
CSE 633 Fall 2010

Project by Suraj Alungal Balchand

Advisor: Dr. Russ Miller

State University of New York at Buffalo

N-Body Simulation using CUDA

Project plan

 Develop a program to simulate gravitational forces
between n bodies in space

 Exploit the massively parallel architecture
provided by GPGPUs.

 Compare performance with equivalent openMP
and sequential code

Simple n-body scenario with n=4 bodies

This can get very complicated…

A not so simple N body simulation..

Millennium Run~ 10 billion particles

http://en.wikipedia.org/wiki/Millennium_Run

The Equation

Fi - Force on particle i
mi – Mass of particle i
mj – Mass of particle j
ri – Direction vector for particle i
rj – Direction vector for particle j
ε - Softening factor

*Assuming that the other fundamental forces of interaction do not
influence the system as much as gravity.

Parallelism
 The above equation suggests that the cumulative effect

of n-1 particles on a single particle can be
approximated independently for each time step.

 A problem in the parallel computing domain

 nVidia’s CUDA allows for massive parallelism.

 Multiple CUDA-enabled devices could also be used for
extremely large simulations (E.g.)

http://sussi.megahost.dk/~frigaard/g2x/

Advantages of CUDA
 Each GPGPU is effectively a mini-supercomputer

 For cards that support Compute Capability > 1.2:
 Each Streaming Multiprocessor (SM) allows for 1024 resident

threads (employs latency hiding techniques).

 Each C1060 GPGPU (on Magic cluster) has 30 SMs.

 Shared Memory architecture built into each SM allows for
significant performance gain by reducing the global (device)
memory access.

 Memory coalescing allows for good data locality improving
performance.

 CUDA threads are lightweight compared to CPU threads and
easy to schedule.

Algorithm used:

 All-pairs – calculation of all possible combinations
(brute force method – O(n2))

 Most accurate values

 Every particle-particle interaction is calculated

 Computationally intensive

 Not necessary in most cases

 Variable Time-Step schemes can save some of the
computations involved.

 Improvement: Barnes Hut Algorithm

CUDA Implementation

 In all-pairs algorithm, force on each body is the sum of
acceleration caused by every other particle multiplied
by the mass of that body.

 Forces on a single body is independently calculated by
a single thread.

 (Concurrent memory access allows for information of
every other body to accessed by every thread)

 The sum of all accelerations are calculated, and further
used to calculate the velocity and new position of each
particle.

CUDA implementation

 Position and velocity of each particle is updated per
time-step.

 Coalesced memory used to store location, mass &
velocity of body.

 Shared memory structure used to optimize
calculations by having each thread in a block copy one
value from the device memory into the shared memory,
reducing the total number of device memory accesses.

Barnes Hut Tree code algorithm
 To be implemented as the next phase of this project.

 Runtime – O(nlogn)

 Maps the data on to a quad- or oct- tree structure which
divides computational region into smaller and smaller
regions

 Calculation of forces on a particle is carried out by traversing
tree elements close, in detail. The particles farther away are
explored only in coarse detail.

 Space devoid of particles is not simulated, which is an
additional saving.

How the algorithm partitions data

Courtesy: Wiki/Barnes-Hut_Simulation

http://en.wikipedia.org/wiki/Barnes%E2%80%93Hut_simulation
http://en.wikipedia.org/wiki/Barnes%E2%80%93Hut_simulation
http://en.wikipedia.org/wiki/Barnes%E2%80%93Hut_simulation

Simple Scenario – End effect

Objects, relatively, far away are considered as a single entity
to reduce calculations.

Forces

Particle

Current Status

 Developed an all-pairs program to simulate
gravitational forces between n bodies in space

 Compared performance of algorithm on:

 CUDA flavors:
 Geforce 240M – 48 cores, compute 1.2, 1GB device memory

 Tesla C1060 – 240 cores, compute 1.3, 3GB device memory

 Sequential code (CPU, Intel Core2Duo P8700 ~2.53Ghz,
4GB RAM)

 Open MP code - Edge Cluster – 1 node, 8 processors

Problems faced

 CUDA / Visual Studio integration was tricky

 Data structure manipulation (Arrays) on device
(global) memory is not as easily accomplished as on
Host RAM.

 Cannot be absolutely sure of the accuracy output as
debugging toolkit has not been installed yet.

 Magic compute cluster runs linux, and nVidia’s new tool –
nSight is not available for the platform.

 Visualization not added yet.

Verifying the output:

 Manually calculated values for 3 bodies on paper

 Matches GPU output

 Extending the result to all cases!

 For all the work done, the output is indeed
impressive…

A comparison:

0

10

20

30

40

50

60

100 1000 10000 1000000

T
im

e
 (

in
 s

e
co

n
d

s)

No of Bodies

For 10 Iterations

CUDA(Tesla)

CUDA (240M)

OpenMP

Sequential

*Lesser the time taken for given x-value,
the better.

The rest of the data…

Iterations

Platform Body Count 5 10 20 50

CUDA (Tesla) 480 0.015 0.028 0.067

CUDA (Tesla) 1920 0.06 0.15 0.39

CUDA (Tesla) 7680 0.35 0.73 1.86

CUDA (Tesla) 30720 2.779 6.43 16.119

CUDA (Tesla) 122880 19.85 39.6

CUDA (240M) 384 0.016 0.03 0.81

CUDA (240M) 1536 0.063 0.123 0.303

CUDA (240M) 6144 0.42 0.81 2.057

CUDA (240M) 24576 3.84 7.67 19.07

OpenMP (Edge)8 cores 100 0.022 0.025 0.036

OpenMP (Edge)8 cores 1000 0.176 0.337 0.784

OpenMP (Edge)8 cores 10000 12.91 25.87 64.688

OpenMP (Edge)8 cores 100000 643.53

Sequential 100 0.025 0.029 0.085

Sequential 1000 0.578 1.143 4.85

Sequential 10000 52.01 104.23 616.93

Future Work: Next Semester
 Implement solutions for the computationally efficient Barnes

Hut Tree code algorithm
 Implementing tree structure is complicated.
 Load Balancing the tree across processors

 Create visualization using a graphics engine

 If possible, implement on the new M2050 GPGPU cluster being
installed at CCR .

 Also, the cloud-compute option available with Amazon.

 Scaling issues – have to get hardware information at runtime to
ensure proper scaling from my 240M graphics card to Tesla
C1060 card.
 Currently using a header file to manually tweak block and grid size for

each GPU

Conclusions:
 CUDA provides an impressive hardware layer to execute

extremely parallel applications.
 CUDA enabled GPUs really perform when pushed to the limits

(upwards of 10000 threads per GPU). It also depends on
leveraging the compute-specifications
 Correct Block size
 Shared memory tiles
 Grid design

 CUDA is still a developing technology, but given the cost to
power ratio, it is already ahead of the previous parallel
architectures in use.

 Can be difficult to use at first as it gives programmers all the
flexibility in scheduling the threads, handling memory.
 This can be a boon and a bane.

References
 http://http.developer.nvidia.com/GPUGems3/gpugems

3_ch31.html

 http://en.wikipedia.org/wiki/CUDA

 http://www.ifa.hawaii.edu/~barnes/treecode/treeguid
e.html

 http://www.scholarpedia.org/article/N-
body_simulations

 http://www.sns.ias.edu/~piet/act/comp/algorithms/st
arter/index.html

 http://www.amara.com/papers/nbody.html

 http://en.wikipedia.org/wiki/Barnes%E2%80%93Hut_
simulation

http://http.developer.nvidia.com/GPUGems3/gpugems3_ch31.html
http://http.developer.nvidia.com/GPUGems3/gpugems3_ch31.html
http://en.wikipedia.org/wiki/CUDA
http://www.ifa.hawaii.edu/~barnes/treecode/treeguide.html
http://www.ifa.hawaii.edu/~barnes/treecode/treeguide.html
http://www.scholarpedia.org/article/N-body_simulations
http://www.scholarpedia.org/article/N-body_simulations
http://www.scholarpedia.org/article/N-body_simulations
http://www.sns.ias.edu/~piet/act/comp/algorithms/starter/index.html
http://www.sns.ias.edu/~piet/act/comp/algorithms/starter/index.html
http://www.amara.com/papers/nbody.html
http://en.wikipedia.org/wiki/Barnes%E2%80%93Hut_simulation
http://en.wikipedia.org/wiki/Barnes%E2%80%93Hut_simulation

Questions?

