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Merkle Tree Overview

* A Merkle tree (or Hash Tree) is a cryptographic data structure
used to efficiently and securely verify the integrity of data.

* Composed of leaf nodes (data hashes) and non-leaf nodes
(hashes of child nodes), forming a binary tree.

* Each non-leaf node contains a hash of its children
* The top-most node (root) contains the hash of the entire tree

* Allows quick verification of large data with minimal additional
data transfer (Merkle proof).

N

hash(L1)

Hash
0-1

hash(L2)

Hash
1-0

hash(L3)

Hash
11

hash(L4)

1

1

1

!

L1

L2

L3

L4

Data
Blocks



.% University at Buffalo The state University of New York

Merkle Proot

* Asubset of the Merkle tree that proves a single piece of data
(typically a leaf node) is part of the tree.

* Includes only the hashes needed to prove that a particular leaf
node, when combined with its siblings, results in the root hash
of the Merkle tree.

- Ex: Proof L1 is part of the tree
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General Applications

* Given a Merkle proof, end users can verify the integrity of a
data block. Broad applications in:

- Cryptography/Blockchain

- Ex: Verifying transactions within a block
- Distributed Systems

- Ex: Proving a record is in a database
- String/Text Processing

- Ex: What we are doing here!
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Application to Checksums

* Suppose you want to transfer a large text from some source
and verify the information received is correct

* Traditionally, checksums solve this problem

* Problem? Depending on the hash function and the size of the
text:

- Traditional checksum may be expensive to compute
- Not easily parallelizable
- Requires full retransmission on error

- Worse, probability of error increases with length
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Application to Checksums (cont.)

* Given a full Merkle Tree, the end user can prove* that the file
was received uncorrupted.

- Build second Merkle Tree from received data

- Compare root hashes

* |In case of transmission error, the end user can identify which
blocks specifically contain errors.

* Assuming Merkle Tree is obtained without corruption and
ignoring hash collision.
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Ex:
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Algorithm Overview

* Partition text across processors

* Each processor computes hashes for chunks within its local
partition of data

* While there is more than one hash across all processors:

- Collectively compute count of hashes stored on lower-
rank processors to determine boundaries

- Communicate edge hashes across boundaries
- Compute next layer of hashes

* Processor 0 emits top hash

13
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Algorithm Implementation

Partition text across processors * Logically divide text into n
blocks of constant size
« Ex.1MiB
» Size must be unrelated to p
« Compute Rank
 Compute COMM size

- * p, assumes responsibility for
ni n(i+1)

blocks [?, z ]

* First n mod p processors
take an extra block

14
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Algorithm Implementation

Each processor computes hashes for chunks within its local
partition of data

Sequential step
Each processor:
* Reads a block of its
partition
« Computes hash for that
block
» Stores hash
 Repeat

Note: Hash does not necessarily
matter here (within reason)
» Using SHA-256

15
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Algorithm Implementation

* While there is more than one hash across all processors:

Collectively compute count of hashes stored on lower-
rank processors to determine boundaries

Each processor, p, computes
length of locally stored hashes

Used to determine boundaries
between processors

16



.% University at Buffalo The state University of New York

Count of Previous Hashes

* (Exclusive) Parallel Prefix Sum

* p; needs to know the total count of hashes stored on
processors [ pg, Pi.1 ]

long local hash count = current layer.size();
long prev_prefix count = 0;

MPI Exscan(&local hash count, &prev prefix count, I, MPI LONG, MPI SUM, comm);

17



% University at Buffalo The state University of New York

Algorithm Implementation

While there is more than one hash across all processors:

Collectively compute count of hashes stored on lower-
rank processors to determine boundaries

Boundary Cases (Excluding final p):

Local Count | Prefix Count “
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Algorithm Implementation

« Communicate hashes between

. processors depending on
boundary conditions:
* None: Skip
* While there is more than one hash across all processors: » Steal: Take hash from

previous active p
« Give: Give hash to next
active p

- Communicate edge hashes across boundaries * Problem: Processors may run

. out of hashes. Can't just trade
with neighbors.
* Implemented as a second
parallel prefix

19
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Algorithm Implementation

. * Repeat sequential step with new
set of hashes
* Creates next layer of Merkle

While there is more than one hash across all processors: Tree

* Repeat loop using new layer of
hashes until root is reached

- Compute next layer of hashes

20
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Algorithm Implementation

. » At each iteration, processors
pass values left (to lower ranks)

* po only steals, never gives up a
. hash

* Root hash eventually stored in pg

* Processor 0 emits top hash

21
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Strong Scaling

* Evaluating strong scaling with small input
- Maximum 64 nodes
- Maximum 1 task per node

- Constrained to nodes that support
InfiniBand

- Tracked time to compute top hash for
0.5GiB input file

- Runtime initially improved, but ultimately
worsened when moving from 32 to 64
nodes

Algorithm Runtime on Fixed Input (Size = 0.5GiB)

0 10 20 30 40 50 60 70
Number of Processors

Algorithm Runtime on Fixed Input (Size = 0.5GiB)

0 1 2 3 4 5 6 7
N (s.t. Number of Processors = 2*N)
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Strong Scaling (cont.)

Algorithm Speedup (T,/T,) across Input Sizes

* Utilized same parameters
- Maximum 64 nodes
- Maximum 1 task per node
* Repeated test with various input sizes

* Calculated speedup as number of processors
increased — holding size of the input constant

across each test trial ° ) ) \ . . 6 ;

N (s.t. Number of Processors = 2"N)

* As input size increases, speedup starts to

——056B —@—1GB —@15GiB —@—2GB = @ =Ideal

conform more closely to the ideal

24



.% University at Buffalo The state University of New York

Weak Scaling Algorithm Runtime with Scaling Input Size

* Maximum 16 nodes with 1 task per node

* Constrained to nodes that support InfiniBand

* Doubled problem size with number of nodes —~4
@

- Legend denotes starting input size for £ s : - — il —o
each trial 5

—— —

. *— ——a— -

0

0 1 2 3 4

N (s.t. Number of Processors = 2*N)
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Future Work

* Eliminate need for MPI_Allreduce when determining if there are
multiple hashes left in the system

* Implement parallel function for checking a top hash and
identifying problem leaf nodes

* Incorporate OMP into sequential step(s)

26



THANK YOU!

Questions?




	Slide 1: Parallel construction of merkle (hash) trees
	Slide 2: Merkle Tree Overview
	Slide 3: Merkle Proof
	Slide 4: General Applications
	Slide 5: Application to Checksums
	Slide 6: Application to Checksums (cont.)
	Slide 7: Ex:
	Slide 8: Ex:
	Slide 9: Ex:
	Slide 10: Ex:
	Slide 11: Ex:
	Slide 12: Parallel Approach
	Slide 13: Algorithm Overview
	Slide 14: Algorithm Implementation
	Slide 15: Algorithm Implementation
	Slide 16: Algorithm Implementation
	Slide 17: Count of Previous Hashes
	Slide 18: Algorithm Implementation
	Slide 19: Algorithm Implementation
	Slide 20: Algorithm Implementation
	Slide 21: Algorithm Implementation
	Slide 22: Benchmarking
	Slide 23: Strong Scaling
	Slide 24: Strong Scaling (cont.)
	Slide 25: Weak Scaling
	Slide 26: Future Work
	Slide 27: Thank you!

