
PARALLEL
CONSTRUCTION
OF MERKLE
(HASH) TREES
Sam Anderson

CSE 633: Parallel Algorithms

Merkle Tree Overview

• A Merkle tree (or Hash Tree) is a cryptographic data structure

used to efficiently and securely verify the integrity of data.

• Composed of leaf nodes (data hashes) and non-leaf nodes

(hashes of child nodes), forming a binary tree.

• Each non-leaf node contains a hash of its children

• The top-most node (root) contains the hash of the entire tree

• Allows quick verification of large data with minimal additional

data transfer (Merkle proof).

2

Merkle Proof

• A subset of the Merkle tree that proves a single piece of data

(typically a leaf node) is part of the tree.

• Includes only the hashes needed to prove that a particular leaf

node, when combined with its siblings, results in the root hash

of the Merkle tree.

- Ex: Proof L1 is part of the tree

3

General Applications

• Given a Merkle proof, end users can verify the integrity of a

data block. Broad applications in:

- Cryptography/Blockchain

- Ex: Verifying transactions within a block

- Distributed Systems

- Ex: Proving a record is in a database

- String/Text Processing

- Ex: What we are doing here!

4

Application to Checksums

• Suppose you want to transfer a large text from some source

and verify the information received is correct

• Traditionally, checksums solve this problem

• Problem? Depending on the hash function and the size of the

text:

- Traditional checksum may be expensive to compute

- Not easily parallelizable

- Requires full retransmission on error

- Worse, probability of error increases with length

5

Application to Checksums (cont.)

• Given a full Merkle Tree, the end user can prove* that the file

was received uncorrupted.

- Build second Merkle Tree from received data

- Compare root hashes

• In case of transmission error, the end user can identify which

blocks specifically contain errors.

* Assuming Merkle Tree is obtained without corruption and

ignoring hash collision.

6

Ex:

7

Correct

Incorrect

Ex:

8

Correct

Incorrect

Ex:

9

Correct

Incorrect

Ex:

10

Correct

Incorrect

Ex:

11

Correct

Incorrect

Request L2 be retransmitted

PARALLEL
APPROACH

Algorithm Overview

• Partition text across processors

• Each processor computes hashes for chunks within its local

partition of data

• While there is more than one hash across all processors:

- Collectively compute count of hashes stored on lower-

rank processors to determine boundaries

- Communicate edge hashes across boundaries

- Compute next layer of hashes

• Processor 0 emits top hash

13

Algorithm Implementation

• Partition text across processors

• Each processor computes hashes for chunks within its local

partition of data

• While there is more than one hash across all processors:

- Collectively compute count of hashes stored on lower-

rank processors to determine boundaries

- Communicate edge hashes across boundaries

- Compute next layer of hashes

• Processor 0 emits top hash

14

• Logically divide text into n

blocks of constant size

• Ex. 1 MiB

• Size must be unrelated to p

• Compute Rank
• Compute COMM size

• pi assumes responsibility for

blocks [
𝑛𝑖

𝑝
,
𝑛(𝑖+1)

𝑝
]

• First n mod p processors

take an extra block

Algorithm Implementation

• Partition text across processors

• Each processor computes hashes for chunks within its local

partition of data

• While there is more than one hash across all processors:

- Collectively compute count of hashes stored on lower-

rank processors to determine boundaries

- Communicate edge hashes across boundaries

- Compute next layer of hashes

• Processor 0 emits top hash

15

• Sequential step

• Each processor:

• Reads a block of its

partition

• Computes hash for that
block

• Stores hash

• Repeat

• Note: Hash does not necessarily
matter here (within reason)

• Using SHA-256

Algorithm Implementation

• Partition text across processors

• Each processor computes hashes for chunks within its local

partition of data

• While there is more than one hash across all processors:

- Collectively compute count of hashes stored on lower-

rank processors to determine boundaries

- Communicate edge hashes across boundaries

- Compute next layer of hashes

• Processor 0 emits top hash

16

• Each processor, p, computes

length of locally stored hashes

• Used to determine boundaries

between processors

Count of Previous Hashes

• (Exclusive) Parallel Prefix Sum

• pi needs to know the total count of hashes stored on

processors [p0, pi-1]

17

long local_hash_count = current_layer.size();

long prev_prefix_count = 0;

MPI_Exscan(&local_hash_count, &prev_prefix_count, 1, MPI_LONG, MPI_SUM, comm);

Algorithm Implementation

• Partition text across processors

• Each processor computes hashes for chunks within its local

partition of data

• While there is more than one hash across all processors:

- Collectively compute count of hashes stored on lower-

rank processors to determine boundaries

- Communicate edge hashes across boundaries

- Compute next layer of hashes

• Processor 0 emits top hash

18

Local Count Prefix Count Action

Even Even None

Even Odd Give and

Steal Hash

Odd Even Steal Hash

Odd Odd Give Hash

Boundary Cases (Excluding final p):

Algorithm Implementation

• Partition text across processors

• Each processor computes hashes for chunks within its local

partition of data

• While there is more than one hash across all processors:

- Collectively compute count of hashes stored on lower-

rank processors to determine boundaries

- Communicate edge hashes across boundaries

- Compute next layer of hashes

• Processor 0 emits top hash

19

• Communicate hashes between

processors depending on

boundary conditions:

• None: Skip

• Steal: Take hash from
previous active p

• Give: Give hash to next

active p

• Problem: Processors may run
out of hashes. Can’t just trade

with neighbors.

• Implemented as a second

parallel prefix

Algorithm Implementation

• Partition text across processors

• Each processor computes hashes for chunks within its local

partition of data

• While there is more than one hash across all processors:

- Collectively compute count of hashes stored on lower-

rank processors to determine boundaries

- Communicate edge hashes across boundaries

- Compute next layer of hashes

• Processor 0 emits top hash

20

• Repeat sequential step with new

set of hashes

• Creates next layer of Merkle

Tree

• Repeat loop using new layer of

hashes until root is reached

Algorithm Implementation

• Partition text across processors

• Each processor computes hashes for chunks within its local

partition of data

• While there is more than one hash across all processors:

- Collectively compute count of hashes stored on lower-

rank processors to determine boundaries

- Communicate edge hashes across boundaries

- Compute next layer of hashes

• Processor 0 emits top hash

21

• At each iteration, processors

pass values left (to lower ranks)

• p0 only steals, never gives up a

hash

• Root hash eventually stored in p0

BENCHMARKING

Strong Scaling

• Evaluating strong scaling with small input

- Maximum 64 nodes

- Maximum 1 task per node

- Constrained to nodes that support

InfiniBand

- Tracked time to compute top hash for

0.5GiB input file

- Runtime initially improved, but ultimately

worsened when moving from 32 to 64

nodes

23

Strong Scaling (cont.)

• Utilized same parameters

- Maximum 64 nodes

- Maximum 1 task per node

• Repeated test with various input sizes

• Calculated speedup as number of processors

increased – holding size of the input constant

across each test trial

• As input size increases, speedup starts to

conform more closely to the ideal

24

Weak Scaling

• Maximum 16 nodes with 1 task per node

• Constrained to nodes that support InfiniBand

• Doubled problem size with number of nodes

- Legend denotes starting input size for

each trial

25

Future Work

• Eliminate need for MPI_Allreduce when determining if there are

multiple hashes left in the system

• Implement parallel function for checking a top hash and

identifying problem leaf nodes

• Incorporate OMP into sequential step(s)

26

THANK YOU!
• Questions?

	Slide 1: Parallel construction of merkle (hash) trees
	Slide 2: Merkle Tree Overview
	Slide 3: Merkle Proof
	Slide 4: General Applications
	Slide 5: Application to Checksums
	Slide 6: Application to Checksums (cont.)
	Slide 7: Ex:
	Slide 8: Ex:
	Slide 9: Ex:
	Slide 10: Ex:
	Slide 11: Ex:
	Slide 12: Parallel Approach
	Slide 13: Algorithm Overview
	Slide 14: Algorithm Implementation
	Slide 15: Algorithm Implementation
	Slide 16: Algorithm Implementation
	Slide 17: Count of Previous Hashes
	Slide 18: Algorithm Implementation
	Slide 19: Algorithm Implementation
	Slide 20: Algorithm Implementation
	Slide 21: Algorithm Implementation
	Slide 22: Benchmarking
	Slide 23: Strong Scaling
	Slide 24: Strong Scaling (cont.)
	Slide 25: Weak Scaling
	Slide 26: Future Work
	Slide 27: Thank you!

