
CONVEX-HULL
PROBLEM

Snehal Jadhav
snehalja@buffalo.edu

50315111

(Using Quick Hull and K-means Algorithms)

Contents of this presentation:
• Convex Hull Overview

• Applications

• The Quick Hull Algorithm

• K-means Algorithm

• The combinatory parallel approach

• Observations

• Inferences

• Challenges

• Future Scope

• References.
2

What is a convex hull?

3

The convex hull of a set of points is defined as the
smallest convex polygon, that encloses all of the points in
the set.
Convex means that the polygon has no corner that is
bent inwards.

Applications :

• Shape analysis : Shapes may be
classified for the purposes of matching by
their "convex deficiency trees", structures
that depend for their computation on
convex hulls.

• Smallest box : Finding the smallest three-
dimensional box surrounding an object in
space depends on the convex hull of the
object.

Applications :

• Hand-gesture-recognition" domain : Convex hull works as an
envelope around the hand.

- When the convex hull is drawn round the contour of
the hand, it fits a set of contour points of the hand within
the hull.

• Collision avoidance : Avoid collisions with other objects by
defining the convex hull of the objects.

Fig. 1 Detected convex and
defect points in the image

Quick Hull Algorithm

6

1. Find the points with minimum and maximum x
coordinates, as these will always be part of the
convex hull.

2. Use the line formed by the two points to divide
the set in two subsets of points, which will be
processed recursively.

Quick Hull Algorithm

7

3. Determine the point, on one side of the line,
with the maximum distance from the line. This
point forms a triangle with those of the line.

4. The points lying inside of that triangle cannot be
part of the convex hull and can therefore be
ignored in the next steps.

5. Repeat the previous two steps on the two lines
formed by the triangle(AC and BC) (except the
initial line- AB).

Quick Hull Algorithm

8

5. Keep on doing so on until no more points are
left, the recursion has come to an end and the
points selected constitute the convex hull.

6. Just like the Quicksort algorithm, it has the
expected time complexity of O(n log n), but may
degenerate to O(nh) = O(n^2) in the worst
case.

K-means Algorithm

9

• You’ll define a target number k, which refers to the
number of centroids you need in the dataset.

• Every data point is allocated to each of the clusters
through reducing the in-cluster sum of squares.

• The ‘means’ in the K-means refers to averaging of
the data; that is, finding the centroid.

K-means Algorithm

10

1. k initial "means" (in this
case k=3) are randomly
generated within the data
domain (shown in color).

2. k clusters are created by
associating every observation with the
nearest mean. The partitions here
represent the Voronoi
diagram generated by the means.

K-means Algorithm

11

4. Steps 2 and 3 are
repeated until
convergence has
been reached.

3. The centroid of each of
the k clusters becomes
the new mean.

Parallel Convex Hull Using K-Means Clustering

12

1. N points are divided into K clusters using K means.

2. Quick Hull is applied on each cluster (iteratively inside each cluster as well).

3. The convex hull points from these clusters are combined.

4. Quick Hull is applied again and a final Hull of all clusters is computed.

Convex Hull Using K-Means Clustering

13

1

14

2

15

3

4

Points Time
100 0.0010
500 0.0014
1000 0.0015
5000 0.0025
10000 0.0050

17

Performance on 1 node, 2 cores small set of
points

Points Time
100 0.0012
500 0.0016
1000 0.0010
5000 0.0038
10000 0.0056

8 clusters 16 clusters

18

n run1 run2 run3 avg speedup efficiency cost

K = 128 AND 1 MILLION DATA POINTS TIME: SECONDS

1 113.33 113.60 110.67 112.53 113

2 69.94 69.76 66.24 68.65 1.0 1.0 138
4 54.16 48.78 46.90 49.95 2.26 0.565 200
8 41.91 41.94 41.80 41.88 2.69 0.336 336
16 35.84 31.43 33.30 33.53 3.32 0.207 544
32 30.46 29.64 28.52 29.54 3.76 0.117 960
64 26.25 27.34 27.22 26.93 4.18 0.065 1728
128 23.92 24.16 24.08 24.05 4.7 0.036 3072

19

n run1 run2 run3 avg speedup efficiency cost

K = 256 AND 1 MILLION DATA POINTS TIME: SECONDS

1 207.21 207.85 207.55 207.54 208

2 126.83 124.92 125.86 125.87 1.0 1.0 252

4 84.50 85.05 84.59 84.71 2.44 0.61 340

8 64.89 65.17 66.17 65.41 3.2 0.4 520

16 56.22 56.48 54.66 55.79 3.71 0.231 896

32 51.84 52.01 52.03 51.96 4 0.125 1728

64 49.39 49.74 49.42 49.52 4.16 0.065 3200

128 47.04 46.51 46.21 46.59 4.42 0.034 6016

20

No. of processors (X) v/s time(Y)
Series 1:k=128 and Series 2: k=256 1M pts

0

50

100

150

200

250

0 20 40 60 80 100 120 140

Series1 Series2

21

n run1 run2 run3 avg speedup efficiency cost

K = 128 AND 10 MILLION DATA POINTS TIME: SECONDS

1 1058.82 1041.50 1039.49 1045.40 1045

2 693.01 691.87 692.23 692.37 1.0 1.0 1384

4 482.97 482.92 478.54 481.47 2.15 0.537 1940

8 393.13 390.74 392.13 392.00 2.66 0.332 3136

16 383.19 382.37 382.35 382.30 2.73 0.170 6112

32 313.55 310.20 288.31 304.02 3.43 0.107 9782

64 285.90 286.05 292.12 288.02 3.62 0.056 18432

128 237.32 235.97 234.92 236.07 4.41 0.034 30208

22

n run1 run2 run3 avg speedup efficiency cost

K = 256 AND 10 MILLION DATA POINTS TIME: SECONDS

1 2063.62 2041.27 2126.57 2077.15 2077

2 1318.75 1319.66 1303.87 1314.1 1.0 1.0 2628

4 914.09 915.11 882.20 903.80 2.29 0.572 3616

8 723.37 722.27 723.23 722.96 2.87 0.358 5784

16 597.26 608.87 608.42 604.85 3.43 0.214 9680

32 552.50 564.53 551.43 556.15 3.73 0.116 17792

64 542.21 542.30 553.32 545.94 3.8 0.059 34944

128 540.02 541.20 535.58 538.27 3.85 0.030 68992

23

No. of processors (X) v/s time(Y)
Series 1:k=128 and Series 2: k=256 10 mil pts

0

500

1000

1500

2000

2500

0 20 40 60 80 100 120 140

Series1 Series2

24

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 20 40 60 80 100 120 140

Nodes vs Speed Up

Series1 Series2 Series3 Series4

25

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 20 40 60 80 100 120 140

Nodes vs Efficiency

Series1 Series2 Series3 Series4

26

Inferences:

• The ideal # of processors for 1 million data points is 16.

• The ideal # of processors for 10 million data points is 32.

• If # of clusters is less than the no of processors, the performance is degraded since
PEs have < 1 (k/n) clusters to work with.

• After 32 the run time difference is almost negligible for the increase in the # of PEs.
Reason: The communication time b/w PEs increases and significantly dominates the

local computation time.

27

Challenges:

• Sequencing the Quick Hull and K-means parallel events.

• Queue time to access large memory servers.

• Parallelizing the Hybrid way.

• Implement the algorithm in Open MP.

• Implement the algorithm Hybrid (OpenMP+MPI).

• Compare scalability of MPI, OpenMP and Hybrid approaches.

• See the effect of choosing a different distance metric for clustering
and/or a different strategy to initialize clusters.

• Implement the algorithm for 3+ D data.

28

Future scope:

References:

• Dr. Miller R. & Dr. Boxer L. (2012). Algorithms Sequential & Parallel: A Unified Approach

• Dr. Jones M. https://ubccr.freshdesk.com/support/solutions/articles/130000 26245-tutorials-
and-training-documents

• Waghmare V. & Kulkarni D. (2010) Convex Hull Using K-Means Clustering in Hybrid
(MPI/OpenMP) Environment.

29

Thank you.

30

