
PARALLELIZATION OF
FLOYD-WARSHALL
ALGORITHM

By Sarath Chandra Reddy Rayapu

Floyd Warshall Algorithm:
• Dynamic programming solution for finding the shortest paths

between all pairs of vertices in a weighted graph.

• It can handle positive and negative weight edges, making it
versatile for various applications

Applications of Floyd Warshall Algorithm
• Network Routing: Optimizing the path that data packets take

across a network.

• Geographical Mapping and Navigation: calculating the
shortest or fastest routes between locations

• Social Networks: Enhances recommendation systems and
community discovery features

3

Sequential algorithm:
1. Start with the adjacency matrix of the graph, where the entry at i,
j represents the distance from vertex i to vertex j. If there is no
direct path between i and j, the distance is considered infinite.

2. For each vertex k, consider all pairs of vertices i and j. Update
the distance from i to j to the minimum of its current value and the
sum of the distances from i to k and from k to j.

3. After considering all vertices, the matrix contains the lengths of
the shortest paths between all pairs of vertices.

4. Time = O(n^3)

Parallel approach
• Scatter the adjacency matrix so that each process

receives a contiguous block of rows of the matrix (n/
p rows)

• Each process executes the algorithm on its portion
of the matrix

• The owning process broadcasts the kth row to all
other processes.

• Gather the portions of the updated matrix from all
processes back to the root processor

P1

P2

P3

P4

Slurm script

Results
• Input graph: 1000 vertices

Ti
m

e
ta

ke
n

(S
ec

)

1

1.5

2

2.5

3

Nodes

1 2 4 8 10 20

1.69
1.581.63

1.8
2.03

2.79

S
pe

ed
up

0

0.5

1

1.5

2

Nodes

1 2 4 8 10 20

1.65
1.761.71

1.55
1.37

1

• Input graph: 2500 vertices

Ti
m

e
ta

ke
n

(S
ec

)

1

4.5

8

11.5

15

Nodes

1 2 4 8 16 25 32 64

3.63.12.62.22.29
3.92

7.45

14.7

S
pe

ed
up

0

2

4

6

8

Nodes

1 2 4 8 16 25 32 64

4.08
4.74

5.65
6.686.41

3.75

1.97
1

• Input graph: 5000 vertices

S
pe

ed
up

0

1.5

3

4.5

6

Nodes

1 2 4 8 16 25 32 64

2.25
2.82

3.67
4.03

3.12
2.508

1.69
1

Ti
m

e
ta

ke
n

(S
ec

)

20

45

70

95

120

Nodes

1 2 4 8 16 25 32 64

45.4
36.3

27.925.4
32.8

40.9

60.6

102.6

Weak scaling
• 500 vertices per node

Ti
m

e
ta

ke
n

(S
ec

)

1

13.25

25.5

37.75

50

Nodes

1 2 4 8 10 20 32

49.7

38.4

22.6

7.8
4.2

2.031.39

Observations
• As per the results, we can see that the parallelism can be

efficient only up-to a certain number of processors.

• If nodes are further added, it would increase the communication
overhead.

References
• Case Study on Shortest-Path Algorithms. (n.d.). Retrieved March

20, 2023, from https://www.mcs.anl.gov/~itf/dbpp/text/
node35.html

THANK YOU

