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Floyd Warshall Algorithm:

e Dynamic programming solution for finding the shortest paths
between all pairs of vertices in a weighted graph.

e |t can handle positive and negative weight edges, making it
versatile for various applications
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Applications of Floyd Warshall Algorithm

e Network Routing: Optimizing the path that data packets take
across a network.

e Geographical Mapping and Navigation: calculating the
shortest or fastest routes between locations

e Social Networks: Enhances recommendation systems and
community discovery features
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Sequential algorithm:

1. Start with the adjacency matrix of the graph, where the entry at |,
j represents the distance from vertex i to vertex j. If there is no

direct path between i and j, the distance is considered infinite.

. . . . . Fork=0ton-1:
2. For each vertex k, consider all pairs of vertices i and j. Update ForizOton— 1

the distance from i to j to the minimum of its current value and the Forj=0ton-1:
Distanceli, j] = min(Distanceli, j], Distance[i, k] + Distance[k, j])
sum of the distances from i to k and from k to j.

3. After considering all vertices, the matrix contains the lengths of
the shortest paths between all pairs of vertices.

4. Time = O(n"3)
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Parallel approach P

P2

» Scatter the adjacency matrix so that each process
receives a contiguous block of rows of the matrix (n/
P rows)

P3
P4

* Each process executes the algorithm on its portion
of the matrix

Fork=0ton-1:
If processor_ID = owner of kth row:

* The owning process broadcasts the kth row to all

other Processes. broadcast( row_k to all processors)
For i = local_i_start to local_i_end:
* Gather the portions of the updated matrix from all Forj=0ton-1:

Distance[i, j] = min( Distanceli, j], Distance[i, k] + row_k[j] )
processes back to the root processor
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Slurm script

S slurm.sh

1 #!/bin/bash

2 #SBATCH —--nodes=64

3 #SBATCH —--ntasks—-per—-node=1

4 #SBATCH —-constraint=IB|0PA

5 #SBATCH —-time=00:10:00

6 #SBATCH —-partition=general-compute
7 #SBATCH --qos=general-compute

8 #SBATCH —-job-name=""floyd"

9 #SBATCH ——-output=output-floyd.out
10 #SBATCH —-exclusive
11 module load intel
12 export I_MPI_PMI_LIBRARY=/opt/software/slurm/1ib64/1libpmi.so
13 mpicc —o floyd floyd.c
14 srun -n 64 floyd input_graph.txt 0
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Results

e |Input graph: 1000 vertices
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e |Input graph: 2500 vertices
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e |Input graph: 5000 vertices
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Weak scaling

e 500 vertices per node
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Observations

e As per the results, we can see that the parallelism can be
efficient only up-to a certain number of processors.

e If nodes are further added, it would increase the communication
overhead.
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