
PARALLEL EDGE 
DETECTION

Rebecca Abraham

CSE 633 - Spring 2025

Prof. Russ Miller



2

Introduction

• Edge Detection in Image Processing

• What is Edge Detection?

• Sobel Edge Detection?

• Challenges with Sequential Computation: 

• Time Complexity: For large images, the computational complexity of applying the Sobel operator to each pixel becomes significant

• Bottlenecks: Processing time is dominated by the CPU speed and memory bandwidth

• Scaling: As image size increases, execution time increases linearly, leading to poor performance for larger datasets

• Need for Parallel Computing: 

• The concept of parallel computing helps address these challenges by dividing the workload among multiple processors

• Parallel computing accelerates computationally expensive tasks using Message Passing Interface (MPI)

Goal: Speed up the edge detection process by parallelizing the Sobel operator using MPI (Message Passing Interface)

• MPI enables multiple processes to run in parallel across different nodes or cores, communicating via messages 

• MPI is ideal for distributed-memory systems, allowing each process to operate on a portion of the image and share results



3

Sobel Operator



4

Sequential Edge Detection

• Overview of Sequential Execution:

• The image is processed pixel by pixel using the 

Sobel operator

• The Sobel filter calculates the gradient 

magnitude for each pixel, producing an edge-

detected image

• Code Walkthrough: Brief steps of code for sequential 

edge detection

• Performance in Sequential Computing: 

• Sequential computation performs the task 

without distributing any processing

• Performance is tied to the processor’s speed



5

Sequential Performance Metrics



6

Parallel Edge Detection Using MPI

• How Parallel Edge Detection Works: Data Decomposition: 

• The image is divided into smaller sub-images, each processed by a separate MPI process

• Each process applies the Sobel operator to its portion of the image

• Communication Between Processes: 

• After processing, the results (edges) from all the processes are gathered and combined to form the final output image

• Code Walkthrough: 

• Initialization of MPI and process allocation

• Distribution of image data to different processes

• Synchronization and collection of results



7

Parallel Edge Detection Using MPI



8

Parallel Edge Detection Using MPI



9

Slurm Script

• Configuration used for Sobel Parallel 

Program: 

oScript with parameters –node and –ntasks

changed for different values

oTable in Slide 10 with configs run



10

Performance Analysis

Nodes (N) Processes per Node (P/N) Total Processes (P) Total Execution time 

1 1 1 34.1823 secs

1 2 2 19.2634 secs

1 4 4 10.9802 secs

1 8 8 12.5769 secs

1 16 16 6.28501 secs

2 4 8 6.75986 secs

2 8 16 3.96967 secs

4 4 16 4.77486 secs

4 8 32 2.88434 secs

8 4 32 3.09034 secs

8 8 64 1.60407 secs



11

Performance Analysis



12



13

Summary of Results Above

• Parallel program follows master-worker setup

• Setup not the best way to learn parallel computing

• Amdahl's and Gustafson's Speedup hardcoded for theoretical understanding

• Hence updated the setup in phase 2

Updated The Program Setup Post Midterm



POST MIDTERM



15

Approach #1: 

• Combined MPI inter-process distribution

• Added OpenMP thread-level acceleration

• Multi-threading of MPI process (controlled in SLURM Script)

• Different images are processed by different ranks 

• Use #pragma omp parallel for collapse(2) directive to parallelize the nested loops

MPI + OpenMP



16

Slurm Configurations
Nodes (N) Processes per Node (P/N) Total Processes (P) ntasks ntasks-per-node total_parallel_time_seconds

1 1 1 1 1 74.3479
1 2 2 2 2 37.1944
1 4 4 4 4 18.3074
1 8 8 8 8 9.24701
1 16 16 16 16 4.7412
1 32 32 32 32 2.45626
2 2 4 4 2 20.4809
2 4 8 8 4 10.4802
2 6 12 12 6 7.36726
2 8 16 16 8 5.47671
2 16 32 32 16 2.9443
4 2 8 8 2 9.5019
4 4 16 16 4 5.72176
4 6 24 24 6 3.89099
4 8 32 32 8 2.8501
8 2 16 16 2 5.98394
8 4 32 32 4 2.60923
8 6 48 48 6 2.08199
8 8 64 64 8 1.47336

16 2 32 32 2 2.8219
16 4 64 64 4 1.41931
16 8 128 128 8 0.781925

Approach #1: Config Table 



17

Performance Analysis

Approach #1



18

Performance Analysis

Approach #1



19

Approach #2: 

• Using a tiling strategy

• Parallelization happens at the tile level with #pragma omp parallel for

• Improved cache locality 

• Optimized Sobel implementation

MPI + OpenMP Approach



20

Slurm Configurations

ntasks ntasks-per-node cpus-per-task OMP_NUM_THREADS Total Cores total_parallel_time_seconds
1 1 1 1 1 26.2397
2 2 1 1 2 12.686
4 4 1 1 4 6.32322
4 2 2 2 8 8.74173
4 1 4 4 16 7.45413
8 8 1 1 8 7.98683
8 4 2 2 16 3.1891
8 2 4 4 32 2.65627

16 8 1 1 16 2.402
16 4 2 2 32 1.95275
8 1 8 8 64 3.16731

16 1 8 8 128 1.80725
16 2 4 4 64 1.82037
32 4 2 2 64 1.01261
32 8 1 1 32 1.30007
32 2 4 4 128 1.12771
64 4 2 2 128 0.727688
64 8 1 1 64 0.754323

Approach #2: Config Table 



21

Performance Analysis

Approach #2



22

Performance Analysis

Approach #2



23

Final Notes

• Successful implementation of hybrid parallelism with MPI and OpenMP

• Performance metrics showed good scaling, and code mostly parallelized

• Future improvements/experiments:

- Use more data

- Scale to more number of nodes i.e. 32, 64 and more if possible

- Use CUDA and process the computation over GPU’s 



24

End Result



25

References

• https://medium.com/@twinnroshan/understanding-and-implementing-edge-detection-in-c-with-sobel-operator-31159f26587c

• https://aryamansharda.medium.com/how-image-edge-detection-works-b759baac01e2

• https://www.geeksforgeeks.org/what-is-edge-detection-in-image-processing/

• https://medium.com/lcc-unison/applying-sobel-filter-for-image-processing-using-parallel-computing-d1eae128b4e

• https://medium.com/data-science/sobel-operator-in-image-processing-1d7cdda8cadb

• https://www.geeksforgeeks.org/sobel-edge-detection-vs-canny-edge-detection-in-computer-vision/

• https://buffalo.app.box.com/s/vb6lkxg72jgekuyo5xbps7xesfj076ok

https://medium.com/@twinnroshan/understanding-and-implementing-edge-detection-in-c-with-sobel-operator-31159f26587c
https://aryamansharda.medium.com/how-image-edge-detection-works-b759baac01e2
https://www.geeksforgeeks.org/what-is-edge-detection-in-image-processing/
https://medium.com/lcc-unison/applying-sobel-filter-for-image-processing-using-parallel-computing-d1eae128b4e
https://medium.com/data-science/sobel-operator-in-image-processing-1d7cdda8cadb
https://www.geeksforgeeks.org/sobel-edge-detection-vs-canny-edge-detection-in-computer-vision/
https://buffalo.app.box.com/s/vb6lkxg72jgekuyo5xbps7xesfj076ok


THANK YOU!


	Slide 1: Parallel Edge Detection
	Slide 2: Introduction
	Slide 3: Sobel Operator
	Slide 4: Sequential Edge Detection
	Slide 5: Sequential Performance Metrics
	Slide 6: Parallel Edge Detection Using MPI
	Slide 7: Parallel Edge Detection Using MPI
	Slide 8: Parallel Edge Detection Using MPI
	Slide 9: Slurm Script
	Slide 10: Performance Analysis
	Slide 11: Performance Analysis
	Slide 12
	Slide 13: Summary of Results Above
	Slide 14: POST MIDTERM
	Slide 15: Approach #1: 
	Slide 16: Slurm Configurations
	Slide 17: Performance Analysis
	Slide 18: Performance Analysis
	Slide 19: Approach #2: 
	Slide 20: Slurm Configurations
	Slide 21: Performance Analysis
	Slide 22: Performance Analysis
	Slide 23: Final Notes
	Slide 24: End Result
	Slide 25: References
	Slide 26: Thank you!

