SIEVE PARALLEL
ALGORITHM

CSE633 — Shivangi Mishra

% University at Buffalo The state University of New York

CONTENT

1. Intro to Prime Number

2. Sequential Sieve Background
3. Parallel Sieve Implementation
4. Results and Observations

5. Goals

% University at Buffalo The state University of New York

Sequential Algorithm

FindPrime(n):
prime = [for i in range(n+1)]
for i in range(2,n+1):

for j in range(2,1i):

if 1%j==0:
prime[i]=
break
prime[i] =

Time complexity: O(n*2)

» The prime number is a positive integer greater

than 1 that has exactly two factors, 1
and the number itself.
First few prime numbers are 2, 3,5, 7,11, 13, 17, 19, 23

Except for 2, which is the smallest prime number
and the only even prime number, all prime numbers
are odd numbers.

Every prime number can be represented in form of
6n + 1 or 6n — 1 except the prime numbers 2 and 3,
where n is any natural number.

Sieve of

Eratosthenes

The Sieve of Eratosthenes is a method used to find
prime numbers.

Prime numbers are important in modern encryption
algorithms like sha256 that keep our digital
transactions safe.

Public-key cryptography also uses prime numbers to
create specialized keys.

The Sieve is also used in mathematics, abstract
algebra, and elementary geometry to study shapes
that reflect prime numbers.

Biologists use the Sieve to model population growth,
and composers use prime numbers to create metrical
music.

Olivier Messiaen, a French composer, used prime
numbers to create unique rhythms in his music pieces.

% University at Buffalo The state University of New York

Sieve Simulation

% University at Buffalo The state University of New York

Sequential Sieve Algorithm

1 2 3 4 5 6 find primes up to N
7 3 g 10 1 12 For all numbers a : from 2 to sqrt(n)
IF a 1s unmarked THEN

13 14 15 16 17 18 ‘ |

a 1§ prime
19 2L = 22 = 24 For all multiples of a (a < n)
25 26 27 28 29 30 mark multiples of as composite
31 32 33 34 35 36 All unmarked nummbers are prime!

Pseudo code

Time complexity: O(n*log(log(n)))

.[é University at Buffalo The state University of New York

Parallel Sieve Implementation

» Split the array of length n between processors p each of size n/p if extra element is there, adjust in the
last processor.

» Mark all even numbers as non-prime in each processor in parallel.
» Broadcast the minimum prime number in process 0 to other processes.
» Cancel out the multiples in process 0 and the other processes in parallel.

> After the primes are found in each process combine the result recursively.

% University at Buffalo The state University of New York

Recursive Halving

% University at Buffalo The state University of New York

Broadcasting at lower level

% University at Buffalo The state University of New York

Broadcasting at terminal nodes

* Process 0 will send all the primes till sqrt(n) to all processes

Other processes will receive the prime and cancel the
multiples in their range.

Process 0 will also cancel the multiples.

if (processId == 0@

printf(" Processid %d\n", processId);
counter = 1;
while (counter <= sqrtN

MPI_Request send_request;

for (c = low; ¢ <= sqrtN; c++
MPI_Request recv_request;
R _ . ifResolved;
prime = 1' MPI_Status recv_status;

if (marked2[c - low] == 1 & ¢ != 2)
{
prime = c;
for j =c+1; j <= high; j++)

if (j % prime == @

marked2[j - low] = 0;

}
for (i = 1; i < noOfProcesses; i++)
{

tag =)C;

MPI_Send(&prime, 1, M

next_prime = -1;
tag = counter;

MPI_Recv(&next_prime, 1,

if (next_prime!=-1)

{
for (c = low; ¢ <= high; c++

if (c % next_prime == @

marked2[c - low] = 0;

if (next_prime == 3 & ¢ % next_prime ==

¥

counter++;

]

, &status);

% University at Buffalo The state University of New York

Initial failed attempt for Broadcasting

* Process 0 will send all the primes till sqrt(n) to all processes using MPI_Isend

* Other processes will receive the prime using MPI_Irecv and cancel the
multiples in their range.

* The receive buffer is is getting resolved at different times in each processor
causing faulty results.

IS (Eeiier == Sgrat ; 1 < noOfProcesses; i++)

MPI_Request recv_request;
ifResolved;

MPI_Status recv_status;

tag = @y
next_prime = -1; 9 ()

MPI_Isend(&prime, 1, Ty 5 , &send_request);

tag = counter;
MPI_Irecv(&next_prime, 1, , &recv_request);

sleep(1);

counter = 1;

if i fR lved
if (ifResolved) while (counter <= sqrtN

{

if (next_prime != -1
(_p) MPI_Request recv_request;

ifResolved;
MPI_Status recv_status;
next_prime = -1;

g
1

for (c = low; c <= high; c++

tag = counter;

4F (@ @ nede prine == 0) MPI_Irecv(&next_prime, 1, , &recv_request);

{
marked2[c — low]l = 0;

sleep(1);
11

% University at Buffalo The state University of New York

Parallel Stitch Step

1,2,3,4,5,6,7,8, 9,10,11,12,13,14,15,16

1,2,3,4,5,6,7,8 9,10,11,12,13,14,15,16

1,2,3,4 5,6,7,8 9,10,11,12 13,14,15,16

% University at Buffalo The state University of New York

Result parallel

1 core per Node
Input size 1078

700
600
500

400

Time in seconds

300

200

100

0 20 40 60 80 100 120

Processors

Communication overtakes computation
13

% University at Buffalo The state University of New York

IB Vs TCP|IP Network

IB vs TCP for | ize 10**5
1 core per Node vs TCP for Input size

350
== |B

== TCP|IP
300

250
200

150

Time in seconds

100

i \\ -

0 20 40 60 80 100 120

Processors

14

% University at Buffalo The state University of New York

Speed-Up Speedup = TS Tyo= 14128

Tparallel

1 core per Node Input size = 108
Speedup for 108

Speedup

0 20 40 60 80 100 120

Processors

15

% University at Buffalo The state University of New York

Scaled ReSUIt(GuStafson,S laW) 1 core per node Data/PE = 10M4

Constant 1074 data per processor

1400
1200
1000

800

Time in seconds

600
200

0 20 40 60 80 100 120

Processors

16

% University at Buffalo The state University of New York

Efficiency

. . n _ Tse L |
1 core per Node Input size 10”8 Efficiency = COS‘i Tseq = 1412.869 sec
Input size 1018

1
0.8
g’ 0.6
%% 04
0.2

0 —

0 20 40 60 80 100 120

Processors

17

.[é University at Buffalo The state University of New York

References

* AMCS Slides By Prof. Russ Miller
* GFG

* https://mpitutorial.com/tutorials

18

https://mpitutorial.com/tutorials

% University at Buffalo The state University of New York

Thank You
Questions ?

19

