
SOLVING N-BODY
PROBLEM USING
PARALLEL
APPROACH

Sakshi Singhal

CSE 633 – Parallel Algorithms
Guided By: Dr. Russ Miller

Content
• Problem Statement

• How we can solve the problem sequentially

• What is the Parallel Approach to solve the problem

• Result/ Output of some experiments

• Conclusion & Future Scope

2

Problem Statement
Initializing the random masses, velocities, positions of N particles we try to calculate forces

present between them, as a result, their actual orbital movements for all possible periods after
certain iterations.

3

Sequential Algorithm
1. Consider taking input as number of particles having masses (𝑚!, 𝑚", 𝑚#, … . . , 𝑚$), initial velocities

(𝑣!, 𝑣", 𝑣#, … . . , 𝑣$) and their positions vector (that means in x and y coordinate (𝑝!, 𝑝", 𝑝#, … . . , 𝑝$)

2. Newton’s second law of motion states that mass times acceleration mi d2qi/dt2 is equal to the sum
of the forces on the mass.

But Newton’s law of Gravity says that the gravitational force felt on mass

mi by a single mass mj is given by 𝐹%& =
'(!("
||*"+*!||#

(*"+*!)
||*"+*!||

= '(!("(*"+*!)
||*"+*!||$

But to calculate force on n particle we need to calculate summation

of forces of (n-1) particles on n and this will lead to time complexity

of O(𝑛")
4

Parallel Algorithm
• Defining the number of particles and evenly distributing it across

processors.

• These particles have masses, velocity and position vector.

• Calculate force on each particle due to all other particles from both the
directions.

• Once we have calculated force of each particle, we will send the data
back to all the processor and update the position and velocity and then
again calculate the force.

• Repeat this till time ‘t’ iterations.

• Below are the main MPI Functions used

MPI_Bcast, MPI_Scatter, MPI_Barrier, MPI_Allgather, MPI_Gather 5

How does it take place:

6

P1

P3 P4

P2

Mass, velocity and
position vectors of

particles

Mass, velocity and
position vectors of

particles

Mass, velocity and
position vectors of

particles

Mass, velocity and
position vectors of

particles

Force on
particles

at P5

Mass, velocity and
position vectors of

particles

Parallel execution during the midterm results

7

particles=100, iterations=200

Processors Time(seconds)

2 47.17105

4 43.360829

6 39.96194

8 37.619051

10 33.976331

12 31.098934

14 27.348912

16 23.398761

18 19.329021

20 18.099923

24 15.340203

28 11.323444

32 8.0912884

36 6.756678

44 6.6655433

48 5.2356789

56 10.786663

58 11.8998877

60 13.09

Experiment on fixed number of Particles and
Iteration on 1 core per node

Particles=5000 Iteration=7000

Node Core Per Node Processing Element=(Node * Code
Per Node)

Time (in
seconds)

2 1 2 257.9915

4 1 4 139.2165

8 1 8 79.84352

10 1 10 67.82787

16 1 16 51.89456

20 1 20 48.36529

24 1 24 46.45003

28 1 28 41.20975

32 1 32 36.11346

64 1 64 21.43282

90 1 90 16.23896 8

Experiment on fixed number of Particles and
Iteration on multiple core per node

Particles=8000 Iterations=7000

Node Core Per Node

Processing
Element=(Node
* Code Per
Node)

Time (in
seconds)

2 2 4 775.8501
2 4 8 185.0405
4 6 24 140.3759
4 8 32 108.9103
6 10 60 70.82313
6 12 72 52.00095
8 14 112 58.2785
8 16 128 51.83277

10 18 180 48.39373
10 20 200 42.55528
12 22 264 33.81453 9

Experiment to see increase in number of
particles keeping PE constant

Iteration=10000

Particles Node Core Per Node
Processing
Element=(Node *
Code Per Node)

Time (in seconds)

100 4 1 4 0.7074
500 4 1 4 4.67098

1000 4 1 4 12.8379
5000 4 1 4 198.786

10000 4 1 4 736.724
100 8 1 8 0.70442
500 8 1 8 2.91603

1000 8 1 8 6.04038
5000 8 1 8 50.6734

10000 8 1 8 397.281
100 16 1 16 0.8959
500 16 1 16 3.11082

1000 16 1 16 5.98086
5000 16 1 16 35.0035

10000 16 1 16 227.368
100 32 1 32 1.06811
500 32 1 32 3.2483

1000 32 1 32 6.082
5000 32 1 32 28.7501

10000 32 1 32 70.6746 10

Sequential Execution keeping
Iteration constant

11

Iteration=7000

Particles Nodes Core Per Node PE Time

200 1 1 1 0.677564

400 1 1 1 1.465859

500 1 1 1 2.218085

800 1 1 1 7.223454

1000 1 1 1 12.95424

1200 1 1 1 48.3492

1400 1 1 1 56.39432

1600 1 1 1 76.95455

2500 1 1 1 133.2046

3500 1 1 1 247.2937

3750 1 1 1 278.1287

4000 1 1 1 320.6927

Parallel Execution keeping Iteration
constant and Data per PE constant

12

Iteration = 7000

Particles Nodes
Core Per
Node PE Time Data Per PE

200 4 1 4 1.16823 50

400 8 1 8 2.942712 50

500 10 1 10 3.897655 50

800 16 1 16 5.400002 50

1000 20 1 20 6.988643 50

1200 24 1 24 13.58964 50

1400 28 1 28 14.78836 50

1600 32 1 32 16.92689 50

2500 50 1 50 22.37975 50

3500 70 1 70 38.8636 50

3750 75 1 75 42.56784 50

4000 80 1 80 48.87955 50

Speedup

13

Speedup=(tseq/tp)

Particles Time(tseq) Particles Time(tp) Speedup

200 0.677564 200 1.16823 0.579992
400 1.465859 400 2.942712 0.498132
500 2.218085 500 3.897655 0.569082
800 7.223454 800 5.400002 1.337676

1000 12.95424 1000 6.988643 1.853614
1200 48.3492 1200 13.58964 3.557798
1400 56.39432 1400 14.78836 3.813427
1600 76.95455 1600 16.92689 4.546291

2500 133.2046 2500 22.37975 5.952015
3500 247.2937 3500 38.8636 6.363119
3750 278.1287 3750 42.56784 6.533775
4000 320.6927 4000 48.87955 6.560877

0

1

2

3

4

5

6

7

200 400 500 800 1000 1200 1400 1600 2500 3500 3750 4000

S
pe
ed
up

Particles

Chart Title

Conclusion
• As per Amdahl’s law as the number of communication between particles increase the time

decreases and that is what took place in the first graph for fixed number of particles and increase in
processors we get U curve.

• In sequential execution and parallel execution keeping the iterations constant and increasing the
number of particles we see increase in time.

• As per the Gustafson’s Law, When the number of particles increases but the number of processing
elements stays constant, we observe an increase in computation time.

• Speedup reaches a saturation at around 2500 Particles.

Future Work:
• Access nodes greater than 90 nodes with 1 core per node.

• Try implementing parallel approach using OpenMPI.
14

References
• https://www.youtube.com/watch?v=vjUaNJqIWTs

• https://en.wikipedia.org/wiki/N-body_simulation

• https://curc.readthedocs.io/en/latest/programming/MPI-C.html

• http://www.cs.toronto.edu/~wayne/research/thesis/msc/node24.html

• http://www.dartmouth.edu/~rc/classes/intro_mpi/overview_parallel_prog.htm
l#top

• https://gereshes.com/2018/05/07/what-is-the-n-body-problem/

15

https://www.youtube.com/watch?v=vjUaNJqIWTs
https://en.wikipedia.org/wiki/N-body_simulation
http://www.dartmouth.edu/~rc/classes/intro_mpi/overview_parallel_prog.html
http://www.cs.toronto.edu/~wayne/research/thesis/msc/node24.html
http://www.dartmouth.edu/~rc/classes/intro_mpi/overview_parallel_prog.html
http://www.dartmouth.edu/~rc/classes/intro_mpi/overview_parallel_prog.html
https://gereshes.com/2018/05/07/what-is-the-n-body-problem/

THANK YOU!
ANY QUESTIONS?

16

