
SMITH-WATERMAN 
ALGORITHM
Sampreeth Reddy Seelam

CSE 633 Parallel Algorithms (Dr. Russ Miller)



Smith-Waterman 
• performs local sequence alignment.

• for determining similar regions between two strings 
of nucleic acid sequences or protein sequences.

• Dynamic programming algorithm that is guaranteed to find 
local alignment.

• Compared to Needleman-Wunsch algorithm, negative 
scores are set to zero.

• Time complexity of the algorithm is O(mn).

2



Algorithm

3

Let and



Parallel Implementation
• Each cell of the matrix is dependent on 3 cell computations(Red 

Arrows)

• Anti-Diagonal cells are independent of each other.

• Compute them in blocks parallelly .

4



Parallel Implementation

5

Computation of the Score Matrix: the black 
anti-diagonal is calculated using two light 
shaded anti-diagonals

The entire score matrix is transformed 
into three rows. Each row of the same 
colour is equal to the same colour anti-
diagonal in left figure.

The score matrix after 
transformation and the entries 
involved in computing a score 
matrix entry



Modification
• Instead of computing each cell, divide the the matrix into 

blocks.

• Rows are divided based on number of processors.(Query 
Sequence).

• Columns are divided based on a block size. The block size 
will decide how many cells should be computed in a single 
iteration.

• Once the blocks are computed they are transferred to the 
next processor in line and the current processor continues to 
compute the next block.

6

P1

P2

P3

Block Size

The blocks are computed in 
increasing shade(from lighter 
to darker).



Choosing Optimal Block Size 
(N=1000, P=5)

Block Size Time
1 0.663

2 0.654

5 0.66

7 0.658

10 0.683

20 0.644

30 0.675

40 0.649

50 0.634

60 0.624

70 0.658
7

Block Size Time
80 0.645

90 0.655

100 0.676

150 0.865

200 0.861

250 0.952

300 1.1

350 1.56

400 1.51

450 1.32

500 1.36



Dataset : N = 1000
Processors Time

1 2.26
2 1.29
5 0.59
10 0.41
20 0.44
30 0.48
40 0.46
50 0.51
60 0.59
70 0.67
80 0.80

8



Dataset : N = 2000
Processors Time

1 9.53
2 4.83
5 2.09
10 1.23
20 0.88
30 0.84
40 1.00
50 1.06
60 1.23
70 1.52
80 1.77

9



Dataset : N = 5000
Processors Time

1 58.45
2 33.95
5 17.15
10 9.50
20 5.09
30 3.89
40 3.20
50 2.89
60 2.86
70 2.30
80 2.18
90 3.04
100 3.72 10



Dataset : N = 10000
Processors Time

1 304.47
2 176.08
5 73.05
10 36.85
20 18.71
30 13.34
40 10.63
50 9.37
60 8.19
70 7.06
80 6.61
90 6.37
100 4.79 11



Conclusion
• Independent Task have been identified. Anti-Diagonals can be computed 

parallelly.

• Optimal Block size is around 5% of the data size.

• Large Dataset needs more processors to run faster.

• Optimal Point of processors increase with increase in dataset size.

• Memory required for calculating the matrix with increase with a power of 2. 
Hence it will become difficult to calculate matrix for large dataset.

12



References
• https://en.wikipedia.org/wiki/Smith%E2%80%93Waterman_algorithm

• https://cse.buffalo.edu/faculty/miller/Courses/CSE633/Jian-Chen-Spring-
2019.pdf (For Images)

• Parallelizing the Smith-Waterman Algorithm using OpenSHMEM and MPI-3 
One-Sided Interfaces - Matthew Baker, Aaron Welch, Manjunath Gorentla
Venkata.

13

https://en.wikipedia.org/wiki/Smith%E2%80%93Waterman_algorithm
https://cse.buffalo.edu/faculty/miller/Courses/CSE633/Jian-Chen-Spring-2019.pdf


Thank You

14


