 200 254

sequential 0.011 0.088 0.524 1.886 5.683 10.216

parallel 0.010 0.010 0.026 0.076 0.175 0.327

Ordering inputs – Worst case
scenario

Ordering inputs – Half Rotated

N 30 50 100 150 200 254

sequential 0.012 0.116 0.64 2.271 6.088 10.185

parallel 0.007 0.006 0.026 0.086 0.185 0.332

Ordering inputs – Half Rotated

Ordering inputs – Shifted each step

N 30 50 100 150 200 254

sequential 0.001 0.002 0.005 0.01 0.014 0.022

parallel 0.023 0.006 0.022 0.066 0.146 0.266

Ordering inputs – Shifted each step

Speedup

Profiling results - Sequential

Profiling results - Parallel

What makes the parallel implementation
slower?

Random Inputs Ordered Inputs

Conclusion

• The runtime of the algorithm greatly depends on the order of the

inputs.

• There is a significant speedup provided by the parallelization

when there is some inherent ordering in the inputs.

• This is true in case of real world matching, but at the same time

random inputs are more likely.

• During randomized inputs, the algorithm spends more time in

communicating the data between the processors which is

expensive when compared to sequential iteration which renders

the parallel implementation ineffective in such scenarios.

