HYPER QUICKSORT

Thana Shree Jeevanandam

CSE 633 Parallel Algorithms(Dr.Russ Miller)
April 28,2020

University at Buffalo
Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

University at Buffalo
Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

CONTENTS

Problem Statement

Parallel Implementation
Hyper Quicksort - Algorithm
Output

Runtime Comparison
Conclusion

Reference

University at Buffalo

Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

Problem Statement

To improve the performance of the Quicksort Algorithm by
modifying it for parallel execution with the Hyper-Quicksort
Algorithm (by Bruce Wager) and to compare its performance as
the number of processors changes.

University at Buffalo
Department of Computer Science

and Engineering
School of Engineering and Applied Sciences

Parallel Implementation

ASSUMPTION
 N-dimensional Hypercube - Number of processors is a power of two. (n=2V)

* Processors are connected if and only if their unique log,n-bit strings differ in
exactly one position.

 Each Processor has d/2N data (d inputs).

WITH COMPLETION
« Each processor has a sorted list in it's memory.
« LastElement(Pi) <= FirstElement(Pi +1) .
* The starting node collects all the individual lists and returns the output.

University at Buffalo
Department of Computer Science

and Engineering
School of Engineering and Applied Sciences

Hyperquicksort - Algorithm

e Locally sort the data in each processor.

e Randomly chosen processor gets its “Median” and broadcasts it to all the other
processors.

e The processors locally splits the data into “High” and “Low” groups with “Median”
as the pivot.

University at Buffalo
Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

Hyperquicksort - Algorithm

Consider “Upper” and “Lower” Subcubes (each hypercube with dimension- 2N") differing in their
most significant bits.

Processor from “Upper” sends its “Low” to its adjacent process from “Lower”.

Processor from “Lower” sends its “High” to its adjacent process from “Upper”.

At “Upper”, each processor merges its own “High” with the obtained “High”.

At “Lower”, each processor merges its own “Low” with the obtained “Low”.

1111

0010

University at Buffalo
Department of Computer Science

and Engineering
School of Engineering and Applied Sciences

Hyperquicksort - Algorithm

e Repeat the steps in parallel until the Subcubes have single processor.

e After (log n) recursions, every processor has an unsorted list of values completely
disjoint from the values held by the other processors.

e LastElement(Pi) <= FirstElement(Pi +1).

e The expected running time,

dd+ 1)
O| Nlog N + 5 +dN |.

University at Buffalo
Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

Output

https://ubccr.freshdesk.com/solution/articles/13000066168
A

New nodes available in 'cascade' partition! More details:
https://ubccr.freshdesk.com/en/support/solutions/articles/13000071364

R R
[thanashr@vortex2:~]$ module load mpidpy/2.0.0-openmpi
The mpidpy openmpi module has been loaded. The /util/common/python/anaconda-5.0.1 distribution and openmpi/gcc-4.8.x/2.0.2 are being used. Python 2.7 and 3.6 are available. Source the py27-mpi or
py36-mpi environment. To use mpidpy for python 2.7 type "source activate py27-mpi".
[thanashr@vortex2:~]$ source activate py36-mpi
(py36-mpi) [thanashr@vortex2:~]$ nano test.py
(py36-mpi) [thanashr@vortex2:~]$ mpiexec -n 1 python test.py
Sorted array is:
[8, 14, 22, 54, 66, 78, 89, 122, 123, 123, 138, 161, 183, 188, 220, 224, 234, 246, 262, 276, 280, 296, 333, 340, 345, 353, 357, 357, 382, 392, 392, 396, 396, 397, 456, 474, 478, 483, 526, 529, 531, 533,
534, 539, 547, 567, 576, 580, 584, 592, 594, 605, 606, 616, 623, 646, 648, 650, 652, 714, 716, 737, 770, 804, 807, 820, 827, 837, 838, 848, 854, 872, 876, 895, 901, 911, 911, 914, 919, 925, 951, 965, 982
, 995, 1018, 1046, 1051, 1052, 1054, 1064, 1069, 10760, 1090, 1111, 1112, 1114, 1121, 1123, 1126, 1132, 1155, 1169, 1179, 1185, 1188, 1205, 1219, 1231, 1233, 1246, 1263, 1270, 1277, 1278, 1279, 1290, 1296
, 1301, 1306, 1308, 1318, 1323, 1331, 1347, 1351, 1365, 1397, 1397, 1397, 1415, 1441, 1447, 1461, 1474, 1479, 1480, 1488, 1504, 1517, 1555, 1561, 1579, 1597, 1664, 1615, 1620, 1625, 1633, 1635, 1639, 165
8, 1676, 1717, 1719, 1752, 1752, 1775, 1776, 1861, 1813, 1822, 1843, 1846, 1866, 1867, 1868, 1868, 1872, 1875, 1885, 1899, 1913, 1915, 1920, 1934, 1965, 1978, 1987, 2004, 2011, 2018, 2039, 2082, 2083, 20
94, 2099, 2104, 2107, 2108, 2126, 2147, 2154, 2168, 2175, 2175, 2177, 2188, 2220, 2234, 2241, 2251, 2258, 2291, 2293, 2318, 2319, 2322, 2325, 2332, 2344, 2351, 2373, 2384, 2387, 2392, 2394, 2395, 2399, 2
410, 2427, 2430, 2434, 2436, 2460, 2468, 2470, 2474, 2495, 2512, 2523, 2526, 2527, 2529, 2532, 2539, 2550, 2552, 2559, 2568, 2586, 2599, 2611, 2613, 2647, 2647, 2651, 2652, 2654, 2664, 2669, 2677, 2695,
2698, 2699, 2716, 2723, 2728, 2730, 2731, 2754, 2788, 2807, 2815, 2816, 2836, 2854, 2872, 2882, 2886, 2909, 2917, 2928, 2929, 2941, 2945, 2962, 2994, 3008, 3013, 3032, 3037, 3037, 3042, 3043, 3057, 3091,
3103, 3108, 3111, 3123, 3151, 3155, 3165, 3172, 3182, 3187, 3199, 3215, 3223, 3238, 3249, 3254, 3264, 3273, 3277, 3280, 3303, 3316, 3316, 3318, 3339, 3365, 3374, 3382, 3390, 3393, 3398, 3425, 3425, 3427
, 3432, 3435, 3454, 3465, 3480, 3486, 3488, 3490, 3491, 3519, 3521, 3533, 3546, 3574, 3578, 3599, 3610, 3614, 3615, 3621, 3624, 3625, 3637, 3640, 3643, 3666, 3681, 3682, 3683, 3685, 3693, 3707, 3709, 376
8, 3778, 3787, 3808, 3819, 3821, 3824, 3848, 3857, 3885, 3886, 3891, 3900, 3905, 3909, 3916, 3921, 3923, 3926, 3926, 3945, 3950, 3951, 3958, 3971, 3982, 3982, 3986, 3998, 4004, 4007, 4013, 4028, 4028, 40
51, 4053, 4053, 4055, 4070, 4084, 4103, 4104, 4106, 4106, 4107, 4128, 4137, 4137, 4143, 4145, 4145, 4161, 4183, 4184, 4187, 4192, 4194, 4197, 4200, 4217, 4229, 4231, 4237, 4245, 4248, 4267, 4268, 4287, 4
295, 4308, 4308, 4321, 4341, 4347, 4353, 4357, 4364, 4383, 4403, 4405, 4405, 4411, 4421, 4439, 4462, 4468, 4470, 4472, 4488, 4490, 4491, 4517, 4519, 4521, 4523, 4529, 4532, 4546, 4559, 4565, 4577, 4582,
4603, 4603, 4610, 4614, 4630, 4630, 4635, 4636, 4655, 4668, 4681, 4690, 4698, 4704, 4718, 4721, 4737, 4742, 4753, 4755, 4766, 4775, 4776, 4786, 4796, 4815, 4825, 4826, 4833, 4841, 4848, 4853, 4860, 4864,
4888, 4889, 4895, 4896, 4925, 4932, 4937, 4945, 4946, 4974, 4995, 4997, 5050, 5051, 5063, 5066, 5090, 5096, 5109, 5123, 5128, 5169, 5196, 5191, 5227, 5238, 5247, 5250, 5253, 5257, 5279, 5283, 5292, 5296
, 5307, 5330, 5342, 5345, 5374, 5383, 5421, 5423, 5432, 5445, 5485, 5516, 5518, 5518, 5546, 5550, 5552, 5583, 5595, 5614, 5624, 5646, 5647, 5648, 5651, 5671, 5672, 5685, 5685, 5692, 5738, 5741, 5756, 575
9, 5764, 5767, 5775, 5775, 5777, 5778, 5794, 5805, 5815, 5819, 5851, 5884, 5887, 5888, 5894, 5895, 5896, 5899, 5906, 5907, 5923, 5938, 5953, 5992, 6000, 6001, 6003, 6006, 6006, 6021, 6041, 6042, 6042, 60
66, 6091, 6102, 6102, 6103, 6113, 6130, 6130, 6133, 6143, 6144, 6155, 6172, 6191, 6191, 6198, 6205, 6209, 6216, 6221, 6227, 6229, 6235, 6236, 6246, 6246, 6255, 6271, 6273, 6275, 6278, 6290, 6303, 6309, 6
311, 6331, 6350, 6352, 6353, 6356, 6357, 6362, 6375, 6385, 6393, 6397, 6401, 6409, 6412, 6430, 6439, 6460, 6462, 6465, 6466, 6468, 6477, 6478, 6521, 6539, 6541, 6553, 6556, 6560, 6560, 6564, 6567, 6589,
6592, 6596, 6608, 6633, 6647, 6648, 6650, 6654, 6655, 6674, 6688, 6695, 6695, 6728, 6734, 6747, 6754, 6763, 6774, 6774, 6780, 6795, 6799, 6807, 6832, 6849, 6850, 6877, 6895, 6903, 6905, 6927, 6930, 6931,
6932, 6936, 6938, 6944, 6945, 6949, 6977, 6988, 7006, 7012, 7017, 7036, 7048, 7066, 7074, 7111, 7113, 7122, 7131, 7143, 7147, 7150, 7162, 7202, 7210, 7211, 7228, 7236, 7257, 7258, 7259, 7281, 7292, 7301
, 7310, 7334, 7353, 7363, 7380, 7383, 7384, 7392, 7395, 7415, 7429, 7432, 7461, 7482, 7485, 7487, 7493, 7497, 7522, 7530, 7584, 7596, 7598, 7613, 7634, 7659, 7666, 7669, 7690, 7715, 7737, 7761, 7804, 780
5, 7818, 7828, 7830, 7850, 7861, 7880, 7880, 7887, 7896, 7903, 7911, 7919, 7927, 7946, 7949, 7952, 7955, 7964, 7969, 7987, 7995, 7997, 8010, 80629, 8039, 8039, 8043, 8054, 8054, 8055, 8061, 8072, 8079, 80
90, 8103, 8107, 8110, 8119, 8123, 8125, 8127, 8132, 8157, 8166, 8184, 8191, 8212, 8227, 8229, 8233, 8254, 8257, 8263, 8294, 8296, 8301, 8321, 8324, 8337, 8352, 8353, 8358, 8367, 8380, 8383, 8385, 8397, 8
400, 8422, 8425, 8427, 8431, 8440, 8457, 8461, 8461, 8487, 8492, 8495, 8504, 8505, 8518, 8537, 8550, 8563, 8588, 8591, 8593, 8594, 8606, 8612, 8613, 8627, 8633, 8650, 8673, 8702, 8702, 8709, 8721, 8721,
8726, 8728, 8739, 8758, 8761, 8762, 8765, 8768, 8785, 8787, 8807, 8813, 8821, 8822, 8836, 8843, 8853, 8858, 8861, 8891, 8929, 8930, 8935, 8936, 8940, 8977, 8992, 8992, 9002, 9026, 9038, 9042, 9054, 9063,
9079, 9084, 9095, 9098, 9103, 9106, 9110, 9119, 9120, 9129, 9129, 9131, 9160, 9165, 9183, 9191, 9207, 9216, 9222, 9231, 9240, 9251, 9260, 9272, 9274, 9288, 9300, 9316, 9320, 9324, 9325, 9333, 9352, 9363
, 9372, 9374, 9378, 9381, 9390, 9406, 9417, 9431, 9431, 9432, 9443, 9444, 9470, 9486, 9490, 9492, 9499, 9499, 9504, 9518, 9529, 9536, 9550, 9550, 9556, 9561, 9577, 9578, 9588, 9608, 9609, 9611, 9615, 961
8, 9621, 9638, 9643, 9648, 9650, 9665, 9666, 9671, 9673, 9675, 9687, 9697, 9714, 9718, 9724, 9729, 9734, 9745, 9749, 9753, 9760, 9761, 9771, 9778, 9786, 9787, 9801, 9816, 9824, 9837, 9841, 9866, 9878, 98
81, 9901, 9907, 9927]
Number of inputs were: 1000
Execution time is 0.008293390274047852
(py36-mpi) [thanashr@vortex2:~]$

RUNTIME COMPARISON

University at Buffalo
Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

University at Buffalo

Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

Sequential Implementation

Sequential Implementation

100
INPUTS EXECUTION
TIME 50
(in secs)
10000 0.08757781982 g
= 10
100000 1.098776817 E .
1000000 9.905396461

10000000 109.7441607 . 10000 100000 1000000 10000000

Number of Inputs

University at Buffalo

Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

Parallel Implementation

For 1088 data

NO. OF NODES

16

32

64

EXECUTION
TIME
(in secs)

0.0871899128
0.08312749863
0.08022236824
0.06556296349
0.09054040909

0.1168482304

Time(secs) vs No. of Processors

EXECUTION TIME(secs)

0.08

0.06

0.04

0.02

0.00

10 20 30 40 50 60

NO. OF PROCESSORS

University at Buffalo

Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

Parallel Implementation

For 10304 data

NO. OF NODES

16

32

64

EXECUTION
TIME
(in secs)

0.0787835121
0.0925407409
0.0862121582
0.0742335319
0.0953888893

0.1526854038

Time(secs) vs No. of Processors

EXECUTION TIME(secs)

0.20

0.15

0.10

0.05

0.00

10 20 30 40 50 60

NO. OF PROCESSORS

University at Buffalo
Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

O
Parallel Implementation
For 10560 data
Time(secs) vs No. of Processors
15
EXECUTION ° 01
NO. OF NODES TIME 8
n
(in secs) g 0.10 \\/
= oo
2 0.13 Z
2 005
4 0.09041595459 3
LLl
>
0.00
8 0.08528614044 w 10 20 30 40 50 50
16 0.07749915123 NO. OF PROCESSORS
32 0.08768796921 Q
64 0.07342982292
13 « A

University at Buffalo

Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

Parallel Implementation
For 10Million data
NO. OF NODES ﬁﬁg UTIoN
(in secs)
1 53.65874353
2 41.34348739
4 37.87895323
8 32.99123985
16 29.33294819
32 27.65038346

64

25.03485932

Time(secs) vs No. of Processors

60
0
O
&
o 40
=
|_
P
o
E 20
)
L
X
L
0

10 20 30 40

NO. OF PROCESSORS

50

60

University at Buffalo

Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

Parallel Implementation

For 100 Million data

NO. OF NODES

16

32

64

EXECUTION
TIME
(in secs)

800.194371
514.765896
457.706214
430.185896
396.648367
375.087699

362.099076

Time(secs) vs No. of Processors

1000
0
O
$ 750
Ll
=
F 500
=z
o)
=
3 250
1]
x
Ll
0

10 20 30 40 50 60

NO. OF PROCESSORS

University at Buffalo
Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

Conclusion

e The hyperquicksort was implemented using MPI4PY
parallelly on the different number of processors.

e The results were compared and interpreted.

University at Buffalo
U= Department of Computer Science

and Engineering
School of Engineering and Applied Sciences

Reference

e Algorithms, Sequential and Parallel: A Unified Approach —

Russ Miller and Laurence Boxer. 3rd Edition.

e MPI4PY Documentation -
https://mpi4py.readthedocs.io/en/stable/tutorial.html

https://mpi4py.readthedocs.io/en/stable/tutorial.html

THANK YOU

University at Buffalo
Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

