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Merkle Tree Overview

• A Merkle tree (or Hash Tree) is a cryptographic data structure 

used to efficiently and securely verify the integrity of data.

• Composed of leaf nodes (data hashes) and non-leaf nodes 

(hashes of child nodes), forming a binary tree.

• Each non-leaf node contains a hash of its children

• The top-most node (root) contains the hash of the entire tree

• Allows quick verification of large data with minimal additional 

data transfer (Merkle proof).
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Merkle Proof

• A subset of the Merkle tree that proves a single piece of data 

(typically a leaf node) is part of the tree. 

• Includes only the hashes needed to prove that a particular leaf 

node, when combined with its siblings, results in the root hash 

of the Merkle tree.

- Ex: Proof L1 is part of the tree
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General Applications

• Given a Merkle proof, end users can verify the integrity of a 

data block. Broad applications in:

- Cryptography/Blockchain

- Ex: Verifying transactions within a block

- Distributed Systems

- Ex: Proving a record is in a database

- String/Text Processing

- Ex: What we are doing here!

4



Application to Checksums

• Suppose you want to transfer a large text from some source 

and verify the information received is correct

• Traditionally, checksums solve this problem

• Problem? Depending on the hash function and the size of the 

text:

- Traditional checksum may be expensive to compute

- Not easily parallelizable

- Requires full retransmission on error

- Worse, probability of error increases with length
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Application to Checksums (cont.)

• Given a full Merkle Tree, the end user can prove* that the file 

was received uncorrupted. 

- Build second Merkle Tree from received data

- Compare root hashes

• In case of transmission error, the end user can identify which 

blocks specifically contain errors.

* Assuming Merkle Tree is obtained without corruption and 

ignoring hash collision.
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Algorithm Overview

• Partition text across processors

• Each processor computes hashes for chunks within its local 

partition of data

• While there is more than one hash across all processors:

- Collectively compute count of hashes stored on lower-

rank processors to determine boundaries

- Communicate edge hashes across boundaries

- Compute next layer of hashes

• Processor 0 emits top hash
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Algorithm Implementation

• Partition text across processors
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partition of data

• While there is more than one hash across all processors:

- Collectively compute count of hashes stored on lower-

rank processors to determine boundaries

- Communicate edge hashes across boundaries

- Compute next layer of hashes

• Processor 0 emits top hash
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• Logically divide text into n 

blocks of constant size

• Ex. 1 MiB

• Size must be unrelated to p

• Compute Rank
• Compute COMM size

• pi assumes responsibility for 

blocks [
𝑛𝑖

𝑝
,
𝑛(𝑖+1)

𝑝
]

• First n mod p processors 

take an extra block
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• Sequential step

• Each processor:

• Reads a block of its 

partition

• Computes hash for that 
block

• Stores hash

• Repeat

• Note: Hash does not necessarily 
matter here (within reason)

• Using SHA-256
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• Each processor, p, computes 

length of locally stored hashes

• Used to determine boundaries 

between processors



Count of Previous Hashes

• (Exclusive) Parallel Prefix Sum

• pi needs to know the total count of hashes stored on 

processors [ p0, pi-1 ]
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long local_hash_count = current_layer.size();

long prev_prefix_count = 0;

MPI_Exscan(&local_hash_count, &prev_prefix_count, 1, MPI_LONG, MPI_SUM, comm);
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Local Count Prefix Count Action

Even Even None

Even Odd Give and 

Steal Hash

Odd Even Steal Hash

Odd Odd Give Hash

Boundary Cases (Excluding final p):
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• Communicate hashes between 

processors depending on 

boundary conditions:

• None: Skip

• Steal: Take hash from 
previous active p

• Give: Give hash to next 

active p

• Problem: Processors may run 
out of hashes. Can’t just trade 

with neighbors.

• Implemented as a second 

parallel prefix
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• Repeat sequential step with new 

set of hashes

• Creates next layer of Merkle 

Tree

• Repeat loop using new layer of 

hashes until root is reached
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• At each iteration, processors 

pass values left (to lower ranks)

• p0 only steals, never gives up a 

hash

• Root hash eventually stored in p0 



BENCHMARKING



Strong Scaling

• Evaluating strong scaling with small input

- Maximum 64 nodes

- Maximum 1 task per node

- Constrained to nodes that support 

InfiniBand

- Tracked time to compute top hash for 

0.5GiB input file

- Runtime initially improved, but ultimately 

worsened when moving from 32 to 64 

nodes
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Strong Scaling (cont.)

• Utilized same parameters

- Maximum 64 nodes

- Maximum 1 task per node

• Repeated test with various input sizes

• Calculated speedup as number of processors 

increased – holding size of the input constant 

across each test trial

• As input size increases, speedup starts to 

conform more closely to the ideal
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Weak Scaling

• Maximum 16 nodes with 1 task per node

• Constrained to nodes that support InfiniBand

• Doubled problem size with number of nodes

- Legend denotes starting input size for 

each trial
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Future Work

• Eliminate need for MPI_Allreduce when determining if there are 

multiple hashes left in the system

• Implement parallel function for checking a top hash and 

identifying problem leaf nodes

• Incorporate OMP into sequential step(s)
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THANK YOU!
• Questions?
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