BREADTH FIRST SEARCH
USING 1 D PARTITION

Course: CSE 633 Parallel Algorithms

Presenter: Shalini Agarwal
Instructor: Dr. Russ Miller

.[é University at Buffalo The State University of New York

.[é University at Buffalo The state University of New York

CONTENTS

* About BFS

* Applications of BFS

* Sequential BFS implementation
* Why parallel BFS?

* Parallel BFS implementation

* Future Work Status

* Execution Results

* References

% University at Buffalo The state University of New York

Bread First Search (BFS)

* Algorithm for traversing or searching graph data
structures.

* Atraversal refers to a systematic method of

exploring all the vertices and edges in a graph.

* Explores the vertices at the current level before
proceeding to the next level.

* Extra memory is needed to keep track of the child
nodes (Vertices) encountered but not yet exp|ored_ Refer: https://www.researchgate.net/publication/2727226 The Nature of Breadth-First Search

https://www.researchgate.net/publication/2727226_The_Nature_of_Breadth-First_Search

% University at Buffalo The state University of New York

Applications of BFS

Shortest Path: Used to find the shortest path between two vertices in an unweighted graph.

Social Networking: Used to find the shortest path between two users in a social network. Also, can be
used to find the connected components in the network.

Game Theory: Used to find the shortest path to reach the goal state in games such as Chess, Checkers.

Peer-to-Peer Networks: Used to find the all the neighboring nodes in peer to peer networks like
BitTorrent.

Web Crawlers: Crawlers build search index using BFS. They start from the source page and continue to
follow all the links from the source.

GPS Navigation System: BFS is used to find all the neighboring locations.

.[é University at Buffalo The state University of New York

Sequential BFS implementation

* Create an empty queue and add the starting vertex to

the queue.
Iteration O

* Create a visited set to keep track of the visited

vertices. —
Iteration 1 Q °

* Mark the starting vertex as visited and add it to the - 7 - N N
visited set. 7
Iteration 2 @ @ @ °

Traversed sequence: a, b, ¢, d, e, f, g, h

Refer: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9269471/

.[é University at Buffalo The state University of New York

* While the queue is not empty, do the following:
a. Dequeue a vertex from the queue.

b. For each adjacent vertex of the dequeued vertex that
is not already visited, do the following:

I. Mark the adjacent vertex as visited and add it to
the visited set.

ii. Enqueue the adjacent vertex to the queue.

* Repeat the previous step until the queue becomes
empty.

i define bfs sequential(graph(V,E), source s):
2 for all v in V do

8 d(v] = -1;

4 d[(s] = 0; level = 1; FS = {}; NS = {};

5 push(s, FS);

6 while FS !empty do

7 for u in FS do

8 for each neighbour v of u do

9 if d[v] = -1 then

10 push(v, NS);

11 d[v] = level;

12 FS = NS, NS = {}, level = level + 1;

Refer: https://en.wikipedia.org/wiki/Parallel breadth-first search

https://en.wikipedia.org/wiki/Parallel_breadth-first_search

.[ﬁ University at Buffalo The state University of New York

Why parallel BFS?

* Improved performance: Parallel BFS improves performance by processing multiple nodes in parallel.
e Scalability: It is highly scalable and can handle large graphs or trees efficiently.

* Concurrency: Parallel BFS allows for concurrent exploration, minimizing idle time and maximizing
resource utilization.

* Load balancing: This ensures efficient utilization of computational resources.

* Flexibility: Parallel BFS can be implemented in various ways, making it flexible to adapt to different
hardware configurations.

.[ﬁ University at Buffalo The state University of New York

Parallel BFS implementation

e Similar to sequential BFS implementation, but instead
of checking the queue of vertices sequentially, we
implement this in parallel across all the vertices at the

same level.

* A level-synchronous strategy that relies on a simple
vertex-based partitioning of the graph.

e Each processor (p;) with distributed memory will

oversee n/p vertices or graph nodes. (n = number of
, n={n1, n2, n3, n4, n5, n6, n7, n8}
vertices; p = number of processors)

p ={p1, p2, p3, p4}

n/p = 8/4 = 2 i.e. 2 vertices for each processor

% University at Buffalo The state University of New York

Parallel BFS implementation

|n1 |n2 |n3 |n4 |n5 |n6 |n7 |n8

array structure where each vertex will have a row of |P1 jpiy@o0 1 1 0 1 1 0 O

* The processor will store partitioned vertices in a 1 D

outgoing edges represented by destination vertex
index. P2

* Frontier will store the vertices which are at the same

distance from the source vertex. P3

* Next Frontier will contain the unexplored neighbors of

the vertices from the Frontier. P4

O O 10O |-
O OO0 OO0 —~|O
O OO0 O|—- Of—-
O OO0 ~|10O0 =~ |O
- 210 O|—~ O|O
© -~ O OO0 O |O
- Ol ~10O O|O

O ~10 O O |O

percEn

% University at Buffalo The state University of New York

Parallel BFS implementation

A neighbor vertex from one processor may be stored in
another processor;, hence each processor needs to
communicate to those processors about the traversal
status.

Each processor should also receive communication from all
other processors to construct the next frontier.

This requires an all-to-all communication after every step of
analyzing the frontier.

The algorithm ends when the global size of the frontier is
Zero.

BFS_distributed_1D (local G = (V, E), vertex s)

frontier = {}; next_frontier = {}
curr_level = 0
for all v belongs to V:
levellv] = -1;
if owner(s) = curr_rank:
level[s] = @
frontier.add(s)
while True
{ // contains the local vertices in the current frontier
for u belongs to frontier:
for v belongs to neighbor(u):
w = owner(v)
buffer[w].add(v)

// send & receive buffers to the respective processors
All to all v (buffer, receive_buffer)

for all p = [0 numRank - 1]:
next_frontier.merge(receive_buffer([p])

frontier = {}
for v belongs to next_frontier:
if levellv] == -1:
levellv] = curr_level + 1
frontier.add(v)

next_frontier = {}
curr_level ++
size = frontier.size()
Al1Reduce(size); //sum
if (size == 0):
break out of the while loop;

.[é University at Buffalo The state University of New York

Future Work Status

° Irregularity in execution time needs investigation for potential code or execution
environment errors.

° Larger graphs with more vertices need to be tested to ensure scalability.

° Test the algorithm on a higher number of processors for performance evaluation.

. Calculate the speed up of the parallel BFS algorithm compared to the sequential BFS
algorithm.

° Troubleshoot the Slurm script to make it functional.

11

% University at Buffalo The state University of New York

Execution Results: Running Time

Number of graph vertices: 100 Number of graph vertices: 500

Number of nodes: 125 Number of nodes: 125

EEEL I TB LR Execution Time vs Nodes

Execution Time rendline

% University at Buffalo The state University of New York

Execution Results: Running Time

Number of graph vertices: 1000 Number of graph vertices: 1500
Number of nodes: 125 Number of nodes: 125

Execution Time vs Nodes Execution Time vs Nodes

Execution Time Trendline Execution Time Trendline

Q
=
=
c
2
S
1%
Q
a@

% University at Buffalo The state University of New York

Execution Results: Speed Up

Seq.Exec.Time

Speed Up =
peed Up Parallel Exec.Time

Number of Nodes = 125
Graph Vertices = 100; 500; 1000; 1500

14

% University at Buffalo The state University of New York

Execution Results: Cost

Cost

=500 ==——1500 1000

Cost = Execution Time * No.of Processors

15

.[ﬁ University at Buffalo The state University of New York

References

* https://people.eecs.berkeley.edu/~aydin/sc11_bfs.pdf [Parallel Breadth-First Search on Distributed Memory

Systems]
* https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1559977 [A Scalable Distributed Parallel Breadth-

First Search Algorithm on BlueGene/L]
* https://www.youtube.com/watch?v=wpWvCabHqQU [Distributed BFS Algorithm, IIT Delhi July 2018]
* https://arxiv.org/pdf/2003.04826.pdf [Optimizations to the Parallel Breath First Search on Distributed Memory]

* https://en.wikipedia.org/wiki/Parallel breadth-first search

* http://ijrar.com/upload issue€l/ijrar_issue 1836.pdf [Graph Traversals and its Applications]

* https://docs.ccr.buffalo.edu/en/latest/

* https://cse.buffalo.edu/faculty/miller/Courses/CSE529/Spring-2023/syllabus.html

* https://www.intel.com/content/www/us/en/developer/tools/oneapi/mpi-library-documentation.html

* https://devdocs.io/c/ 16

https://people.eecs.berkeley.edu/~aydin/sc11_bfs.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1559977
https://www.youtube.com/watch?v=wpWvCabHqQU
https://arxiv.org/pdf/2003.04826.pdf
https://en.wikipedia.org/wiki/Parallel_breadth-first_search
http://ijrar.com/upload_issue/ijrar_issue_1836.pdf
https://docs.ccr.buffalo.edu/en/latest/
https://cse.buffalo.edu/faculty/miller/Courses/CSE529/Spring-2023/syllabus.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/mpi-library-documentation.html
https://devdocs.io/c/

