CSE 633 Fall 2012
Parallel Apriori Algorithm and
Frequent itemsets with Gene Expression Data

Hyunwoo Sung

Generating Frequent Itemsets

Data base D 1-candidates Freq 1-itemsets 2-candidates
TID | Items ltemset | Sup ltemset | Sup [temset
10 |ac,d a 2 ab
20 (b, c,e b 3 ac
30 |(a,b,ce = c 3 = ae
20 |[be | = 3 be
Min_sup=0.5 be
3-candidates Freq 2-itemsets Counting 20
Scan D ltemset ltemset | Sup ltemset Sup
e | < s [2| |
bc 2 ac 2 Scan D
-
Freq 3-itemsets be 3
ltemset | Sup 2 2 be 2
bce 2 be :
ce 2

Gene Expression Data Used For Input

Samplel
Sample2
Sample3
Sample4d
Sample5
Sample6
Sample?7
Sample8

11
11
10
10
11
11
11

10

upP
up
Down
Down
upP
up
upP
Down

21

20

20

20

21

20

21

20

up
Down
Down
Down
upP
Down
upP
Down

30

31

31

30

30

30

30

31

Down
up
upP
Down
Down
Down
Down
upP

up
Down
upP
Down
Down
Down
upP
up

41

40

41

40

40

40

41

41

ALL
ALL
ALL
AML
ALL
ALL
AML
ALL

51

51

51

50

51

51

50

51

When transmitting data
between processors, they
exchange integers that are
transformed instead of String.
UP becomes 1 and Down
becomes 0. Also, the name of
the cancers such as ALL or AML
becomes 1 or O, respectively.

Sequential Apropri Algorithm Implementation in C++

ltemsetindex = 1;

while(itemsetindex < numberOfltems);

{
generateCandidates(itemsetindex);
generateFrequentltemsets(itemsetindex);
print(frequentitemsetTableElements);
itemsetindex++;

Continued from Implementation

GenerateCandidates(int sequence)
for | = 0 to candidates.size()
for j=1+ 1 to candidates.size()
construct the candidates through self-joining.
store the candidates in the map. (key = candidate, value = 0)

Worst case: O(n?) when sequence > 2, C: number of candidates
I:sequence (i:1,2,3,...number of transactions - 1)

Continued from Implementation

generateFrequentltemsets(sequence);
for | = 0 to numberOfTransactions(N) in a transaction matrix
for j = 0 to numberOfltems(W)
iterate through HashMap

get the key(item) and compare the key with the actual
transaction items in order to count the # of transactions

update the value that maps to the key in HashMap

if the support of itemsets >= MIN_SUPPORT
place the selected itemsets on CandidateltemsetTable

Best: O(N“*C) when sequence == 1, C = # of candidates
Worst: O(N*C’ *C”") when sequence > =2, i:itemsetindex

C':reduced # of items in a map

C':increased # of items to compare

A Parallel Implementation

bool *alive = new bool[NUM_PROCESSORS];
for(inti=0;i<NUM_PROCESSORS; ++i)
alive[i] = true;
get_initial_data (RANK, globallnput, input);
for(inti=0;i<log2(NUM_PROCESSORS); ++i)
{
if(alive[RANK])
{
instance.process(input, output);
if(should_request(alive, i))
{
int neighbour = RANK + (int) pow(2.0,i);
request_data(neighbour, neighbor_output);
merge_results(output, neighbor_output, input);
alive[neighbour] = false;

Implementation(Continued)

else

{
alive[RANK] = false;
int neighbour = RANK - (int)pow(2.0,i);
send_data(neighbour, output);
delete[] alive;
MPI::Finalize();
exit(0);

}

}
}

delete[] alive;
MPI::Finalize();
return O;

}

A Parallel Solution llustration

ID Transaction
1001,3,4
1012,3,5
1021,2,3
1032,4,5
Minimum_Support = 50%

U h W N R
N = SIS

1 1
2 1
3 2
4 1
5 1

A Parallel Solution(continued)

ID Transaction
1001,3,4
1012,3,5
1021,2,3
1032,4,5
Minimum_Support = 50%

25
45

1
2
2
1
2
1

U r W N R
N N S
U h W N R
N = SIS

A Parallel Solution(continued)

ID Transaction 123 1
1001,3,4 245 1
1012,3,5 235 1
1021,2,3 234 1
1032,4,5

Minimum_Support = 50%

1
2
2
1
2
1

45

A Parallel Solution(continued)

ID Transaction
1001,3,4
1012,3,5
1021,2,3
1032,4,5
Minimum_Support = 50%
123 1
245 1
235 1
234 1

The row of the input size grows exponentially as the tree gets
trimmed(the processor starts dying. In this example, the final input
size becomes 4 by 3 matrix. It started with 1 row. It becomes 2 rows
and ends with 4 rows.

Result

* Use the gene expression data that consists of the cancer-causing
gene structure information and the name of the cancers.

* There are two different inputs. One is the numbers stored in the two
dimensional matrix and the other is the minimum support rate.

* The input size for the runs is 100 * 100, 150*150, 200 * 200, 250 *
250, 300 * 300, 350 * 350, 500 * 500, and 1000 * 1000

* The min_support is set to 50% for all of the runs.

- In the future, | will try the benchmarks with a lower min_support,
since it is more likely to reveal the true speedup/efficiency.

* The number of the processors(cores) usedis 1, 2, 4, 8, 16 and 32.
* Each test was run three times and obtained the average run

Average Runtime vs. Input Size

A Number of Processors

10000 0.126 0.071 0.045 0.032 0.029 0.024
22500 0.287 0.166 0.109 0.076 0.068 0.056
40000 0.606 0.370 0.245 0.168 0.151 0.118
62500 1.062 0.582 0.386 0.268 0.240 0.207
90000 1.713 0.968 0.640 0.451 0.405 0.337
122500 2.458 1.415 0.936 0.637 0.554 0.489
250000 9.531 5.506 3.646 2.494 2.161 1.980
1000000 66.223 37.225 25.383 17.421 15.686 15.247

Runtime unit: Second

Average Runtime vs. Input Size

Average Running Time vs Input Size

70

. /

50 /

40 [-

. [/ =
/ / / .

20

m W

10000 22500 40000 62500 90000 122500 250000 1000000

ning Time

Run

Speedup vs. Num of processors

Speedup vs. Num of Processors

250

500

1000

Efficiency vs. Number of Processors

Efficiency vs. Num of Processors

1.2
1
0.8 100
> e 200
£
2 06 250
E e 300
0.4 500
1000
0.2
0

Observation

* Average run time grows exponentially as the input size grows

* Speedup grows linearly at the beginning. Then, it starts going
down

* Efficiency drops as more processors are added. Even if more
processors would take the divided inputs, their work would
not affect the efficiency that much.

Future work

* Test with the various minimum support rate other than the
fixed minimum support 50%

* Use various kinds of data such as Waltmart or Top’s
transactions

* Modify current implementations to achieve the better
efficiency

* OpenMP implementation written in C

Reference

http://www.cse.buffalo.edu/faculty/azhang/cse601/cse601-
associationrule.ppt

