
‘-

1

Thana Shree Jeevanandam

CSE 633 Parallel Algorithms(Dr.Russ Miller)
April 28,2020

HYPER QUICKSORT

‘-

2

● Problem Statement
● Parallel Implementation
● Hyper Quicksort - Algorithm
● Output
● Runtime Comparison
● Conclusion
● Reference

CONTENTS

‘-

3

To improve the performance of the Quicksort Algorithm by
modifying it for parallel execution with the Hyper-Quicksort
Algorithm (by Bruce Wager) and to compare its performance as
the number of processors changes.

Problem Statement

‘-

4

Parallel Implementation

ASSUMPTION
• N-dimensional Hypercube - Number of processors is a power of two. (n=2N)
• Processors are connected if and only if their unique log2n-bit strings differ in

exactly one position.
• Each Processor has d/2N data (d inputs).

WITH COMPLETION
• Each processor has a sorted list in it’s memory.
• LastElement(Pi) <= FirstElement(Pi +1) .
• The starting node collects all the individual lists and returns the output.

‘-

5

● Locally sort the data in each processor.

● Randomly chosen processor gets its “Median” and broadcasts it to all the other
processors.

● The processors locally splits the data into “High” and “Low” groups with “Median”
as the pivot.

Hyperquicksort - Algorithm

‘-

6

● Consider “Upper” and “Lower” Subcubes (each hypercube with dimension- 2N-1) differing in their
most significant bits.

● Processor from “Upper” sends its “Low” to its adjacent process from “Lower”.
● Processor from “Lower” sends its “High” to its adjacent process from “Upper”.
● At “Upper”, each processor merges its own “High” with the obtained “High”.
● At “Lower”, each processor merges its own “Low” with the obtained “Low”.

Hyperquicksort - Algorithm

‘-

7

● Repeat the steps in parallel until the Subcubes have single processor.
● After (log n) recursions, every processor has an unsorted list of values completely

disjoint from the values held by the other processors.
● LastElement(Pi) <= FirstElement(Pi +1).

● The expected running time,

Hyperquicksort - Algorithm

‘-

8

Output

‘-

9

RUNTIME COMPARISON

‘-

10

Sequential Implementation

INPUTS EXECUTION
TIME
(in secs)

 10000 0.08757781982

100000 1.098776817

1000000 9.905396461

10000000 109.7441607

‘-

11

Parallel Implementation
For 1088 data

NO. OF NODES
EXECUTION
TIME
(in secs)

1 0.0871899128

4 0.08312749863

8 0.08022236824

16 0.06556296349

32 0.09054040909

64 0.1168482304

‘-

12

Parallel Implementation
For 10304 data

NO. OF NODES
EXECUTION
TIME
(in secs)

1 0.0787835121

4 0.0925407409

8 0.0862121582

16 0.0742335319

32 0.0953888893

64 0.1526854038

‘-

13

Parallel Implementation
For 10560 data

NO. OF NODES
EXECUTION
TIME
(in secs)

2 0.13

4 0.09041595459

8 0.08528614044

16 0.07749915123

32 0.08768796921

64 0.07342982292

‘-

14

Parallel Implementation
For 10Million data

NO. OF NODES
EXECUTION
TIME
(in secs)

1 53.65874353

2 41.34348739

4 37.87895323

8 32.99123985

16 29.33294819

32 27.65038346

64 25.03485932

‘-

15

Parallel Implementation
For 100 Million data

NO. OF NODES
EXECUTION
TIME
(in secs)

1 800.194371

2 514.765896

4 457.706214

8 430.185896

16 396.648367

32 375.087699

64 362.099076

‘-

16

● The hyperquicksort was implemented using MPI4PY

parallelly on the different number of processors.

● The results were compared and interpreted.

Conclusion

‘-

17

● Algorithms, Sequential and Parallel: A Unified Approach –

Russ Miller and Laurence Boxer. 3rd Edition.

● MPI4PY Documentation -

https://mpi4py.readthedocs.io/en/stable/tutorial.html

Reference

https://mpi4py.readthedocs.io/en/stable/tutorial.html

‘-

18

THANK YOU

