PARALLEL IMPLEMENTATION OF LOGISTIC REGRESSION USING
GRADIENT DESCENT

CSE 633 PARALLEL ALGORITHMS

SWAPNIL SUSHIL PANDEY
What is Logistic Regression?

- Logistic regression is a classification model.
- It is a process of modeling the probability of a discrete outcome given an input variable.
- The outcome is often binary in nature, but this can also be used for multinomial classification.
- It is useful to determine what category would a new sample best fit into.
Some Real-Life Applications of Logistic Regression
Medical Research

- Medical researches need to find out how exercise could impact the probability of a heart attack.
- This is an example of binomial classification wherein the possible outcomes are:
 - The patient will likely get a heart attack
 - The patient will likely not get a heart attack
Credit or Debit Card Frauds

➢ For any given transaction that occurs, it is the responsibility of the provider to evaluate whether the transaction was fraudulent.

➢ The transaction amount, credit score, usage location and purchase history are some of the factors that can be used to determine the outcome.

➢ This once again is an example of binomial classification with the possible outcome being:
 ➢ Fraudulent transaction
 ➢ Nonfraudulent transaction
Why do we need to parallelize the process?
The Data Usage Statistics of Some Mainstream Websites

- Facebook generates 4 petabytes of data per day
- Google search crawler handles 850 TB of data raw from the web
- Twitter generates more than 12 terabytes of data per day
- There are over 5 billion snaps (photos & videos) created on Snapchat everyday
The Data Usage Statistics of Some Mainstream Websites

- Facebook generates 4 petabytes of data per day
- Google search crawler handles 850 TB of data raw from the web
- Twitter generates more than 12 terabytes of data per day
- There are over 5 billion snaps (photos & videos) created on Snapchat everyday
Processing these large amounts of data

➢ All the websites are among the primary sources of information, communication or entertainment for a huge number of people
➢ It is important that the information being provided is accurate and the content provided to users is relevant to them
➢ All this involves processing of huge amounts of data
➢ Parallelizing the tasks massively boosts the processing speed
Parallelization Approach

➢ The gradient descent calculation process involves a lot of computation
➢ This is the focus of the parallelization process
➢ Data is uniformly distributed among all the processors
➢ Each processor performs gradient descend on its data set
➢ They broadcast the calculated gradient values to all other processors in the system
➢ Each processor uses the received values to update the local weights
➢ This process is repeated till the gradient converges or the number of epochs has been met
Gradient Calculation

➢ The convergence condition is set at 0.1% change and the number of epochs is set to 1000.
➢ Numpy arrays of length 8,388,608 were provided as input.
➢ The time complexity for the calculation is of the order $O(n)$, where n is the size of the input.
Communication between processors
Results

<table>
<thead>
<tr>
<th>Number of Processors</th>
<th>Total Running Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>28.2 s</td>
</tr>
<tr>
<td>4</td>
<td>15.3 s</td>
</tr>
<tr>
<td>8</td>
<td>8.0 s</td>
</tr>
<tr>
<td>16</td>
<td>3.8 s</td>
</tr>
<tr>
<td>32</td>
<td>3.6 s</td>
</tr>
<tr>
<td>64</td>
<td>5.2 s</td>
</tr>
</tbody>
</table>
Nodes vs Time Comparison
Nodes vs Relative Speedup Comparison
Conclusion

➢ The time required for gradient calculation decreased linearly with the increase in the number of processors.
➢ This was in line with the O(n) time complexity of the calculation function.
➢ After a certain number of nodes however, the communication overhead overshadowed the increase in efficiency obtained from parallelizing the task.
THANK YOU