Computing RMSD using GPGPUs

By Nicolas Barrios
NVIDIA CUDA Primer

Parallel Computing platform for NVIDIA GPUs

A Bit of History:

- Games and other graphics heavy applications often relied on the graphics processor to do the heavy lifting.
- Researchers/scientists said, “Why not use the graphics processor for our computationally heavy workloads? After all, they’re quite similar.”
- Shortly after, NVIDIA officially release the CUDA platform with the express purpose of boosting the performance of these workloads.
CUDA Programming Model

While CPUs are developed with general computing in mind, GPUs are purpose-built (down at the silicon level) to run massively parallel applications.

Many, many more compute cores than a traditional CPU.

CUDA is an extension of C/C++ (there’s also a Fortran extension).

CUDA defines keywords and syntax to easier call GPU functions (called “kernels”) with multiple threads.
A Simple Example of CUDA

// Example from
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#kernels
__global__ void VecAdd(float* A, float* B, float* C){
 int i = threadIdx.x;
 C[i] = A[i] + B[i];
}
int main(){
 ...
 // Kernel invocation with N threads
 VecAdd<<<1, N>>>(A, B, C);
 ...
}
What’s RMSD?

Root-mean-square deviation, also known as root-mean-square error (RMSE)

In the bioinformatics space, it is used to measure the average distance between sets of points defining proteins or other biological structures.

Where d_i is the distance between point i and its corresponding point in the other set:

$$RMSD = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \delta_i^2}$$
Okay so, RMSD + CUDA?

Yes! Thanks to Wolfgang Kabsch.

Kabsch Algorithm: Computes an optimal rotation matrix that minimizes the RMSD between sets of points.

Looking at the sets of points as two matrices, we can take advantage of the matrix multiplication processing that GPUs are built for.
Kabsch Rundown

1. Translate both sets of points in such a way that their centroids end up at the origin of the imposed coordinate system
 a. i.e. with 3D points, we want each centroid to end up at (0, 0, 0)

2. Compute the covariance matrix: $Cov = A^T \times B$
 a. Requires a matrix transpose and a matrix multiplication!

3. Compute the optimal rotation matrix
 a. $R = sqrt(Cov^T \times Cov) \times Cov^{-1}$
 b. Requires 2 multiplications, a transpose, and inverse computations!!

4. Rotate both sets of points using R

5. Compute RMSD
Project Implementation

- Use CUDA’s `float3` vector type to simplify initialization and conceptualization of the N x 3 matrices that Kabsch necessitates.

- Shared Memory: In reduction and matrix multiplication kernels, allocate enough shared memory for the threads to only access global memory once.
 - I.e. in matrix multiplication, allocate enough memory to store an entire column of B in the calculation of $A \times B$.

- Each kernel (reducing, transposing, translating, matrix multiplication) is wrapped to be used within C++ files, where the wrapper calculates the necessary # of blocks and # of threads based on the size of the input.
Benchmarking Configuration

- **System Specs**
 - Intel i7-7700k
 - NVIDIA GTX 1060M 6GB
 - 16GB of Memory

- **Compilation Options:**
 - `NVFLAGS := -Werror=all-warnings -gencode arch=compute_61,code=sm_61 -rdc=true`
 - `CXXFLAGS := -Wall -Wextra -Werror -std=c++11`

- **Generic make rules:**
 - `bin/test_%: src/test_%.*`
 - $(NVCC) ^ -I$(INC_DIR) -o $@ $(NVFLAGS) -Xcompiler $(subst $(SPACE),$(COMMA),$(CXXFLAGS))
 - `test_%: bin/test_%`
 - `./$^`
Results

<table>
<thead>
<tr>
<th>Width</th>
<th>Naive</th>
<th>GPU Simple</th>
<th>GPU Combined</th>
</tr>
</thead>
<tbody>
<tr>
<td>512</td>
<td>0.0342128</td>
<td>0.325414</td>
<td>0.409593</td>
</tr>
<tr>
<td>1024</td>
<td>0.0658724</td>
<td>0.515943</td>
<td>0.516168</td>
</tr>
<tr>
<td>2048</td>
<td>0.116834</td>
<td>0.552264</td>
<td>0.437346</td>
</tr>
<tr>
<td>4096</td>
<td>0.274821</td>
<td>0.516756</td>
<td>0.612387</td>
</tr>
<tr>
<td>8192</td>
<td>0.438935</td>
<td>0.760053</td>
<td>0.796006</td>
</tr>
<tr>
<td>16384</td>
<td>0.89224</td>
<td>1.01975</td>
<td>1.19057</td>
</tr>
<tr>
<td>32768</td>
<td>1.79857</td>
<td>1.6719</td>
<td>1.87057</td>
</tr>
<tr>
<td>65536</td>
<td>3.47928</td>
<td>4.31061</td>
<td>3.97394</td>
</tr>
<tr>
<td>131072</td>
<td>6.9812</td>
<td>7.24666</td>
<td>7.29523</td>
</tr>
<tr>
<td>524288</td>
<td>32.5542</td>
<td>26.4642</td>
<td>27.2958</td>
</tr>
<tr>
<td>1048576</td>
<td>68.4355</td>
<td>53.2135</td>
<td>53.56</td>
</tr>
</tbody>
</table>
Results (cont.)

<table>
<thead>
<tr>
<th>Width</th>
<th>GPU Simple</th>
<th>GPU Combined</th>
</tr>
</thead>
<tbody>
<tr>
<td>512</td>
<td>0.1051362265</td>
<td>0.08352877124</td>
</tr>
<tr>
<td>1024</td>
<td>0.1276737934</td>
<td>0.1276181398</td>
</tr>
<tr>
<td>2048</td>
<td>0.2115546188</td>
<td>0.2671431773</td>
</tr>
<tr>
<td>4096</td>
<td>0.5318196596</td>
<td>0.4487701405</td>
</tr>
<tr>
<td>8192</td>
<td>0.5775057792</td>
<td>0.551421723</td>
</tr>
<tr>
<td>16384</td>
<td>0.8749595489</td>
<td>0.7494225455</td>
</tr>
<tr>
<td>32768</td>
<td>1.075764101</td>
<td>0.9615090587</td>
</tr>
<tr>
<td>65536</td>
<td>0.8071433045</td>
<td>0.8755240391</td>
</tr>
<tr>
<td>131072</td>
<td>0.9633679516</td>
<td>0.9569540645</td>
</tr>
<tr>
<td>262144</td>
<td>0.9880425749</td>
<td>1.037878788</td>
</tr>
<tr>
<td>524288</td>
<td>1.230122203</td>
<td>1.192645022</td>
</tr>
<tr>
<td>1048576</td>
<td>1.28605523</td>
<td>1.27773525</td>
</tr>
</tbody>
</table>
Results (cont.)

Covariance Matrix Calculation Runtime (Avg. of 100 Runs)

Covariance Matrix Calculation Runtime (Avg. of 100 Runs), log-log scale
Results (cont.)

Speedup vs Naive

Speedup vs Naive (width log scaled)
Conclusions

Current implementation does marginally better at large enough N, more than likely due to heavy communication costs at smaller sizes.

Testing-friendly wrappers have an insignificant impact on the average runtime.

GPU implementations exhibit large amounts of CPU thrashing, most likely due to repeated re-initializations of starting state with device memory.

Moving Forward:

- Complete Kabsch RMSD calculations require an implementation of the sq. root of a matrix.
- Move initialization towards a CUDA kernel to reduce, and perhaps remove, CPU thrashing.
Thoughts? Questions? Ask Away!

References

1. CUDA Programming Guide

2. Algorithm

3. Wikipedia (for the RMSD image)