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Particle Swarm Optimization
Developed by Russell Eberhart & James Kennedy in 1995 [1]

Image Ref : https://sifutrecht.nl/structureer-werk-mensen-organisatietrend-21e-eeuw/ o



https://sifutrecht.nl/structureer-werk-mensen-organisatietrend-21e-eeuw/
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Particle Swarm Optimization (PSO)

Population based global search algorithm.

Each solution (particle) fly through search space with directed
velocity vector to find better solution.

Velocity vectors are adjusted based on the historical and

inter-particle information.

A particle adjusts its position according to its own experience as
well as the experience of neighboring particles.

Application : Path finding, Network Design, Clustering, etc.
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How PSO works ?

* A particle status on the
search space is
characterized by two factors:

* - position (Xi)
« -velocity (Vi)

* Fitness function is used to
evaluate particle position.

:v phest,
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Position and Velocity Update
] —_ 1 I
Xer1 = Xk T Vig

V;H_l = wkv}( — clrl(p;c — x,’() + czrz(p,% — x,’()

. x]l; represents the current position of particle i & k represents pseudo-time increment

p;'c is the best-found position of particle i upto time steps k

v;{ represents particle velocity

. p]% represents global-best position among all particle upto time step k

c1, c2, r1, r2, wk are constants
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Algorithm

Initialize all particles with random
position and velocity

A 4

Evaluate Fitness for each particle (p)

A 4

Get particle best

A 4

Get particle Global best

v

Calculate particle velocity

Criteria met

STOP
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‘o)
Synchronous Design

* Most of the algorithms given in literature are synchronous in nature.

* They require synchronization point at the end of each iteration

before moving to next iteration.
* Generally results in poor parallel efficiency [2]
* Practically impossible for a processor wait for end of the iteration.
Q\
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Asynchronous Design

Don’t require synchronization point

Next design iteration are analyzed before the current design

iteration is completed.

Optimization can proceed to next iteration without waiting for
completion of all function evaluation from current iterations.

Advantage : No idle processors
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Parallel Implementation

Calculate fitness function in parallel
Parallel scheme based on MPI
Master-worker implementation

Provides dynamic load balancing
between processors.

Initialize
# of Particles
¥ y v
f(x)
Check f(x)
Convergence = 1
& Update ja——-1H ?
K
-t f(x)
f(x)
ot — e
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f(x)
f(x)
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Proposed Fitness Function

* Maximization of Throughput of the network.

Ir. —cC

() = E S Rrg@))
g(d) — A s

Fitness(i, j) = dist(i, j) +dist(j,BS)

where

dist i, j) = /(1 — )2 + (y1 ~ y)?

* Objective : Max {throughput(i,j)}

* Use case : DDoS Attack Mitigation

[3]

[4]
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Parameters

Number of iterations = 500
Problem dimension = 2
Wk =0.5

cl,c2=1

L =108, C =1, R = 1(Throughput constants)
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Sequential

2000 == computation time(s)

1500 particles  \computation time(s)
$ 10000  21.8824224
30000 1805355
50000 663.53444

70000 1564

10000 20000 30000 40000 50000 60000 70000

particles Q

N
N
N
\\
15 «
¢ \\
/’ |
¢



Running time (in seconds) of Parallel approach

particles

;

4

Bp

16p

31p

64p

128p

10000

20.7460062

18.5492411

18.2915851

15.2957604

18.2008698

19.9455811

38.7066314

30000

271.862277

199.08043

174.944094 138.599893

204.009193 279.394358

287.1094%

50000

657.274744

525.407571

445.488469 394.111021 551.52699 629.748321 683.916605

70000

1343.82011

1151.88548

1138.64525 1102. 11094 117264207 125360185 1450.48639
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Varying processors particles
m= 2D wm 4p == 8p == 16p == 32p == 64p == 128p

1000

500
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Variation of Dimension [9]

4p

3p

16p

32p

64p

128p

17.7460062

16.2915851

14.2957604

18.2008698

19.2008698

20.4253534

21.3555522

20.3423927

17.3201395

23.7950679

25.1438536

26.6358335

28.8620587

25.2132479

24.5571379

29.6636317

30.8706279

36.5882903

38.8073485

36.5390352

34.0007512

38.0445791

39.4065166

42.8957243

44.1421378

42.5964413

40.5907378

45.7988242

47.1784433

53.7874253
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Exec_timevs D

B4 B8 WM16p W32 WMo4p W 128
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Speedup

8 == 10k
== 30k

/ o 50
6 - 70k

2p 4p 8p 16p 32p 64p 128p
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Efficiency

0.5

0.1

0.05

0.01

2p

4p

8p 16p 32p

Efficiency Vs Number of Processors (log scale)

e

64p

128p

10k
30k
50k
70k
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Observation/Learnings/Future Scope

Working with 16 processors was best.

Increase on processor decrease running time but only upto certain number
processors.

Hands on parallel computing, MPI programming (debugging)
OpenMP, CUDA implementation
MPI Gather, Scatter, Allgather instead of MPI_Recv, MPIl_Send functions

Optimize implementation
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