
MST using Prim’s
Algorithm
Final presentation

SAI KIRAN MUNDRA
CSE 633 - Parallel Algorithms
Instructor - Dr. Russ Miller

Minimum Spanning Tree
• A spanning tree is a subset of the edges of the graph that

forms a acyclic tree where every node of the graph is a part
of the tree.

• MST is

- a spanning tree

- Total weight of edges is minimum

2

Minimum Spanning Tree

• Number of vertices in graph and MST are same.

• Number of edges = V-1 where V is number of vertices

• Need not be unique, multiple MST are possible depending on
input.

• Neither disconnected nor cyclic.

3

Algorithms for MST

• Kruskal’s algorithm

• Prim’s algorithm

• Boruvka’s algorithm

4

Prim’s algorithm - Sequential
● The algorithm starts with an empty spanning tree. The

idea is to maintain two sets of vertices.

● The first set contains the vertices already included in the
MST, and the other set contains the vertices not yet
included.

● At every step, it considers all the edges that connect the
two sets and picks the minimum weight edge from these
edges.

● After picking the edge, it moves the other endpoint of the
edge to the set containing MST.

5

Time Complexity:

O(V^2) - V is number of
vertices.

Implementation
● Implementations of Prim’s algorithm commonly use

auxiliary array d of length n to store distances (weight)
from each vertex to MST.

● In every iteration a lightest weight edge in d is added to
MST and d is updated to reflect changes.

6

Approach for Parallelization

● Two steps can be parallelized:

○ selection of the minimum-weight edge connecting a
vertex not in MST to a vertex in MST,

○ and updating array d after a vertex is added to MST

7

Pseudo code for parallelization

● Initialization:

○ Let the set of vertices V be divided into subsets V1, V2, V3, ….. Vp

○ Assign each subset to a different process.

○ While the MSTvertices not equal to V:

■ For each process Pi:

● Find the minimum-weight edge ei connecting MST to vertices in Vi

● Send ei to the root process using MPI_Reduce to find the global
minimum weight edge Emin.

8

Pseudo code for parallelization

● If current process is root:

○ Select the global minimum-weight edge Emin among the
received edges

○ Add Emin to MST

○ Broadcast E min to all processes.

● Continue till all vertices are added in the MST.

● It can proved that Time Complexity is O((n^2/p) + (nlogp))

9

Implementation in MPI

● I have used MPI to implement the parallel Prim’s Algorithm

Initial Results

10K vertices, 1% density ~ 500K
edges

Nodes/ Processors Total time

1 0.1687

2 0.1248

4 0.0692

Slurm script
#!/bin/bash

#SBATCH --nodes=4

#SBATCH --ntasks-per-node=1

#SBATCH --constraint=IB|OPA

#SBATCH --time=00:10:00

#SBATCH --partition=general-compute

#SBATCH --qos=general-compute

#SBATCH --job-name="parallel-prim-4node-1core"

#SBATCH --output=out-4-1.txt

#SBATCH --exclusive

Final Results

10k vertices - 5% density -2.5M edges

10k vertices - 10 M edges

10k vertices - 40M edges

Weak Scaling - 2.5M edges per
processor.

Observations

● Parallel Prim’s Algorithm is performing better on larger
data.

● As we increase the amount of data we are operating with
the inflection point is shifting rightwards.

● In weak scaling, we can observe that despite we increase
the data in proportion to the number of processors, we can
observe the increase in completion time due to the
sequential portion of the parallelised algorithm aligning
with the Gustafson’s law.

References
● Loncar-TET-Springer.pdf (scl.rs)

● Prim’s Algorithm for Minimum Spanning Tree (MST) - GeeksforGeeks

http://www.scl.rs/papers/Loncar-TET-Springer.pdf
https://www.geeksforgeeks.org/prims-minimum-spanning-tree-mst-greedy-algo-5/

Thank you

