PARALLEL COMPUTING

MATRIX MULTIPLICATION

USING MPI

INSTRUCTOR: DR. RUSS MILLER

PRESENTED BY: NEEL DUNGANARANI
CONTENT

- Problem definition
- Sequential algorithm
- Parallel Models
- My approach
- Conclusion
PROBLEM DEFINITION

- Given a matrix $A(n \times m)$ with n rows and m columns, where each of its elements is denoted A_{ij} with $1 \leq i \leq n$ and $1 \leq j \leq m$, and a matrix $B(m \times p)$ of m rows and p columns, where each of its elements is denoted B_{ij} with $1 \leq i \leq m$, and $1 \leq j \leq p$, the matrix C resulting from the operation of multiplication of matrices A and B, $C = A \times B$, is such that each of its elements is denoted C_{ij} with $1 \leq i \leq n$ and $1 \leq j \leq p$, and is calculated as follows:

$$C_{r,c} = AB_{r,c} = \sum_{i=1}^{n} A_{r,i} \times B_{i,c}$$
The sequential algorithm for $C = A \times B$

$$C_{ij} = 0$$

for($i = 0; i < n; i + +$)

for($j = 0; j < n; j + +$)

for($k = 0; k < n; k + +$)

$$C_{ij} = C_{ij} + A_{ik} \times B_{kj}$$

Remark: The algorithm performs n^3 scalar multiplications
DIFFERENT PARALLEL MODELS

- Cannon’s algorithm
- Fox algorithm
- DNS algorithm
- PARALLEL MATRIX-MATRIX MULTIPLICATION IN CASE OF BLOCK-STRIPED DATA DECOMPOSITION
PARALLEL APPROACH

- Data decomposition: Partition matrices in such a way that each processor holds \(n/p \) number of rows from the first matrix and \(m/p \) number of columns from the second matrix. \(P \) is the number of processors.

- This is an iterative approach, at each iteration for each processor the scalar products of rows and columns are computed and corresponding elements of the resultant matrix are obtained.

- After completing all computations the columns of the second matrix are transmitted so that the processor will have new columns of the second matrix and new corresponding elements of the resultant matrix could be calculated.

- Iterations are performed until each processor does computation with each column set.

- This transmission of columns should be done sequentially and for that we can use a ring topology.

- We can also perform the same algorithm by taking the row sets of both matrices with little change in generating the resultant matrix.
PARALLEL APPROACH
CONCLUSION
THANK YOU...!!