
BREADTH FIRST SEARCH 
USING 1 D PARTITION

Course: CSE 633 Parallel Algorithms
Presenter: Shalini Agarwal
Instructor: Dr. Russ Miller



CONTENTS
• About BFS

• Applications of BFS

• Sequential BFS implementation

• Why parallel BFS?

• Parallel BFS implementation

• Future Work Status

• Execution Results

• References

2



Bread First Search (BFS)
• Algorithm for traversing or searching graph data 

structures.

• A traversal refers to a systematic method of 
exploring all the vertices and edges in a graph.

• Explores the vertices at the current level before 
proceeding to the next level.

• Extra memory is needed to keep track of the child 
nodes (vertices) encountered but not yet explored.

3

Refer: https://www.researchgate.net/publication/2727226_The_Nature_of_Breadth-First_Search

https://www.researchgate.net/publication/2727226_The_Nature_of_Breadth-First_Search


Applications of BFS
• Shortest Path: Used to find the shortest path between two vertices in an unweighted graph.

• Social Networking: Used to find the shortest path between two users in a social network. Also, can be 
used to find the connected components in the network. 

• Game Theory: Used to find the shortest path to reach the goal state in games such as Chess, Checkers. 

• Peer-to-Peer Networks: Used to find the all the neighboring nodes in peer to peer networks like 
BitTorrent.

• Web Crawlers: Crawlers build search index using BFS. They start from the source page and continue to 
follow all the links from the source.

• GPS Navigation System: BFS is used to find all the neighboring locations. 

4



Sequential BFS implementation
• Create an empty queue and add the starting vertex to 

the queue.

• Create a visited set to keep track of the visited 
vertices.

• Mark the starting vertex as visited and add it to the 
visited set.

Refer: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9269471/



• While the queue is not empty, do the following:

a. Dequeue a vertex from the queue. 

b. For each adjacent vertex of the dequeued vertex that 
is not already visited, do the following: 

i. Mark the adjacent vertex as visited and add it to 
the visited set. 

ii. Enqueue the adjacent vertex to the queue.

• Repeat the previous step until the queue becomes 
empty.

6

Refer: https://en.wikipedia.org/wiki/Parallel_breadth-first_search

https://en.wikipedia.org/wiki/Parallel_breadth-first_search


Why parallel BFS?

• Improved performance: Parallel BFS improves performance by processing multiple nodes in parallel.

• Scalability: It is highly scalable and can handle large graphs or trees efficiently.

• Concurrency: Parallel BFS allows for concurrent exploration, minimizing idle time and maximizing 
resource utilization.

• Load balancing: This ensures efficient utilization of computational resources.

• Flexibility: Parallel BFS can be implemented in various ways, making it flexible to adapt to different 
hardware configurations.

7



Parallel BFS implementation
• Similar to sequential BFS implementation, but instead

of checking the queue of vertices sequentially, we
implement this in parallel across all the vertices at the
same level.

• A level-synchronous strategy that relies on a simple
vertex-based partitioning of the graph.

• Each processor (pi) with distributed memory will
oversee n/p vertices or graph nodes. (n = number of
vertices; p = number of processors)

8

n6

n7

n1

n5

n4

n3

n2

n8

n = {n1, n2, n3, n4, n5, n6, n7, n8}

p = {p1, p2, p3, p4}

n/p = 8/4 = 2 i.e. 2 vertices for each processor 



Parallel BFS implementation
• The processor will store partitioned vertices in a 1 D

array structure where each vertex will have a row of
outgoing edges represented by destination vertex
index.

• Frontier will store the vertices which are at the same
distance from the source vertex.

• Next Frontier will contain the unexplored neighbors of
the vertices from the Frontier.

9

n1 n2 n3 n4 n5 n6 n7 n8
P1 n1 0 1 1 0 1 1 0 0

n2 1 0 1 0 0 0 0 0
P2 n3 1 1 0 1 0 0 0 0

n4 0 0 1 0 1 0 0 0
P3 n5 1 0 0 1 0 0 1 1

n6 1 0 0 0 0 0 1 0
P4 n7 0 0 0 0 1 1 0 1

n8 0 0 0 0 1 0 1 0



Parallel BFS implementation
• A neighbor vertex from one processor may be stored in

another processor; hence each processor needs to
communicate to those processors about the traversal
status.

• Each processor should also receive communication from all
other processors to construct the next frontier.

• This requires an all-to-all communication after every step of
analyzing the frontier.

• The algorithm ends when the global size of the frontier is
zero.

10



Future Work Status
• [Completed] Irregularity in execution time needs investigation for potential code or execution 

environment errors.

• [Completed] Larger graphs with more vertices need to be tested to ensure scalability.

• [Completed] Test the algorithm on a higher number of processors for performance evaluation.

• [Completed] Calculate the speed up of the parallel BFS algorithm compared to the sequential BFS 
algorithm.

• [Completed] Troubleshoot the Slurm script to make it functional.

11



Execution Results: Running Time
Number of graph vertices: 100
Number of nodes: 125

12

Number of graph vertices: 500
Number of nodes: 125



Execution Results: Running Time
Number of graph vertices: 1000
Number of nodes: 125

13

Number of graph vertices: 1500
Number of nodes: 125



Execution Results: Speed Up

14

𝑆𝑝𝑒𝑒𝑑 𝑈𝑝 =
𝑆𝑒𝑞. 𝐸𝑥𝑒𝑐. 𝑇𝑖𝑚𝑒

𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝐸𝑥𝑒𝑐. 𝑇𝑖𝑚𝑒

Number of Nodes = 125
Graph Vertices = 100; 500; 1000; 1500



Execution Results: Cost

15

𝐶𝑜𝑠𝑡 = 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 ∗ 𝑁𝑜. 𝑜𝑓 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟𝑠



References
• https://people.eecs.berkeley.edu/~aydin/sc11_bfs.pdf [Parallel Breadth-First Search on Distributed Memory 

Systems]

• https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1559977 [A Scalable Distributed Parallel Breadth-
First Search Algorithm on BlueGene/L]

• https://www.youtube.com/watch?v=wpWvCabHqQU [Distributed BFS Algorithm, IIT Delhi July 2018]

• https://arxiv.org/pdf/2003.04826.pdf [Optimizations to the Parallel Breath First Search on Distributed Memory]

• https://en.wikipedia.org/wiki/Parallel_breadth-first_search

• http://ijrar.com/upload_issue/ijrar_issue_1836.pdf [Graph Traversals and its Applications]

• https://docs.ccr.buffalo.edu/en/latest/

• https://cse.buffalo.edu/faculty/miller/Courses/CSE529/Spring-2023/syllabus.html

• https://www.intel.com/content/www/us/en/developer/tools/oneapi/mpi-library-documentation.html

• https://devdocs.io/c/ 16

https://people.eecs.berkeley.edu/~aydin/sc11_bfs.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1559977
https://www.youtube.com/watch?v=wpWvCabHqQU
https://arxiv.org/pdf/2003.04826.pdf
https://en.wikipedia.org/wiki/Parallel_breadth-first_search
http://ijrar.com/upload_issue/ijrar_issue_1836.pdf
https://docs.ccr.buffalo.edu/en/latest/
https://cse.buffalo.edu/faculty/miller/Courses/CSE529/Spring-2023/syllabus.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/mpi-library-documentation.html
https://devdocs.io/c/

