PARALLELIZATION OF
FLOYD-WARSHALL
ALGORITHM

By Sarath Chandra Reddy Rayapu

% University at Buffalo The State University of New York

% University at Buffalo The State University of New York

Floyd Warshall Algorithm:

e Dynamic programming solution for finding the shortest paths
between all pairs of vertices in a weighted graph.

e |t can handle positive and negative weight edges, making it
versatile for various applications

o
»
O,
& o O |
. |

-————

m O O W »
N
8
o
w
8
w[o]o]w>
N
(o))
o
w
O,

% University at Buffalo The State University of New York

Applications of Floyd Warshall Algorithm

e Network Routing: Optimizing the path that data packets take
across a network.

e Geographical Mapping and Navigation: calculating the
shortest or fastest routes between locations

e Social Networks: Enhances recommendation systems and
community discovery features

% University at Buffalo The State University of New York

Sequential algorithm:

1. Start with the adjacency matrix of the graph, where the entry at |,
j represents the distance from vertex i to vertex j. If there is no

direct path between i and j, the distance is considered infinite.

. Fork=0ton-1:
2. For each vertex k, consider all pairs of vertices i and j. Update ForizOton— 1

the distance from i to j to the minimum of its current value and the Forj=0ton-1:
Distanceli, j] = min(Distanceli, j], Distance[i, k] + Distance[k, j])
sum of the distances from i to k and from k to j.

3. After considering all vertices, the matrix contains the lengths of
the shortest paths between all pairs of vertices.

4. Time = O(n"3)

% University at Buffalo The State University of New York

Parallel approach P

P2

» Scatter the adjacency matrix so that each process
receives a contiguous block of rows of the matrix (n/
P rows)

P3
P4

* Each process executes the algorithm on its portion
of the matrix

Fork=0ton-1:
If processor_ID = owner of kth row:

* The owning process broadcasts the kth row to all

other Processes. broadcast(row_k to all processors)
For i = local_i_start to local_i_end:
* Gather the portions of the updated matrix from all Forj=0ton-1:

Distance[i, j] = min(Distanceli, j], Distance[i, k] + row_k[j])
processes back to the root processor

% University at Buffalo The State University of New York

Slurm script

S slurm.sh

1 #!/bin/bash

2 #SBATCH —--nodes=64

3 #SBATCH —--ntasks—-per—-node=1

4 #SBATCH —-constraint=IB|0PA

5 #SBATCH —-time=00:10:00

6 #SBATCH —-partition=general-compute
7 #SBATCH --qos=general-compute

8 #SBATCH —-job-name=""floyd"

9 #SBATCH ——-output=output-floyd.out
10 #SBATCH —-exclusive
11 module load intel
12 export I_MPI_PMI_LIBRARY=/opt/software/slurm/1ib64/1libpmi.so
13 mpicc —o floyd floyd.c
14 srun -n 64 floyd input_graph.txt 0

% University at Buffalo The State University of New York

Results

e |Input graph: 1000 vertices

3 3 @ 2 y1_71 178 16
@25 o 1.5 1.3Z .
% \03 é /
g 2 — w & 1
-+ 1.63 1.58 e (%-
81.5 0.5
=

1 - 0

1 2 4 8 10 20 1 2 4 8 10 20

Nodes Nodes

% University at Buffalo The State University of New York

e |Input graph: 2500 vertices

15 14.7

N 115 \
8 \7AR

\2.29 29 26 3 —>°
1 2 4 8 16 25 32 64 1 2 4 8 16 25 32 64

Nodes Nodes

Sec)

c 4.08

Time taken
D
@)
Speedup
o N BAN (@)) (00

% University at Buffalo The State University of New York

e |Input graph: 5000 vertices

120

6
O 102.6
B 95 \ 4.5
I o . 4.03 367
S \ B '
-;43 70 60.6 éz,_ 3 . 5
2 45 09 T A
= T s me—
20 - — S — - 0o —— — — —
1 2 4 8 16 25 32 64 1 2 4 8 16 25 32 64

Nodes Nodes

% University at Buffalo The State University of New York

Weak scaling

e 500 vertices per node

50
)wf////

25.5 /6
13.25
/(
1.39 2.03

1 2 4 8 10 20 32

49.7

Time taken (Sec)
w
N
N
(@)

% University at Buffalo The State University of New York

Observations

e As per the results, we can see that the parallelism can be
efficient only up-to a certain number of processors.

e If nodes are further added, it would increase the communication
overhead.

% University at Buffalo The State University of New York

References

e Case Study on Shortest-Path Algorithms. (n.d.). Retrieved March
20, 2023, from https://www.mcs.anl.gov/~itf/dbpp/text/
node35.html

THANK YOU

