
CSE 633 Fall 2012

Parallel Apriori Algorithm and

Frequent itemsets with Gene Expression Data

Hyunwoo Sung

Generating Frequent Itemsets

Gene Expression Data Used For Input

Sample1 UP UP Down UP ALL

Sample2 UP Down UP Down ALL

Sample3 Down Down UP UP ALL

Sample4 Down Down Down Down AML

Sample5 UP UP Down Down ALL

Sample6 UP Down Down Down ALL

Sample7 UP UP Down UP AML

Sample8 Down Down UP UP ALL

11 21 30 41 51

11 20 31 40 51

10 20 31 41 51

10 20 30 40 50

11 21 30 40 51

11 20 30 40 51

11 21 30 41 50

10 20 31 41 51

When transmitting data

between processors, they

exchange integers that are

transformed instead of String.

UP becomes 1 and Down

becomes 0. Also, the name of

the cancers such as ALL or AML

becomes 1 or 0, respectively.

Sequential Apropri Algorithm Implementation in C++

ItemsetIndex = 1;

while(itemsetIndex < numberOfItems);

{

generateCandidates(itemsetIndex);

generateFrequentItemsets(itemsetIndex);

print(frequentItemsetTableElements);

itemsetIndex++;

}

Continued from Implementation

GenerateCandidates(int sequence)

for I = 0 to candidates.size()

for j = I + 1 to candidates.size()

construct the candidates through self-joining.

store the candidates in the map. (key = candidate, value = 0)

Worst case: O(��)		����	��	
���� > 2, C:	number	of	candidates

�: ��	
����	(i:1,2,3,…number of transactions - 1)

Continued from Implementation

generateFrequentItemsets(sequence);

for I = 0 to numberOfTransactions(N) in a transaction matrix

for j = 0 to numberOfItems(W)

iterate through HashMap

get the key(item) and compare the key with the actual
transaction items in order to count the # of transactions

update the value that maps to the key in HashMap

if the support of itemsets >= MIN_SUPPORT

place the selected itemsets on CandidateItemsetTable

• Best: O(�*C) when sequence == 1, C = # of candidates

• Worst: O(�*C’ *C’’) when sequence > =2 , i:itemsetIndex

• &′: (�)
��) # +, -.�/� -� 0 /01

• &′′: -��(�0��) # +, -.�/� .+ �+/10(�

A Parallel Implementation

bool *alive = new bool[NUM_PROCESSORS];

for(int i = 0; i < NUM_PROCESSORS; ++i)

alive[i] = true;

get_initial_data (RANK, globalInput, input);

for(int i = 0; i < log2(NUM_PROCESSORS); ++i)

{

if(alive[RANK])

{

instance.process(input, output);

if(should_request(alive, i))

{

int neighbour = RANK + (int) pow(2.0,i);

request_data(neighbour, neighbor_output);

merge_results(output, neighbor_output, input);

alive[neighbour] = false;

}

Implementation(Continued)

else

{

alive[RANK] = false;

int neighbour = RANK - (int)pow(2.0,i);

send_data(neighbour, output);

delete[] alive;

MPI::Finalize();

exit(0);

}

}

}

delete[] alive;

MPI::Finalize();

return 0;

}

1,3,4 2,3,5 1,2,3 2,4,5

ID Transaction

100 1,3,4

101 2,3,5

102 1,2,3

103 2,4,5

Minimum_Support = 50%

1 1

2 1

3 2

4 1

5 1

1 1

2 2

3 1

4 1

5 1

A Parallel Solution Illustration

1,3,4 2,3,5 1,2,3 2,4,5

1,3,4

2,3,5

1,2,3

2,4,5

ID Transaction

100 1,3,4

101 2,3,5

102 1,2,3

103 2,4,5

Minimum_Support = 50%

1 1

2 1

3 2

4 1

5 1

1 1

2 2

3 1

4 1

5 1

A Parallel Solution(continued)

1 2 1

1 3 2

2 3 2

2 4 1

2 5 2

4 5 1

1,3,4

2,3,5

1,2,3

2,4,5

1,3,4

2,3,5

1,2,3

2,4,5

ID Transaction

100 1,3,4

101 2,3,5

102 1,2,3

103 2,4,5

Minimum_Support = 50%

A Parallel Solution(continued)

1 2 1

1 3 2

2 3 2

2 4 1

2 5 2

4 5 1

1 2 3 1

2 4 5 1

2 3 5 1

2 3 4 1

1,3,4

2,3,5

1,2,3

2,4,5

ID Transaction

100 1,3,4

101 2,3,5

102 1,2,3

103 2,4,5

Minimum_Support = 50%

A Parallel Solution(continued)

1 2 3 1

2 4 5 1

2 3 5 1

2 3 4 1

The row of the input size grows exponentially as the tree gets

trimmed(the processor starts dying. In this example, the final input

size becomes 4 by 3 matrix. It started with 1 row. It becomes 2 rows

and ends with 4 rows.

Result

• Use the gene expression data that consists of the cancer-causing

gene structure information and the name of the cancers.

• There are two different inputs. One is the numbers stored in the two

dimensional matrix and the other is the minimum support rate.

• The input size for the runs is 100 * 100, 150*150, 200 * 200, 250 *

250, 300 * 300, 350 * 350, 500 * 500, and 1000 * 1000

• The min_support is set to 50% for all of the runs.

- In the future, I will try the benchmarks with a lower min_support,

since it is more likely to reveal the true speedup/efficiency.

• The number of the processors(cores) used is 1, 2, 4, 8, 16 and 32.

• Each test was run three times and obtained the average run

Average Runtime vs. Input Size

Input size 1 2 4 8 16 32

10000 0.126 0.071 0.045 0.032 0.029 0.024

22500 0.287 0.166 0.109 0.076 0.068 0.056

40000 0.606 0.370 0.245 0.168 0.151 0.118

62500 1.062 0.582 0.386 0.268 0.240 0.207

90000 1.713 0.968 0.640 0.451 0.405 0.337

122500 2.458 1.415 0.936 0.637 0.554 0.489

250000 9.531 5.506 3.646 2.494 2.161 1.980

1000000 66.223 37.225 25.383 17.421 15.686 15.247

Runtime unit: Second

A Number of Processors

Average Runtime vs. Input Size

0

10

20

30

40

50

60

70

10000 22500 40000 62500 90000 122500 250000 1000000

R
u

n
n

in
g

 T
im

e

Average Running Time vs Input Size

1

2

4

8

16

32

Speedup vs. Num of processors

0

1

2

3

4

5

6

1 2 4 8 16 32

S
p

e
e

d
u

p

Speedup vs. Num of Processors

100

150

200

250

300

350

500

1000

Efficiency vs. Number of Processors

0

0.2

0.4

0.6

0.8

1

1.2

1 2 4 8 16 32

E
ff

ic
ie

n
cy

Efficiency vs. Num of Processors

100

150

200

250

300

350

500

1000

Observation

• Average run time grows exponentially as the input size grows

• Speedup grows linearly at the beginning. Then, it starts going

down

• Efficiency drops as more processors are added. Even if more

processors would take the divided inputs, their work would

not affect the efficiency that much.

Future work

• Test with the various minimum support rate other than the

fixed minimum support 50%

• Use various kinds of data such as Waltmart or Top’s

transactions

• Modify current implementations to achieve the better

efficiency

• OpenMP implementation written in C

Reference

http://www.cse.buffalo.edu/faculty/azhang/cse601/cse601-

associationrule.ppt

