PARALLEL IMPLEMENTATION OF
DIJKSTRA'S ALGORITHM USING M
LIBRARY ON & CLUSTER.

INSTRUCUTOR: DR RUSS MILLER

ADITYA PORE

« Given : A directed graph ,G = (V, E) . Cardinalities |V| = n, |E| = m.
« S(Source): distinguished vertex of the graph.
» W : weight of each edge, typically, the distance between the two vertexes.

» Single source shortest path: The single source shortest path (SSSP

THE PROBLEM AT HAND

problem is that of computing, for a given source vertex s and a destination
vertex t, the weight of a path that obtains the minimum weight among all th

possible paths.

DIJKSTRA’s ALGORITHM AT A GLANCE

<« Dijkstra’s algorithm is a graph search algorithm that solves single-
source shortest path for a graph with nonnegative weights.

<« Widely used in network routing protocol, e.g., Open Shortest Path
First (OSPF) protocol

7 . ,

PAIS S||Bd e

b Fw g _. How to reach Downtown from
Saei Maple Road??

Traffic

b
< —
‘ g Maple pg ;
[ki g
. ; au i1 ‘
(324) Tonawanda - { 4
D) e bheridant L speridand
Amhers© b2

i ~’?~;,ﬁ g

3 Il
Kenmore @ If
i Kenibworth 1 |1 1= Snyder

Vil Main §t=
Williamsyille @
e

L :
% @
i e i
o few York State:Thriwa
» 2 |
= 5} 3 |\
Glote St 4 i \
fof / N
Gl U e @ \
A P &)
) Black Rock

a\ b/
2 W a Y AGallery.
o i Y (%)

2
Pridge St 3
¢ ‘ P N £ pelavan Ave é
Gimore Rd i Y Forest Lawn ‘ Gﬂ‘
5) (3 i (] e EFery St o) @
ﬂemes\p‘_ g i% @]
| A e e .
| o - {3k R TER . e ; >
(3J=ansenpoe = = ={3J-tarmonties 24 12\ Wi g y D
Fort Erie I iy f i % . LosnEzmm, Cheektowaga ()
0} § L2y, Allentown = yoatudy NN
) LIRS/ A — ey Vs
| : SN e S sy S 24 Node US-Mesh Ne
4 % =7 Y A g) b=
3y) It »= 8= o/ g
=4 bl @ " o ; -5 | @ b i 3
nlqsm,m -g | pominionfd (1] 7 _“;"/ '\IB\U $ell 7 < % 7\’6 : i.

\
LETS GET TO KNOW THE ALGORITHM WITH AN EXAMPLE

Dijkstra’s Algorithm

(d,n) (d,n) (d,n) (d,n) (d,n) (d,n) (d,n)

ABCH

ABCHD

ABCHDE

ABCHDEG

ABCHDEGF

Fig. 2 8-node simple network Table 1. The routing table for

Dijkstra’s algorithm 1st round

(d,n) (d,n) (d,n) (d,n) (d,n) (d,n) (d,n)

cluster

A

AB

Fig. 2 8-node simple network

Table 1. The routing table for;

Dijkstra’s algorithm-2nd round

cluster
(d,n) (d,n) (d,n) (d,n) (d,n) (d,n) (d,n)

cluster

A

AB

Fig. 2 8-node simple network Table 1. The routing table for

Dijkstra’s algorithm-3rd round

(d,n) (d,n) (d,n) (d,n) (d,n) (d,n) (d,n)

cluster

A AB

ABC

ABCH

Fig. 2 8-node simple network Table 1. The routing table for

Dijkstra’s algorithm-4th round

cluster

(d,n) (d,n) (d,n) (d,n) (d,n) (d,n) (d,n)

cluster

A AB

ABC

ABCH

ABCHD

Fig. 2 8-node simple network Table 1. The routing table for

Dijkstra’s algorithm-5th round

cluster

Fig. 2 8-node simple network

@n) (@n (@n) (dn) (dn) (dn)
cluster
A AB
ABC
ABCH

ABCHD

ABCHDE

Table 1. The routing table for;

Dijkstra’s algorithm-6th round

cluster
(d,n) (d,n) (d,n) (d,n) (d,n) (d,n)

cluster

A AB

ABC

ABCH

ABCHD

ABCHDE

ABCHDEG

[

Fig. 2 8-node simple network Table 1. The routing table for

Dijkstra’s algorithm-6th round

cluster @n) (dn) (dn) (@n) (dn)

cluster

A AB

ABC

ABCH

ABCHD

ABCHDE

ABCHDEG

ABCHDEGF

Fig. 2 8-node simple network Table 1. The routing table for

SEQUENTIAL DIJKSTRA’S ALGORITHM

Create a cluster cl[V] DuRsTRA(G 1. 5)
Given a source vertex s o

While (there exist a vertex that is not in the INITIALIZE-SINGLE-SOURCE((r, 5)

|
c{luster cl[V]) ANALOG 1 0=

FOR (all the vertices outside the cluster)] ﬂ =0y

Calculate the distance from non- 4 while () 44

member vertex to s through the cluster _ :
END 5 u=EXTRACT-MI()]
*x O(V) ** f S= 5 J:H}'
Select the vertex with the shortest path and 1 for each vertex v EG.M_HII]
add it to the cluster ; RELAX . v,10)

** O(V) **

«~ Disadvantages:

DIJKSTRA'S ALGORITHM

» Running time O(V)

In order to obtain the routing table, we need O(V) rounds
iterations (until all the vertices are included in the cluster).

In each round, we will update the value for O(V) vertices an
sel&c\t/)the closest vertex, so the running time in each roun
IS

So, the total running time is O(VZ)

If the scale of the network is too large, then it will cost
long time to obtain the result.

For some time-sensitive app or real-time services, we
to reduce the running time.

PARALLEL DIJKSTRA'S ALGORITHM

*»Each core identifies its closest vertex to the
source vertex;

“ Perform a parallel prefix to select the globally
closest vertex;

“» Broadcast the result to all the cores;

“ Each core updates its cluster list.

THE ACTUAL ALGORITHM AT WORK
Parallel Dijkstra’s algorithm

= Step 1: find
the closest

node in my
subgroup.

= Step 2: use cluster
parallel prefix A AB

(d,n)

to find the e

global closest. e

ABCHD

ABCHDE

ABCHDEG

ABCHDEGF

\

PARALLEL DIJKSTRA’'S ALGORITHM

Create a cluster cl[V]

Given a source vertex s

Each core handles a subgroup of V/P vertices

While (there exist a vertex that is not in the cluster cl[V])

{

FOR (vertices in my subgroup but outside the cluster)
Calculate the distance from non-member vertex to s
through the cluster;

Select the vertex with the shortest path as the local
closest vertex;

END MPI _MINLOC
** Each processor work in parallel O(V/P) ** operation??

Use the parallel prefix to find the global closest vertex
among all the local closest vertices from each core.
** Parallel prefix log(P) **

\
PARALLEL DIJKSTRA’'S ALGORITHM

RUNNING TIME : O(VZ/P +V log(P))

» P is the number of cores used.

+» In order to obtain the routing table, we need O(V) rounds iteration (until all th

vertices are included in the cluster).

«» In each round, we will update the value for O(V) vertices using P cores running
independently, and use the parallel prefix to select the global closest vertex, so

the running time in each round is O(V/P)+0O(log(P)).

» So, the total running time is O(V /P +V2Iog(P))

R/
0’0

R/
0’0

RESULTS AND ANALYSIS

Implemented using MPI : Stats Averaged over 10 rounds of Computation.

Establish trade-off between running times as a function of number of cores
deployed.

Evaluate speed up and efficiency!!!!

EXPERIMENT A: (More Graphs and Analysis)
Compute for fixed size input:10000

Run Routines for :1 32-core node,3 12-core node, 16 dual-core

EXPERIMENT B: (Achieved Desired Results)
Compute for different input size: Typically 625,2500,10000

Run Routine on 1 32-core Node.

Tabulation of Results :

Relationship Observed : Number of Cores Versus The Running Time(seconds)

Conclusions:

(a) Run Time is Inversely proportional to number of cores :Cores belong to the
same node in cluster

(b) Significant Increase observed for two configurations out of three, namely
16*2 Core and 3*12 Core.

Number of
Cores

Configurations RUNTIMES SECONDS

1)16*2 Core 4.37263 2.36273 1.98442 5.48834 7.89371 12.65342
2)3*12 Core 4.67321 2.42865 1.34567 0.72341 2.88764 6.45321
3)1*32 Core 5.45321 2.68753 1.56782 1.23609

Run-Time(Seconds) vs Number of Cores

2 4 8 16 32

m16*2 Core 3*12 Core m1*32 Core

EXPERIMENT A : SPEED UP

Tabulation of Results :
Relationship Observed : Number of Cores Versus The Speed-Up
Conclusions:

(a) Speed-Up is Directly proportional to humber of cores :Cores belong to the
same node in cluster

b) Significant Decrease observed for two configurations out of three, namely
16*2 Core and 3*12 Core.

Number of
Cores

Configurations SPEED UP: GIVES A MEASURE OF SCALABILITY OF THE SYSTEM
16*2 Core 1 1.85324 2.10978 0.85432 0.54332 0.32456
3*12 Core 1 1.94433 3.75567 6.74352 1.86432 0.86032

1*32 Core 1 1.98765 3.66541 6.40321 6.78432 4.89543

NUMBER OF CORES VS SPEED-UP

016*2 Core 3*12 Core 0O1*32 Core

EXPERIMENT A : EVALUATING EFFICIENCY VIA SPEED-UP

Tabulation of Results :

Relationship Observed : Number of Cores Versus The Efficiency
Conclusions:

(a) Efficiency varies inversely with number of cores .

(b) Significant Decrease observed for two configurations out of three, namely
16*2 Core and 3*12 Core

Number of 2 4 32
Cores

Configurations EFFICIENCY: Gives a measure of fraction of time utilized by
processors (Cores) for particular Computation.

16*2 Core 1 0.926672 0.52745 0.10679 0.05395 0.03014

3*12 Core 1 0.97216 0.93891 0.84294 0.11652 0.04688
1*32 Core 1 0.99383 0.91630 0.80040 0.42402 0.15298

EXPERIMENT A : EFFICIENCY
GRAPHICAL DESCRIPTION OF ANALYSIS

NUMBER OF CORES VS EFFICIENCY (%)

16*2 Core =3*12 Core =1*32 Core

120

100

92

80

60

1
N

ol

40

20

AR
L
:II!“

R el

=

ol 0T

L8

-

~ - J TR

N
o
w
N

EXPERIMENT A : COST
» Tabulation of Results :
» Relationship Observed : Number of Cores Versus Cost of Computation
» Conclusions:
(a) Run Time is Inversely proportional to number of cores
b) Significant Increase observed for 16*2 Core configuration.

(c) Parallel computing is cost effective for modest speedups.
Number of
Cores
Configurations Cost: Product of number of cores(resources) used times execution time
16*2 Core 4.37263 4.72546 15.93768 43.90672 126.29936 404.9094
3*12 Core 4.67321 4.85730 5.38268 5.78728 46.20224 206.5027

1*32 Core 5.45321 5.37506 6.27128 6.94032 14.34464 39.55488

EXPERIMENT A : COST
GRAPHICAL DESCRIPTION

Number of Cores VS Cost of Computation

450
400
350
300
250
200
150
100

50

1* 32 Core
3*12 Core
16*2 Core

m16*2 Core m3*12 Core m1* 32 Core

EXPERIMENT B : RUN TIME

» Tabulation of Results :
» Relationship Observed : Input-Size VS Running-Time

» Conclusions:

(a) Run Time varies Inversely with the number of Cores.
b) Algorithm found to be most-effective performance-wise for 16 Core configuration.

(c) 32-Cores: Run time increases Slightly as communication overhead defeats the purpose of
using more number of cores for computation.

Number of
Cores

Input-Size RUNTIME SECONDS
625 0.76589 0.70187 0.58532 0.42618 0.25125 0.30325
2500 1.08971 0.79816 0.57821 0.41344 0.38815 0.44516

10000 3.25618 1.89876 1.10542 0.78516 0.54812 0.80124

Run Times Vs Input-Size(Measured as function of increasing no of

Cores)
0625 12500 10000

3.25618

1.89876

1.0897 1.10542

0.76589 0.78516 0.80124

0.58%33782 0.54812

0.42618134 0.3881 0.44516
0.25125 0.30325

Tabulation of Results :
Relationship Observed : Input-Size(with increasing number of nodes) Versus The Speed-Up
Conclusions:

(@)
b) Significant Decrease observed , after a certain point for all three input sizes owing to

EXPERIMENT B : SPEED UP

Speed-Up is Directly proportional to number of cores.

communication latency.

) As the input size increases, the number of cores used to achieve maximum speed up increas

Number of
Cores

Input-Size SPEED UP: most obvious benefit of using a parallel computer is the reduction in
the running time of the code.

625 1 1.09121 1.30849 1.79710 3.05906 2.52560

2500 1 1.36527 1.88462 2.63571 2.80744 2.44790

10000 1 1.71489 2.94564 4.14715 5.94801 4.06392

INPUT-SIZE(INCREASING NUMBER OF NODES)VS SPEED-UP

m625 =2500 =10000

3105906

1]
1]

1]
i’ e

1

EXPERIMENT B : EVALUATING EFFICIENCY VIA SPEED-UP

Tabulation of Results :

Relationship Observed : Input-Size(Increasing number of cores)Versus The Efficiency
Conclusions:

(a) Efficiency varies inversely with number of cores .

(b) Significant Decrease observed as number of cores increases
) Gives an indication that benefit of reduced running time cannot outperform cost of operation
Pl N N CHN N O
Cores

Input-Size Efficiency: For example, if E = 50%, the processors are being used half of the

time to perform the actual computation
625 1 0.54560 0.32712 0.22463 0.19119 0.07893

2500 1 0.68263 0.47115 0.32946 0.17546 0.07649

10000 1 0.85744 0.73641 0.51834 0.37175 0.12699

120

100

80

60

40

20

EXPERIMENT B : EFFICIENCY
GRAPHICAL DESCRIPTION OF ANALYSIS

Input-Size(increasing number of cores) VS Efficiency(%)

2 4 8
=625 m2500 =10000

A QUICK LOOK UP AT THE AMDAHL'S LAW

» The maximum speed up that can be achieved by using N resourc

1/(F+(1-F)/N).

» As an example, if Fis only 10%, the problem can be sped up by only

maximum of a factor of 10, no matter how large the value of N used.

» A great part of the craft of parallel programming consists of

attempting to reduce F to the smallest possible value.

http://www.cfd-online.com/W/index.php?title=Parallel_programming&action=edit&redlink=1

SUMMARY OF ACCOMPLISHMENTS

» Parallel Implementation using MPI library routines and CCR .
» Intel implementation of the Message Passing Interface

» Multi-network support :TCP/IP, Infiniband, Myrinet- by default
the best network is tried first.

» GNU Compiler Wrapper

» Used simplified startup mpirun

» Launch combines mpd daemons and mpiexec.
» Detailed Understanding of MPI APIs()

< MPI Init() and MPI Finalize()

< MPIl Comm size() and MPI Comm rank()

< MPI_Reduce() MPI_Bcast()

< MPI_Gather()

» Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.; Stein, Clifford

» A. Crauser, K. Mehlhorn, U. Meyer, P. Sanders, “A parallelization of Dijkstra’s

«» Y. Tang, Y. Zhang, H. Chen, “A Parallel Shortest Path Algorithm Based on Graph-

- Stefano, A. Petricola, C. Zaroliagis, "On the implementation of parallel shortest

« http://www.cse.buffalo.edu/faculty/miller/Courses/CSE633/Ye-Fall-2012-

REFERENCES

Dijkstra, E. W. (1959). "A note on two problems in connection with graphs,".
Numerische Mathematik 1: 269-271. doi:10.1007/BF01386390.

(2001). "Section 24.3: Dijkstra's algorithm". Introduction to Algorithms (Secon
ed.). MIT Press and McGraw-Hill. pp. 595-601. ISBN 0-262-03293-7.

shortest path algorithm”, in Proc. of MFCS'98, pp. 722-731, 1998.

Partitioning and Iterative Correcting”, in Proc. of IEEE HPCC'08, pp. 155-161,
2008.

path algorithms on a supercomputer”, in Proc. of ISPA'06, pp. 406-417, 2006.

CSE633.pdf

THANK-YOU

ANY QUESTIONS??

