PARALLEL IMPLEMENTATION OF DIJKSTRA'S ALGORITHM USING MPI LIBRARY ON & CLUSTER.

INSTRUCUTOR: DR RUSS MILLER

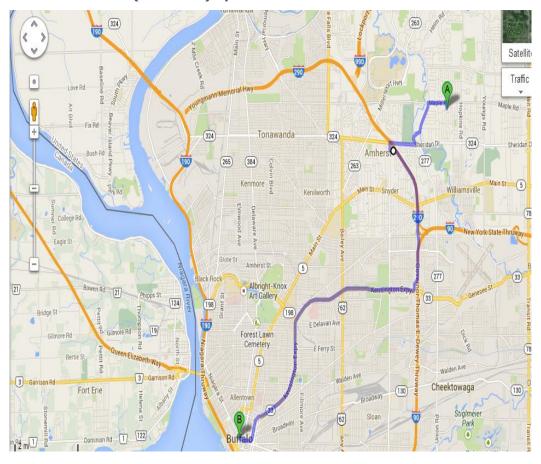
ADITYA PORE

THE PROBLEM AT HAND

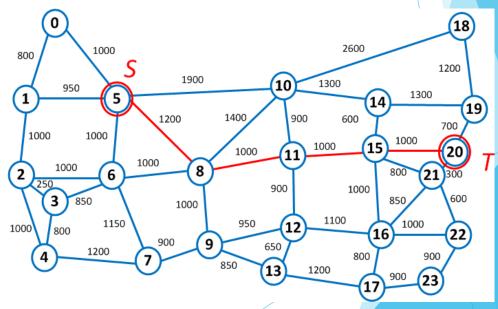
- \bullet Given: A directed graph, G = (V, E). Cardinalities |V| = n, |E| = m.
- S(Source): distinguished vertex of the graph.
- w: weight of each edge, typically, the distance between the two vertexes.
- * Single source shortest path: The single source shortest path (SSSP) problem is that of computing, for a given source vertex s and a destination vertex t, the weight of a path that obtains the minimum weight among all the possible paths.

DIJKSTRA's ALGORITHM AT A GLANCE

- Dijkstra's algorithm is a graph search algorithm that solves singlesource shortest path for a graph with nonnegative weights.
- Widely used in network routing protocol, e.g., Open Shortest Path First (OSPF) protocol



How to reach Downtown from Maple Road??



24 Node US-Mesh Network

LETS GET TO KNOW THE ALGORITHM WITH AN EXAMPLE

Dijkstra's Algorithm

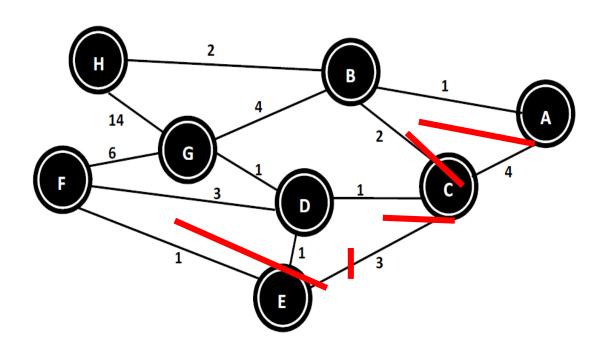


Fig. 2 8-node simple network

Table 1. The routing table for node A

Dijkstra's algorithm 1st round

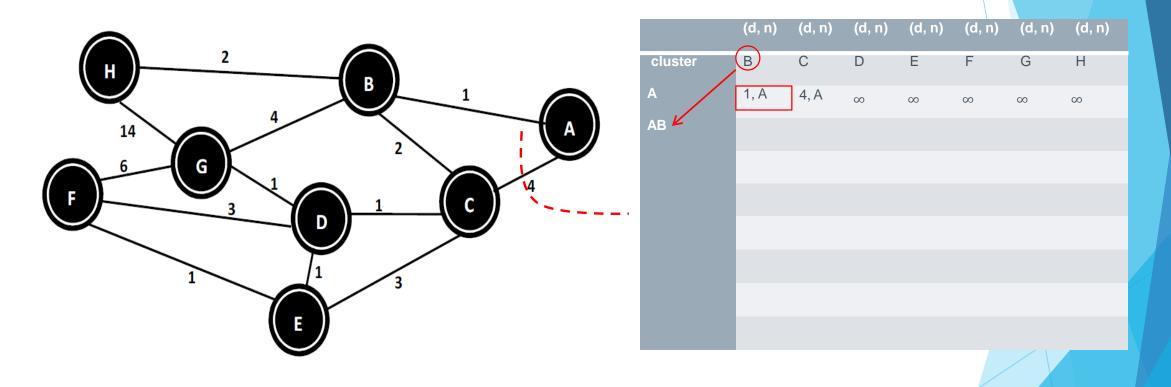


Fig. 2 8-node simple network

Table 1. The routing table for node A

Dijkstra's algorithm-2nd round

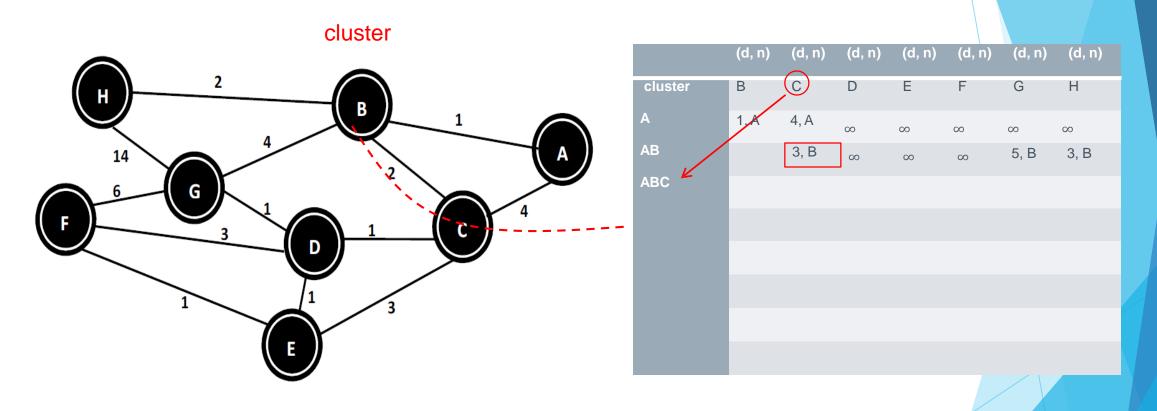
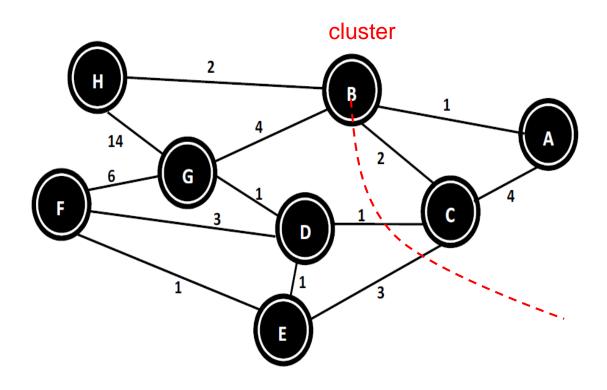


Fig. 2 8-node simple network

Table 1. The routing table for node A

Dijkstra's algorithm-3rd round



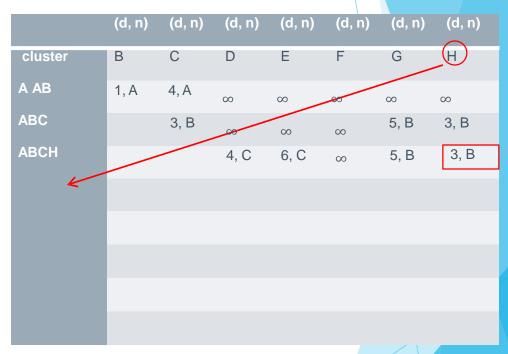
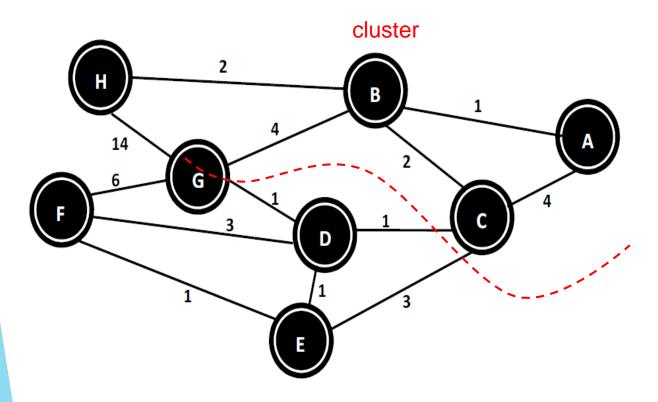


Fig. 2 8-node simple network

Table 1. The routing table for node A

Dijkstra's algorithm-4th round



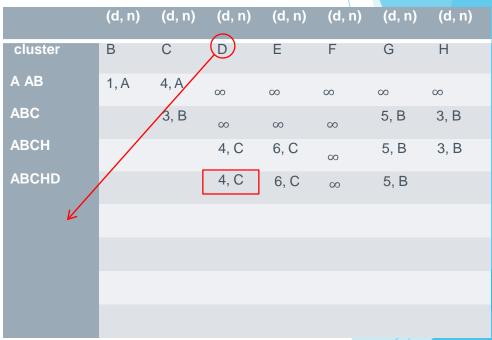
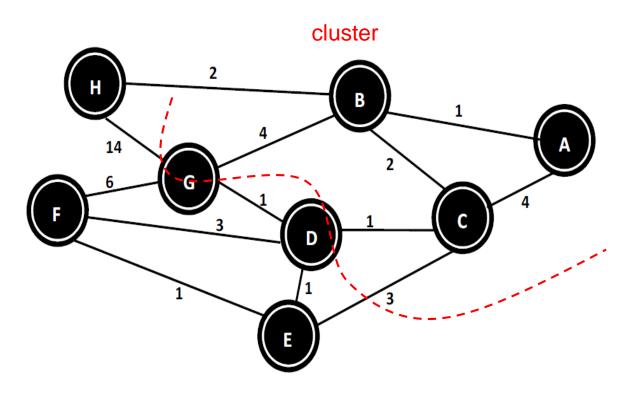


Fig. 2 8-node simple network

Table 1. The routing table for node A

Dijkstra's algorithm-5th round



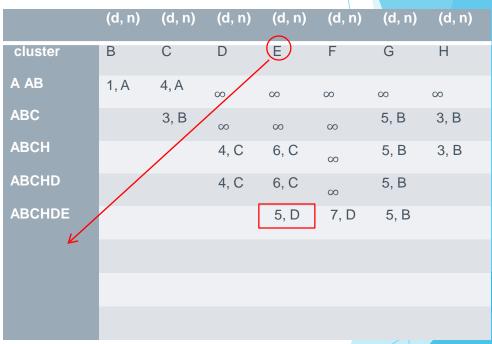


Fig. 2 8-node simple network

Table 1. The routing table for node A

Dijkstra's algorithm-6th round

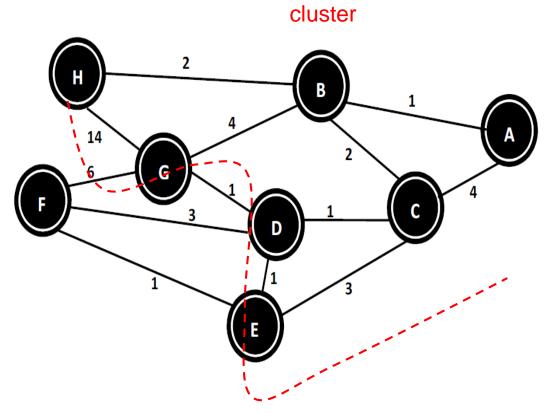


Fig. 2 8-node simple network

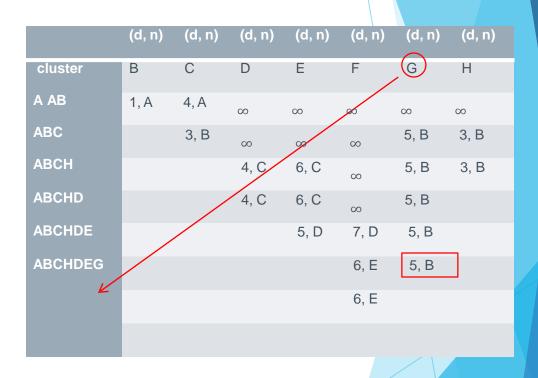


Table 1. The routing table for node A

Dijkstra's algorithm-6th round

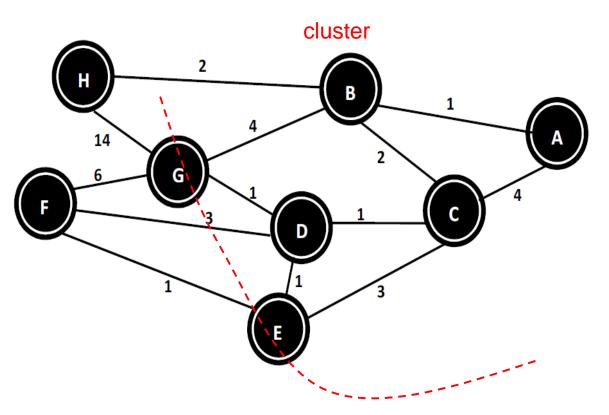


Fig. 2 8-node simple network

	(d, n)	(d, n)	(d, n)	(d, n)	(d, n)	(d, n)	(d, n)
cluster	В	С	D	E	F	G	Н
A AB	1, A	4, A	∞	∞/	∞	∞	∞
ABC		3, B	∞ /	_∞	∞	5, B	3, B
ABCH			4, 2	6, C	∞	5, B	3, B
ABCHD			4, C	6, C	00	5, B	
ABCHDE				5, D	7, D	5, B	
ABCHDEG					6, E	5, B	
ABCHDEGF					6, E		
K							

Table 1. The routing table for node A

SEQUENTIAL DIJKSTRA'S ALGORITHM

```
Create a cluster cl[V]
                                                                    DIJKSTRA(G, w, s)
Given a source vertex s

    INITIALIZE-SINGLE-SOURCE(G, s)

While (there exist a vertex that is not in the
cluster cl[V])
                                                 ANALOGY
    FOR (all the vertices outside the cluster)
         Calculate the distance from non-
         member vertex to s through the cluster
                                                                         u = \text{Extract-Min}(Q)
    END
                                                                         S = S \cup \{u\}
    Select the vertex with the shortest path and
                                                                         for each vertex v \in G.Adj[u]
    add it to the cluster
                                                                             Relax(u, v, w)
    ** O(V) **
```

DIJKSTRA'S ALGORITHM

Running time O(V)

- In order to obtain the routing table, we need O(V) rounds iterations (until all the vertices are included in the cluster).
- In each round, we will update the value for O(V) vertices and select the closest vertex, so the running time in each round is O(V).
- \rightarrow So, the total running time is $O(V^2)$

Disadvantages:

- If the scale of the network is too large, then it will cost a long time to obtain the result.
- For some time-sensitive app or real-time services, we need to reduce the running time.

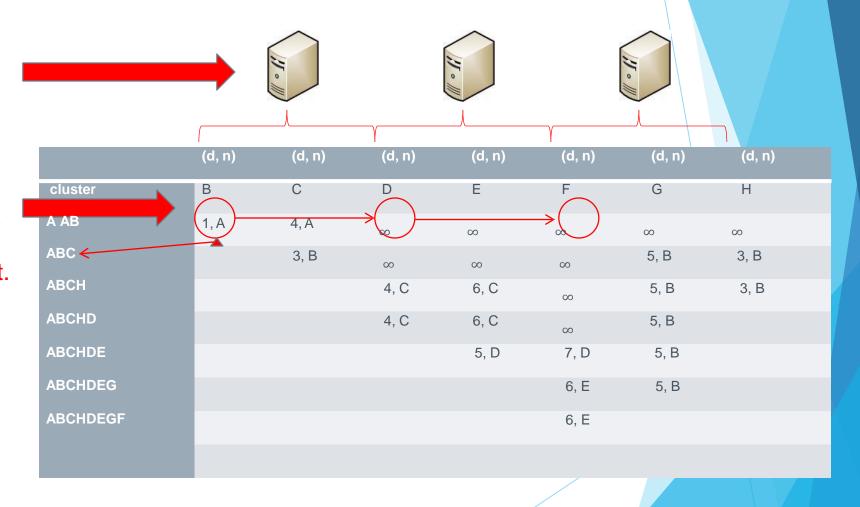
PARALLEL DIJKSTRA'S ALGORITHM

- Each core identifies its closest vertex to the source vertex;
- Perform a parallel prefix to select the globally closest vertex;
- Broadcast the result to all the cores;
- Each core updates its cluster list.

THE ACTUAL ALGORITHM AT WORK

Parallel Dijkstra's algorithm

- Step 1: find the closest node in my subgroup.
- Step 2: use parallel prefix to find the global closest.



PARALLEL DIJKSTRA'S ALGORITHM

```
Create a cluster cl[V]
Given a source vertex s
Each core handles a subgroup of V/P vertices
While (there exist a vertex that is not in the cluster cl[V])
   FOR (vertices in my subgroup but outside the cluster)
       Calculate the distance from non-member vertex to s
       through the cluster;
       Select the vertex with the shortest path as the local
       closest vertex;
   END
                                                    MPI _MINLOC
   ** Each processor work in parallel O(V/P) **
                                                    operation??
   Use the parallel prefix to find the global closest vertex
   among all the local closest vertices from each core.
   ** Parallel prefix log(P) **
```

PARALLEL DIJKSTRA'S ALGORITHM

RUNNING TIME: $O(V^2/P + V \log(P))$

2

- P is the number of cores used.
- In order to obtain the routing table, we need O(V) rounds iteration (until all the vertices are included in the cluster).
- ❖ In each round, we will update the value for O(V) vertices using P cores running independently, and use the parallel prefix to select the global closest vertex, so the running time in each round is O(V/P)+O(log(P)).
- So, the total running time is O(V /P +V²log(P))

RESULTS AND ANALYSIS

- Implemented using MPI: Stats Averaged over 10 rounds of Computation.
- Establish trade-off between running times as a function of number of cores deployed.
- Evaluate speed up and efficiency!!!!
- EXPERIMENT A: (More Graphs and Analysis)
- Compute for fixed size input:10000
- Run Routines for :1 32-core node,3 12-core node,16 dual-core
- EXPERIMENT B: (Achieved Desired Results)
- Compute for different input size: Typically 625,2500,10000
- Run Routine on 1 32-core Node.

EXPERIMENT A: RUN TIME

Tabulation of Results:

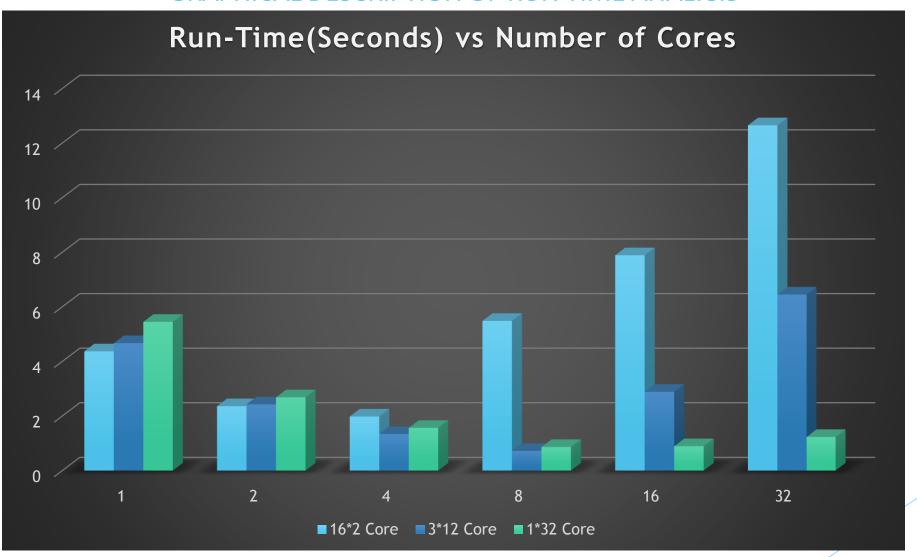
Relationship Observed: Number of Cores Versus The Running Time(seconds)

Conclusions:

- (a) Run Time is Inversely proportional to number of cores: Cores belong to the same node in cluster
- (b) Significant Increase observed for two configurations out of three, namely 16*2 Core and 3*12 Core.

Number of Cores	1	2	4	8	16	32
Configurations		RUNTIMES	I	N	SECONDS	
1)16*2 Core	4.37263	2.36273	1.98442	5.48834	7.89371	12.65342
2)3*12 Core	4.67321	2.42865	1.34567	0.72341	2.88764	6.45321
3)1*32 Core	5.45321	2.68753	1.56782	0.86754	0.89654	1.23609

EXPERIMENT A: RUN TIME GRAPHICAL DESCRIPTION OF RUN TIME ANALYSIS



EXPERIMENT A: SPEED UP

Tabulation of Results:

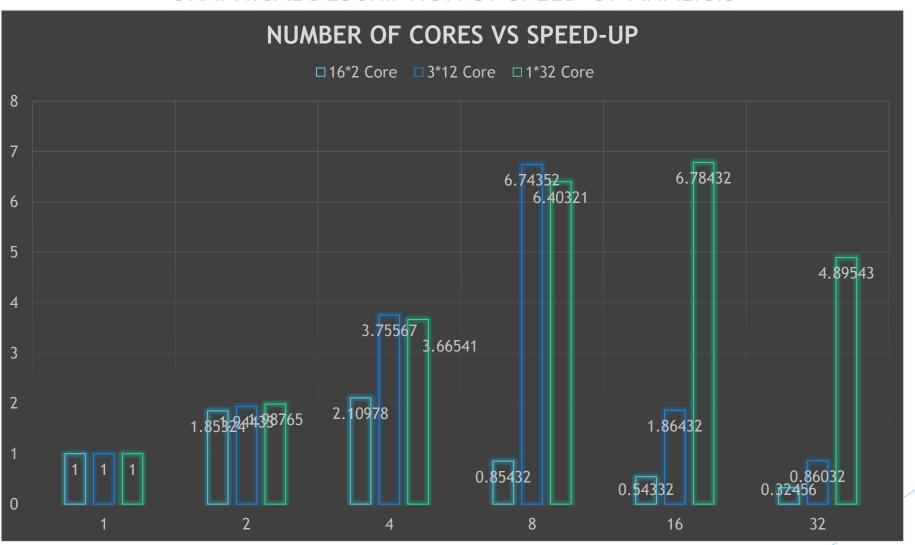
Relationship Observed: Number of Cores Versus The Speed-Up

Conclusions:

- (a) Speed-Up is Directly proportional to number of cores: Cores belong to the same node in cluster
- (b) Significant Decrease observed for two configurations out of three, namely 16*2 Core and 3*12 Core.

Number of Cores	1	2	4	8	16	32
Configurations	SPEED	UP: GIVES A	MEASURE OF	SCALABILITY	OF THE SY	STEM
16*2 Core	1	1.85324	2.10978	0.85432	0.54332	0.32456
3*12 Core	1	1.94433	3.75567	6.74352	1.86432	0.86032
1*32 Core	1	1.98765	3.66541	6.40321	6.78432	4.89543

EXPERIMENT A : SPEED-UP GRAPHICAL DESCRIPTION OF SPEED-UP ANALYSIS



EXPERIMENT A: EVALUATING EFFICIENCY VIA SPEED-UP

Tabulation of Results:

Relationship Observed: Number of Cores Versus The Efficiency

Conclusions:

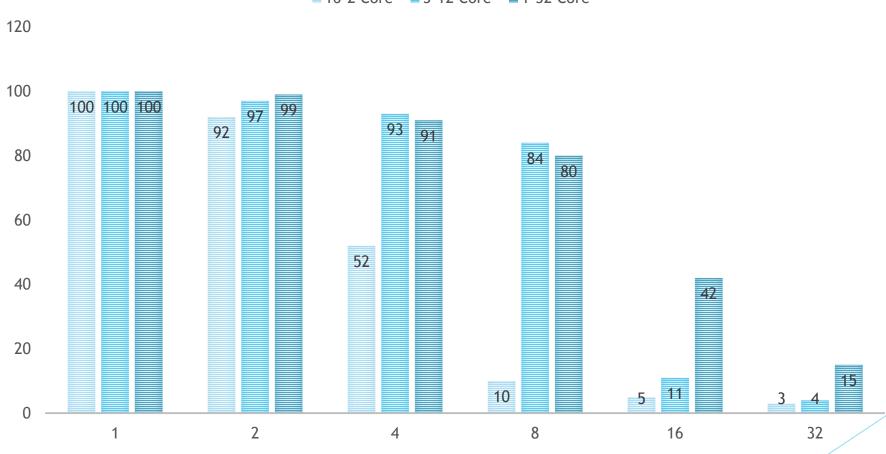
- (a) Efficiency varies inversely with number of cores.
- (b) Significant Decrease observed for two configurations out of three, namely 16*2 Core and 3*12 Core

Number of Cores	1	2	4	8	16	32
Configurations	EFFICIENCY: Gives a measure of fraction of time utilized by processors (Cores) for particular Computation.					
16*2 Core	1	0.92662	0.52745	0.10679	0.05395	0.03014
3*12 Core	1	0.97216	0.93891	0.84294	0.11652	0.04688
1*32 Core	1	0.99383	0.91630	0.80040	0.42402	0.15298

EXPERIMENT A : EFFICIENCY GRAPHICAL DESCRIPTION OF ANALYSIS

NUMBER OF CORES VS EFFICIENCY(%)

■ 16*2 Core ■ 3*12 Core ■ 1*32 Core



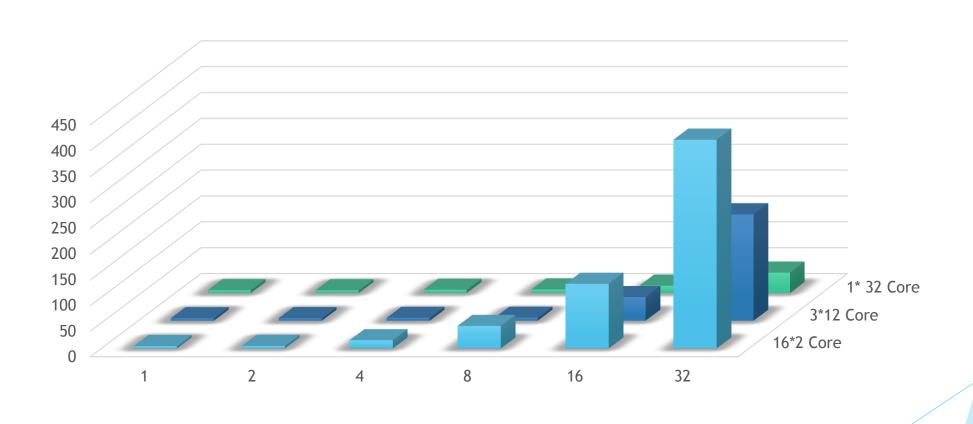
EXPERIMENT A: COST

- Tabulation of Results :
- ▶ Relationship Observed : Number of Cores Versus Cost of Computation
- Conclusions:
- (a) Run Time is Inversely proportional to number of cores
- (b) Significant Increase observed for 16*2 Core configuration.
- (c) Parallel computing is cost effective for modest speedups.

Number of Cores	1	2	4	8	16	32
Configurations	Cost: Produ	ct of number	of cores(reso	urces) used ti	mes execution	on time
16*2 Core	4.37263	4.72546	15.93768	43.90672	126.29936	404.9094
3*12 Core	4.67321	4.85730	5.38268	5.78728	46.20224	206.5027
1*32 Core	5.45321	5.37506	6.27128	6.94032	14.34464	39.55488

EXPERIMENT A: COST GRAPHICAL DESCRIPTION

Number of Cores VS Cost of Computation



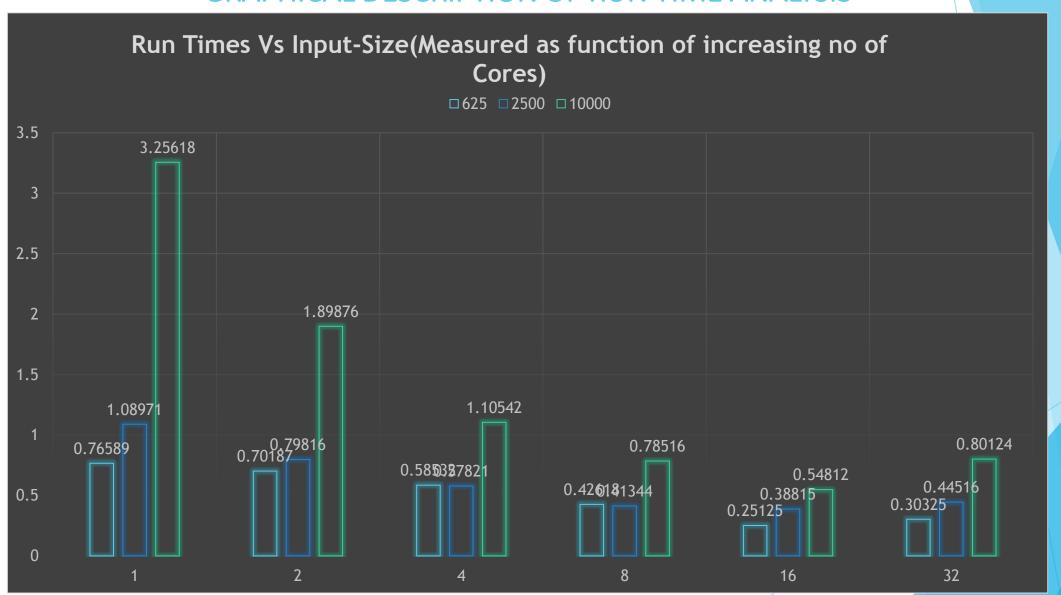
■16*2 Core ■3*12 Core ■1* 32 Core

EXPERIMENT B: RUN TIME

- Tabulation of Results :
- Relationship Observed : Input-Size VS Running-Time
- **Conclusions:**
- (a) Run Time varies Inversely with the number of Cores.
- (b) Algorithm found to be most-effective performance-wise for 16 Core configuration.
- (c) 32-Cores: Run time increases Slightly as communication overhead defeats the purpose of using more number of cores for computation.

Number of Cores	1	2	4	8	16	32
Input-Size	i	RUNTIME	IN		SECONDS	
625	0.76589	0.70187	0.58532	0.42618	0.25125	0.30325
2500	1.08971	0.79816	0.57821	0.41344	0.38815	0.44516
10000	3.25618	1.89876	1.10542	0.78516	0.54812	0.80124

EXPERIMENT B: RUN TIME GRAPHICAL DESCRIPTION OF RUN TIME ANALYSIS



EXPERIMENT B: SPEED UP

Tabulation of Results:

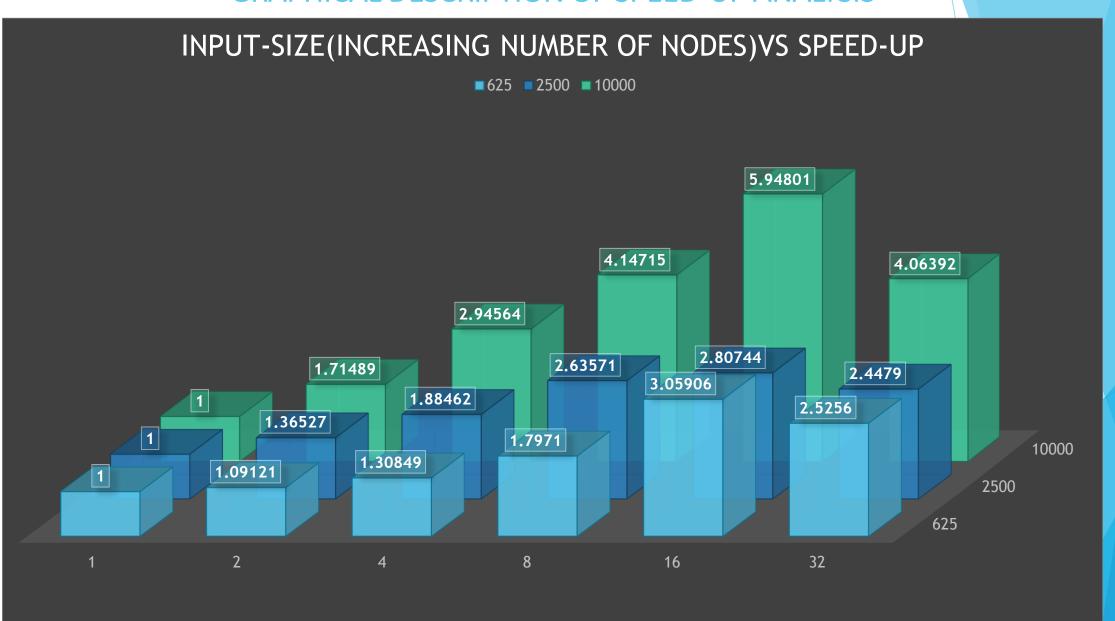
Relationship Observed: Input-Size(with increasing number of nodes) Versus The Speed-Up

Conclusions:

- (a) Speed-Up is Directly proportional to number of cores.
- (b) Significant Decrease observed, after a certain point for all three input sizes owing to communication latency.
- (c) As the input size increases, the number of cores used to achieve maximum speed up increases.

Number of Cores	1	2	4	8	16	32
Input-Size		ost obvious be time of the cod	•	a parallel com	puter is the re	eduction in
625	1	1.09121	1.30849	1.79710	3.05906	2.52560
2500	1	1.36527	1.88462	2.63571	2.80744	2.44790
10000	1	1.71489	2.94564	4.14715	5.94801	4.06392

EXPERIMENT B : SPEED-UP GRAPHICAL DESCRIPTION OF SPEED-UP ANALYSIS



EXPERIMENT B: EVALUATING EFFICIENCY VIA SPEED-UP

Tabulation of Results:

Relationship Observed: Input-Size(Increasing number of cores) Versus The Efficiency

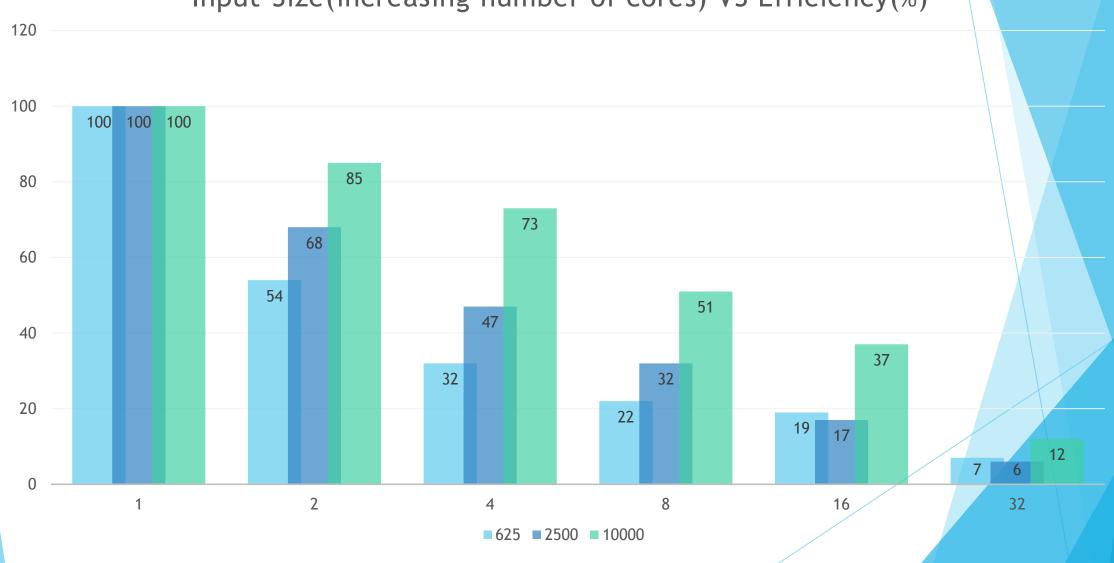
Conclusions:

- (a) Efficiency varies inversely with number of cores.
- (b) Significant Decrease observed as number of cores increases
- (c) Gives an indication that benefit of reduced running time cannot outperform cost of operation.

Number of Cores	1	2	4	8	16	32
Input-Size		or example, if orm the actual	•	processors are	being used ha	lf of the
625	1	0.54560	0.32712	0.22463	0.19119	0.07893
2500	1	0.68263	0.47115	0.32946	0.17546	0.07649
10000	1	0.85744	0.73641	0.51834	0.37175	0.12699

EXPERIMENT B : EFFICIENCY GRAPHICAL DESCRIPTION OF ANALYSIS

Input-Size(increasing number of cores) VS Efficiency(%)



A QUICK LOOK UP AT THE AMDAHL'S LAW

- The maximum speed up that can be achieved by using N resources is: 1/(F+(1-F)/N).
- As an example, if *F* is only 10%, the problem can be sped up by only a maximum of a factor of 10, no matter how large the value of *N* used.
- ► A great part of the craft of <u>parallel programming</u> consists of attempting to reduce *F* to the smallest possible value.

SUMMARY OF ACCOMPLISHMENTS

- Parallel Implementation using MPI library routines and CCR.
- Intel implementation of the Message Passing Interface
- Multi-network support :TCP/IP, Infiniband, Myrinet- by default the best network is tried first.
- GNU Compiler Wrapper
- Used simplified startup mpirun
- Launch combines mpd daemons and mpiexec.
- Detailed Understanding of MPI APIs()
- MPI Init() and MPI Finalize()
- MPI Comm size() and MPI Comm rank()
- MPI_Reduce() MPI_Bcast()
- MPI_Gather()

REFERENCES

- Dijkstra, E. W. (1959). "A note on two problems in connection with graphs,". Numerische Mathematik 1: 269–271. doi:10.1007/BF01386390.
- Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.; Stein, Clifford (2001). "Section 24.3: Dijkstra's algorithm". Introduction to Algorithms (Second ed.). MIT Press and McGraw-Hill. pp. 595–601. ISBN 0-262-03293-7.
- A. Crauser, K. Mehlhorn, U. Meyer, P. Sanders, "A parallelization of Dijkstra's shortest path algorithm", in Proc. of MFCS'98, pp. 722-731, 1998.
- Y. Tang, Y. Zhang, H. Chen, "A Parallel Shortest Path Algorithm Based on Graph-Partitioning and Iterative Correcting", in Proc. of IEEE HPCC'08, pp. 155-161, 2008.
- Stefano, A. Petricola, C. Zaroliagis, "On the implementation of parallel shortest path algorithms on a supercomputer", in Proc. of ISPA'06, pp. 406-417, 2006.
- http://www.cse.buffalo.edu/faculty/miller/Courses/CSE633/Ye-Fall-2012-CSE633.pdf

THANK-YOU

ANY QUESTIONS??