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Floyd Warshall Algorithm:
• Dynamic programming solution for finding the shortest paths 

between all pairs of vertices in a weighted graph.


• It can handle positive and negative weight edges, making it 
versatile for various applications



Applications of Floyd Warshall Algorithm
• Network Routing: Optimizing the path that data packets take 

across a network.


• Geographical Mapping and Navigation:  calculating the 
shortest or fastest routes between locations


• Social Networks: Enhances recommendation systems and 
community discovery features
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Sequential algorithm:
1. Start with the adjacency matrix of the graph, where the entry at i, 
j represents the distance from vertex i to vertex j. If there is no 
direct path between i and j, the distance is considered infinite.


2. For each vertex k, consider all pairs of vertices i and j. Update 
the distance from i to j to the minimum of its current value and the 
sum of the distances from i to k and from k to j.


3. After considering all vertices, the matrix contains the lengths of 
the shortest paths between all pairs of vertices.


4. Time = O(n^3)




Parallel approach
• Scatter the adjacency matrix so that each process 

receives a contiguous block of rows of the matrix (n/
p rows)


• Each process executes the algorithm on its portion 
of the matrix


• The owning process broadcasts the kth row to all 
other processes.


• Gather the portions of the updated matrix from all 
processes back to the root processor
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Slurm script



Results
• Input graph: 1000 vertices 
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• Input graph: 2500 vertices 
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• Input graph: 5000 vertices 
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Weak scaling
• 500 vertices per node
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Observations
• As per the results, we can see that the parallelism can be 

efficient only up-to a certain number of processors.


• If nodes are further added, it would increase the communication 
overhead.
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